Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Borkmann | 10864 | 18.85% | 144 | 16.96% |
Martin KaFai Lau | 6491 | 11.26% | 53 | 6.24% |
Alexei Starovoitov | 6287 | 10.91% | 49 | 5.77% |
John Fastabend | 5052 | 8.76% | 37 | 4.36% |
David Ahern | 2263 | 3.93% | 26 | 3.06% |
Stanislav Fomichev | 2247 | 3.90% | 26 | 3.06% |
Andrey Ignatov | 2065 | 3.58% | 14 | 1.65% |
Lawrence Brakmo | 1609 | 2.79% | 12 | 1.41% |
Jakub Sitnicki | 1374 | 2.38% | 10 | 1.18% |
Mathieu Xhonneux | 1333 | 2.31% | 6 | 0.71% |
Jesper Dangaard Brouer | 959 | 1.66% | 22 | 2.59% |
Lorenz Bauer | 858 | 1.49% | 7 | 0.82% |
Yonghong Song | 764 | 1.33% | 14 | 1.65% |
Toke Höiland-Jörgensen | 746 | 1.29% | 11 | 1.30% |
Lorenzo Bianconi | 737 | 1.28% | 8 | 0.94% |
Joe Stringer | 721 | 1.25% | 5 | 0.59% |
Willem de Bruijn | 634 | 1.10% | 12 | 1.41% |
Maxim Mikityanskiy | 615 | 1.07% | 3 | 0.35% |
Linus Torvalds (pre-git) | 599 | 1.04% | 35 | 4.12% |
Kuniyuki Iwashima | 592 | 1.03% | 12 | 1.41% |
Eric Dumazet | 571 | 0.99% | 34 | 4.00% |
Thomas Graf | 550 | 0.95% | 2 | 0.24% |
Petar Penkov | 526 | 0.91% | 4 | 0.47% |
Gilad Sever | 446 | 0.77% | 3 | 0.35% |
Eelco Chaudron | 378 | 0.66% | 3 | 0.35% |
Joanne Koong | 340 | 0.59% | 3 | 0.35% |
Brenden Blanco | 337 | 0.58% | 1 | 0.12% |
Björn Töpel | 287 | 0.50% | 8 | 0.94% |
Nitin Hande | 285 | 0.49% | 1 | 0.12% |
Eyal Birger | 273 | 0.47% | 2 | 0.24% |
Daniel Xu | 259 | 0.45% | 4 | 0.47% |
Sebastian Andrzej Siewior | 241 | 0.42% | 6 | 0.71% |
Tetsuo Handa | 235 | 0.41% | 2 | 0.24% |
Jussi Mäki | 234 | 0.41% | 3 | 0.35% |
Pavel Emelyanov | 190 | 0.33% | 5 | 0.59% |
Maciej Fijalkowski | 189 | 0.33% | 2 | 0.24% |
Craig Gallek | 187 | 0.32% | 4 | 0.47% |
Jakub Kiciński | 163 | 0.28% | 10 | 1.18% |
Chenbo Feng | 161 | 0.28% | 2 | 0.24% |
Peter Oskolkov | 150 | 0.26% | 4 | 0.47% |
Nikita V. Shirokov | 147 | 0.26% | 4 | 0.47% |
Christoph Hellwig | 145 | 0.25% | 6 | 0.71% |
Daan De Meyer | 145 | 0.25% | 2 | 0.24% |
Aditi Ghag | 144 | 0.25% | 1 | 0.12% |
Kris Katterjohn | 141 | 0.24% | 1 | 0.12% |
Vadim Fedorenko | 130 | 0.23% | 1 | 0.12% |
kaixi.fan | 128 | 0.22% | 1 | 0.12% |
David Lebrun | 118 | 0.20% | 5 | 0.59% |
Amritha Nambiar | 116 | 0.20% | 1 | 0.12% |
Jiri Pirko | 113 | 0.20% | 4 | 0.47% |
Américo Wang | 112 | 0.19% | 2 | 0.24% |
Abhishek Chauhan | 110 | 0.19% | 2 | 0.24% |
Ziyang Xuan | 110 | 0.19% | 1 | 0.12% |
Vlad Dumitrescu | 109 | 0.19% | 1 | 0.12% |
Artem Savkov | 107 | 0.19% | 1 | 0.12% |
Florent Revest | 101 | 0.18% | 2 | 0.24% |
Xu Liu | 96 | 0.17% | 2 | 0.24% |
Hangbin Liu | 96 | 0.17% | 1 | 0.12% |
Eduard Zingerman | 96 | 0.17% | 1 | 0.12% |
Jon Maxwell | 94 | 0.16% | 1 | 0.12% |
Song Liu | 81 | 0.14% | 2 | 0.24% |
Martynas Pumputis | 79 | 0.14% | 1 | 0.12% |
Hagen Paul Pfeifer | 75 | 0.13% | 1 | 0.12% |
Hao Luo | 73 | 0.13% | 1 | 0.12% |
David Vernet | 71 | 0.12% | 2 | 0.24% |
Daniel Axtens | 68 | 0.12% | 1 | 0.12% |
David S. Miller | 65 | 0.11% | 12 | 1.41% |
Ahmed Abdelsalam | 62 | 0.11% | 2 | 0.24% |
Alexander Lobakin | 62 | 0.11% | 1 | 0.12% |
Andrii Nakryiko | 62 | 0.11% | 4 | 0.47% |
Pankaj Bharadiya | 61 | 0.11% | 1 | 0.12% |
Hideaki Yoshifuji / 吉藤英明 | 51 | 0.09% | 3 | 0.35% |
Nicolas Schichan | 50 | 0.09% | 2 | 0.24% |
Michał Mirosław | 49 | 0.09% | 1 | 0.12% |
Jonathan Lemon | 48 | 0.08% | 1 | 0.12% |
Roman Gushchin | 48 | 0.08% | 3 | 0.35% |
Anton Protopopov | 47 | 0.08% | 3 | 0.35% |
Patrick McHardy | 47 | 0.08% | 2 | 0.24% |
Pablo Neira Ayuso | 47 | 0.08% | 2 | 0.24% |
Geliang Tang | 47 | 0.08% | 1 | 0.12% |
Louis DeLosSantos | 42 | 0.07% | 1 | 0.12% |
Mat Martineau | 40 | 0.07% | 1 | 0.12% |
Michal Sekletar | 39 | 0.07% | 1 | 0.12% |
Alan Maguire | 39 | 0.07% | 2 | 0.24% |
Daniel Mack | 38 | 0.07% | 2 | 0.24% |
Kumar Kartikeya Dwivedi | 37 | 0.06% | 4 | 0.47% |
Hengqi Chen | 36 | 0.06% | 1 | 0.12% |
Rabin Vincent | 34 | 0.06% | 2 | 0.24% |
YiFei Zhu | 32 | 0.06% | 1 | 0.12% |
William Tu | 32 | 0.06% | 4 | 0.47% |
Xuesen Huang | 31 | 0.05% | 1 | 0.12% |
Mathias Krause | 31 | 0.05% | 1 | 0.12% |
Elena Reshetova | 28 | 0.05% | 1 | 0.12% |
Fred Li | 26 | 0.05% | 1 | 0.12% |
Stephen Rothwell | 26 | 0.05% | 2 | 0.24% |
Toshiaki Makita | 25 | 0.04% | 3 | 0.35% |
Herbert Xu | 25 | 0.04% | 6 | 0.71% |
Ferenc Fejes | 25 | 0.04% | 1 | 0.12% |
Florian Westphal | 24 | 0.04% | 3 | 0.35% |
Will Drewry | 24 | 0.04% | 2 | 0.24% |
Paolo Abeni | 22 | 0.04% | 2 | 0.24% |
Dmitry Yakunin | 22 | 0.04% | 1 | 0.12% |
Vincent Bernat | 22 | 0.04% | 1 | 0.12% |
Mark Pashmfouroush | 22 | 0.04% | 1 | 0.12% |
Allan Zhang | 21 | 0.04% | 1 | 0.12% |
Arnaldo Carvalho de Melo | 21 | 0.04% | 4 | 0.47% |
Jiri Benc | 19 | 0.03% | 2 | 0.24% |
Dmitrii Banshchikov | 19 | 0.03% | 2 | 0.24% |
Shmulik Ladkani | 19 | 0.03% | 1 | 0.12% |
Hannes Frederic Sowa | 18 | 0.03% | 2 | 0.24% |
Arnd Bergmann | 17 | 0.03% | 2 | 0.24% |
Stephen Hemminger | 17 | 0.03% | 6 | 0.71% |
yunshui | 16 | 0.03% | 1 | 0.12% |
Deepa Dinamani | 16 | 0.03% | 1 | 0.12% |
Dmitry Mishin | 16 | 0.03% | 3 | 0.35% |
Jiri Olsa | 15 | 0.03% | 1 | 0.12% |
Randy Dunlap | 14 | 0.02% | 2 | 0.24% |
Roopa Prabhu | 14 | 0.02% | 2 | 0.24% |
Mel Gorman | 13 | 0.02% | 2 | 0.24% |
Tycho Andersen | 12 | 0.02% | 1 | 0.12% |
Richard Guy Briggs | 12 | 0.02% | 1 | 0.12% |
Michael S. Tsirkin | 12 | 0.02% | 1 | 0.12% |
Felix Maurer | 12 | 0.02% | 1 | 0.12% |
Yuchung Cheng | 11 | 0.02% | 2 | 0.24% |
Chema Gonzalez | 11 | 0.02% | 1 | 0.12% |
Andrea Arcangeli | 10 | 0.02% | 1 | 0.12% |
Tobias Klauser | 8 | 0.01% | 3 | 0.35% |
Nikolay Borisov | 8 | 0.01% | 1 | 0.12% |
Tushar Dave | 8 | 0.01% | 2 | 0.24% |
Kees Cook | 8 | 0.01% | 2 | 0.24% |
Paul Chaignon | 8 | 0.01% | 1 | 0.12% |
Vasily Averin | 7 | 0.01% | 1 | 0.12% |
Tom Herbert | 7 | 0.01% | 3 | 0.35% |
Lorenzo Colitti | 7 | 0.01% | 1 | 0.12% |
Christian Ehrig | 6 | 0.01% | 1 | 0.12% |
Glauber de Oliveira Costa | 6 | 0.01% | 1 | 0.12% |
Johannes Berg | 6 | 0.01% | 1 | 0.12% |
Ilya Leoshkevich | 6 | 0.01% | 2 | 0.24% |
Leon Yu | 5 | 0.01% | 1 | 0.12% |
Yafang Shao | 5 | 0.01% | 1 | 0.12% |
Dave Marchevsky | 5 | 0.01% | 1 | 0.12% |
Shirley Ma | 5 | 0.01% | 1 | 0.12% |
Gerrit Renker | 5 | 0.01% | 1 | 0.12% |
Sowmini Varadhan | 5 | 0.01% | 1 | 0.12% |
Zvi Effron | 5 | 0.01% | 1 | 0.12% |
Xia Kaixu | 4 | 0.01% | 1 | 0.12% |
Prankur gupta | 4 | 0.01% | 1 | 0.12% |
Tejun Heo | 4 | 0.01% | 1 | 0.12% |
Linus Torvalds | 4 | 0.01% | 2 | 0.24% |
Vlad Yasevich | 4 | 0.01% | 1 | 0.12% |
Olof Johansson | 4 | 0.01% | 1 | 0.12% |
Manu Bretelle | 4 | 0.01% | 1 | 0.12% |
Anders Roxell | 4 | 0.01% | 1 | 0.12% |
Rusty Russell | 4 | 0.01% | 1 | 0.12% |
Ursula Braun-Krahl | 3 | 0.01% | 1 | 0.12% |
Jamal Hadi Salim | 3 | 0.01% | 1 | 0.12% |
Mark Rutland | 3 | 0.01% | 1 | 0.12% |
Eric W. Biedermann | 3 | 0.01% | 1 | 0.12% |
Akhmat Karakotov | 3 | 0.01% | 1 | 0.12% |
Peilin Ye | 3 | 0.01% | 1 | 0.12% |
Gao Feng | 3 | 0.01% | 1 | 0.12% |
Ke Li | 3 | 0.01% | 1 | 0.12% |
Avi Kivity | 3 | 0.01% | 1 | 0.12% |
Gustavo A. R. Silva | 2 | 0.00% | 1 | 0.12% |
Maciej Żenczykowski | 2 | 0.00% | 1 | 0.12% |
Mark McLoughlin | 2 | 0.00% | 1 | 0.12% |
Yue haibing | 2 | 0.00% | 1 | 0.12% |
Sasha Levin | 2 | 0.00% | 1 | 0.12% |
Jason (Hui) Wang | 2 | 0.00% | 1 | 0.12% |
Paul LeoNerd Evans | 2 | 0.00% | 1 | 0.12% |
Kui-Feng Lee | 2 | 0.00% | 1 | 0.12% |
LiuJian | 2 | 0.00% | 1 | 0.12% |
Dan Carpenter | 2 | 0.00% | 2 | 0.24% |
Andi Kleen | 2 | 0.00% | 1 | 0.12% |
James Morris | 2 | 0.00% | 1 | 0.12% |
Gianluca Borello | 2 | 0.00% | 1 | 0.12% |
Thomas Gleixner | 2 | 0.00% | 1 | 0.12% |
Ben Dooks | 2 | 0.00% | 1 | 0.12% |
Tariq Toukan | 1 | 0.00% | 1 | 0.12% |
Pieter Jansen van Vuuren | 1 | 0.00% | 1 | 0.12% |
Kefeng Wang | 1 | 0.00% | 1 | 0.12% |
Maryam Tahhan | 1 | 0.00% | 1 | 0.12% |
Magnus Karlsson | 1 | 0.00% | 1 | 0.12% |
Li RongQing | 1 | 0.00% | 1 | 0.12% |
Alexander Duyck | 1 | 0.00% | 1 | 0.12% |
Xiongwei Song | 1 | 0.00% | 1 | 0.12% |
Total | 57641 | 849 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux Socket Filter - Kernel level socket filtering * * Based on the design of the Berkeley Packet Filter. The new * internal format has been designed by PLUMgrid: * * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com * * Authors: * * Jay Schulist <jschlst@samba.org> * Alexei Starovoitov <ast@plumgrid.com> * Daniel Borkmann <dborkman@redhat.com> * * Andi Kleen - Fix a few bad bugs and races. * Kris Katterjohn - Added many additional checks in bpf_check_classic() */ #include <linux/atomic.h> #include <linux/bpf_verifier.h> #include <linux/module.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/fcntl.h> #include <linux/socket.h> #include <linux/sock_diag.h> #include <linux/in.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/if_packet.h> #include <linux/if_arp.h> #include <linux/gfp.h> #include <net/inet_common.h> #include <net/ip.h> #include <net/protocol.h> #include <net/netlink.h> #include <linux/skbuff.h> #include <linux/skmsg.h> #include <net/sock.h> #include <net/flow_dissector.h> #include <linux/errno.h> #include <linux/timer.h> #include <linux/uaccess.h> #include <asm/unaligned.h> #include <linux/filter.h> #include <linux/ratelimit.h> #include <linux/seccomp.h> #include <linux/if_vlan.h> #include <linux/bpf.h> #include <linux/btf.h> #include <net/sch_generic.h> #include <net/cls_cgroup.h> #include <net/dst_metadata.h> #include <net/dst.h> #include <net/sock_reuseport.h> #include <net/busy_poll.h> #include <net/tcp.h> #include <net/xfrm.h> #include <net/udp.h> #include <linux/bpf_trace.h> #include <net/xdp_sock.h> #include <linux/inetdevice.h> #include <net/inet_hashtables.h> #include <net/inet6_hashtables.h> #include <net/ip_fib.h> #include <net/nexthop.h> #include <net/flow.h> #include <net/arp.h> #include <net/ipv6.h> #include <net/net_namespace.h> #include <linux/seg6_local.h> #include <net/seg6.h> #include <net/seg6_local.h> #include <net/lwtunnel.h> #include <net/ipv6_stubs.h> #include <net/bpf_sk_storage.h> #include <net/transp_v6.h> #include <linux/btf_ids.h> #include <net/tls.h> #include <net/xdp.h> #include <net/mptcp.h> #include <net/netfilter/nf_conntrack_bpf.h> #include <net/netkit.h> #include <linux/un.h> #include <net/xdp_sock_drv.h> #include "dev.h" /* Keep the struct bpf_fib_lookup small so that it fits into a cacheline */ static_assert(sizeof(struct bpf_fib_lookup) == 64, "struct bpf_fib_lookup size check"); static const struct bpf_func_proto * bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len) { if (in_compat_syscall()) { struct compat_sock_fprog f32; if (len != sizeof(f32)) return -EINVAL; if (copy_from_sockptr(&f32, src, sizeof(f32))) return -EFAULT; memset(dst, 0, sizeof(*dst)); dst->len = f32.len; dst->filter = compat_ptr(f32.filter); } else { if (len != sizeof(*dst)) return -EINVAL; if (copy_from_sockptr(dst, src, sizeof(*dst))) return -EFAULT; } return 0; } EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user); /** * sk_filter_trim_cap - run a packet through a socket filter * @sk: sock associated with &sk_buff * @skb: buffer to filter * @cap: limit on how short the eBPF program may trim the packet * * Run the eBPF program and then cut skb->data to correct size returned by * the program. If pkt_len is 0 we toss packet. If skb->len is smaller * than pkt_len we keep whole skb->data. This is the socket level * wrapper to bpf_prog_run. It returns 0 if the packet should * be accepted or -EPERM if the packet should be tossed. * */ int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap) { int err; struct sk_filter *filter; /* * If the skb was allocated from pfmemalloc reserves, only * allow SOCK_MEMALLOC sockets to use it as this socket is * helping free memory */ if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP); return -ENOMEM; } err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb); if (err) return err; err = security_sock_rcv_skb(sk, skb); if (err) return err; rcu_read_lock(); filter = rcu_dereference(sk->sk_filter); if (filter) { struct sock *save_sk = skb->sk; unsigned int pkt_len; skb->sk = sk; pkt_len = bpf_prog_run_save_cb(filter->prog, skb); skb->sk = save_sk; err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM; } rcu_read_unlock(); return err; } EXPORT_SYMBOL(sk_filter_trim_cap); BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb) { return skb_get_poff(skb); } BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x) { struct nlattr *nla; if (skb_is_nonlinear(skb)) return 0; if (skb->len < sizeof(struct nlattr)) return 0; if (a > skb->len - sizeof(struct nlattr)) return 0; nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x); if (nla) return (void *) nla - (void *) skb->data; return 0; } BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x) { struct nlattr *nla; if (skb_is_nonlinear(skb)) return 0; if (skb->len < sizeof(struct nlattr)) return 0; if (a > skb->len - sizeof(struct nlattr)) return 0; nla = (struct nlattr *) &skb->data[a]; if (!nla_ok(nla, skb->len - a)) return 0; nla = nla_find_nested(nla, x); if (nla) return (void *) nla - (void *) skb->data; return 0; } BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *, data, int, headlen, int, offset) { u8 tmp, *ptr; const int len = sizeof(tmp); if (offset >= 0) { if (headlen - offset >= len) return *(u8 *)(data + offset); if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) return tmp; } else { ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len); if (likely(ptr)) return *(u8 *)ptr; } return -EFAULT; } BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb, int, offset) { return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len, offset); } BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *, data, int, headlen, int, offset) { __be16 tmp, *ptr; const int len = sizeof(tmp); if (offset >= 0) { if (headlen - offset >= len) return get_unaligned_be16(data + offset); if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) return be16_to_cpu(tmp); } else { ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len); if (likely(ptr)) return get_unaligned_be16(ptr); } return -EFAULT; } BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb, int, offset) { return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len, offset); } BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *, data, int, headlen, int, offset) { __be32 tmp, *ptr; const int len = sizeof(tmp); if (likely(offset >= 0)) { if (headlen - offset >= len) return get_unaligned_be32(data + offset); if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) return be32_to_cpu(tmp); } else { ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len); if (likely(ptr)) return get_unaligned_be32(ptr); } return -EFAULT; } BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb, int, offset) { return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len, offset); } static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; switch (skb_field) { case SKF_AD_MARK: BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4); *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, offsetof(struct sk_buff, mark)); break; case SKF_AD_PKTTYPE: *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET); *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX); #ifdef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5); #endif break; case SKF_AD_QUEUE: BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2); *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, offsetof(struct sk_buff, queue_mapping)); break; case SKF_AD_VLAN_TAG: BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2); /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */ *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, offsetof(struct sk_buff, vlan_tci)); break; case SKF_AD_VLAN_TAG_PRESENT: BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4); *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, offsetof(struct sk_buff, vlan_all)); *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1); *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1); break; } return insn - insn_buf; } static bool convert_bpf_extensions(struct sock_filter *fp, struct bpf_insn **insnp) { struct bpf_insn *insn = *insnp; u32 cnt; switch (fp->k) { case SKF_AD_OFF + SKF_AD_PROTOCOL: BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2); /* A = *(u16 *) (CTX + offsetof(protocol)) */ *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, offsetof(struct sk_buff, protocol)); /* A = ntohs(A) [emitting a nop or swap16] */ *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); break; case SKF_AD_OFF + SKF_AD_PKTTYPE: cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_IFINDEX: case SKF_AD_OFF + SKF_AD_HATYPE: BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4); BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), BPF_REG_TMP, BPF_REG_CTX, offsetof(struct sk_buff, dev)); /* if (tmp != 0) goto pc + 1 */ *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1); *insn++ = BPF_EXIT_INSN(); if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX) *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP, offsetof(struct net_device, ifindex)); else *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP, offsetof(struct net_device, type)); break; case SKF_AD_OFF + SKF_AD_MARK: cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_RXHASH: BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4); *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, offsetof(struct sk_buff, hash)); break; case SKF_AD_OFF + SKF_AD_QUEUE: cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_VLAN_TAG: cnt = convert_skb_access(SKF_AD_VLAN_TAG, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT: cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_VLAN_TPID: BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2); /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */ *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, offsetof(struct sk_buff, vlan_proto)); /* A = ntohs(A) [emitting a nop or swap16] */ *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); break; case SKF_AD_OFF + SKF_AD_PAY_OFFSET: case SKF_AD_OFF + SKF_AD_NLATTR: case SKF_AD_OFF + SKF_AD_NLATTR_NEST: case SKF_AD_OFF + SKF_AD_CPU: case SKF_AD_OFF + SKF_AD_RANDOM: /* arg1 = CTX */ *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); /* arg2 = A */ *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A); /* arg3 = X */ *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X); /* Emit call(arg1=CTX, arg2=A, arg3=X) */ switch (fp->k) { case SKF_AD_OFF + SKF_AD_PAY_OFFSET: *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset); break; case SKF_AD_OFF + SKF_AD_NLATTR: *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr); break; case SKF_AD_OFF + SKF_AD_NLATTR_NEST: *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest); break; case SKF_AD_OFF + SKF_AD_CPU: *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id); break; case SKF_AD_OFF + SKF_AD_RANDOM: *insn = BPF_EMIT_CALL(bpf_user_rnd_u32); bpf_user_rnd_init_once(); break; } break; case SKF_AD_OFF + SKF_AD_ALU_XOR_X: /* A ^= X */ *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X); break; default: /* This is just a dummy call to avoid letting the compiler * evict __bpf_call_base() as an optimization. Placed here * where no-one bothers. */ BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0); return false; } *insnp = insn; return true; } static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp) { const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS); int size = bpf_size_to_bytes(BPF_SIZE(fp->code)); bool endian = BPF_SIZE(fp->code) == BPF_H || BPF_SIZE(fp->code) == BPF_W; bool indirect = BPF_MODE(fp->code) == BPF_IND; const int ip_align = NET_IP_ALIGN; struct bpf_insn *insn = *insnp; int offset = fp->k; if (!indirect && ((unaligned_ok && offset >= 0) || (!unaligned_ok && offset >= 0 && offset + ip_align >= 0 && offset + ip_align % size == 0))) { bool ldx_off_ok = offset <= S16_MAX; *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H); if (offset) *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset); *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP, size, 2 + endian + (!ldx_off_ok * 2)); if (ldx_off_ok) { *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, BPF_REG_D, offset); } else { *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D); *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset); *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, BPF_REG_TMP, 0); } if (endian) *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8); *insn++ = BPF_JMP_A(8); } *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D); *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H); if (!indirect) { *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset); } else { *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X); if (fp->k) *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset); } switch (BPF_SIZE(fp->code)) { case BPF_B: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8); break; case BPF_H: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16); break; case BPF_W: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32); break; default: return false; } *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2); *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); *insn = BPF_EXIT_INSN(); *insnp = insn; return true; } /** * bpf_convert_filter - convert filter program * @prog: the user passed filter program * @len: the length of the user passed filter program * @new_prog: allocated 'struct bpf_prog' or NULL * @new_len: pointer to store length of converted program * @seen_ld_abs: bool whether we've seen ld_abs/ind * * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn' * style extended BPF (eBPF). * Conversion workflow: * * 1) First pass for calculating the new program length: * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs) * * 2) 2nd pass to remap in two passes: 1st pass finds new * jump offsets, 2nd pass remapping: * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs) */ static int bpf_convert_filter(struct sock_filter *prog, int len, struct bpf_prog *new_prog, int *new_len, bool *seen_ld_abs) { int new_flen = 0, pass = 0, target, i, stack_off; struct bpf_insn *new_insn, *first_insn = NULL; struct sock_filter *fp; int *addrs = NULL; u8 bpf_src; BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK); BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); if (len <= 0 || len > BPF_MAXINSNS) return -EINVAL; if (new_prog) { first_insn = new_prog->insnsi; addrs = kcalloc(len, sizeof(*addrs), GFP_KERNEL | __GFP_NOWARN); if (!addrs) return -ENOMEM; } do_pass: new_insn = first_insn; fp = prog; /* Classic BPF related prologue emission. */ if (new_prog) { /* Classic BPF expects A and X to be reset first. These need * to be guaranteed to be the first two instructions. */ *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X); /* All programs must keep CTX in callee saved BPF_REG_CTX. * In eBPF case it's done by the compiler, here we need to * do this ourself. Initial CTX is present in BPF_REG_ARG1. */ *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1); if (*seen_ld_abs) { /* For packet access in classic BPF, cache skb->data * in callee-saved BPF R8 and skb->len - skb->data_len * (headlen) in BPF R9. Since classic BPF is read-only * on CTX, we only need to cache it once. */ *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), BPF_REG_D, BPF_REG_CTX, offsetof(struct sk_buff, data)); *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX, offsetof(struct sk_buff, len)); *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX, offsetof(struct sk_buff, data_len)); *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP); } } else { new_insn += 3; } for (i = 0; i < len; fp++, i++) { struct bpf_insn tmp_insns[32] = { }; struct bpf_insn *insn = tmp_insns; if (addrs) addrs[i] = new_insn - first_insn; switch (fp->code) { /* All arithmetic insns and skb loads map as-is. */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_NEG: case BPF_LD | BPF_ABS | BPF_W: case BPF_LD | BPF_ABS | BPF_H: case BPF_LD | BPF_ABS | BPF_B: case BPF_LD | BPF_IND | BPF_W: case BPF_LD | BPF_IND | BPF_H: case BPF_LD | BPF_IND | BPF_B: /* Check for overloaded BPF extension and * directly convert it if found, otherwise * just move on with mapping. */ if (BPF_CLASS(fp->code) == BPF_LD && BPF_MODE(fp->code) == BPF_ABS && convert_bpf_extensions(fp, &insn)) break; if (BPF_CLASS(fp->code) == BPF_LD && convert_bpf_ld_abs(fp, &insn)) { *seen_ld_abs = true; break; } if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) || fp->code == (BPF_ALU | BPF_MOD | BPF_X)) { *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X); /* Error with exception code on div/mod by 0. * For cBPF programs, this was always return 0. */ *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2); *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); *insn++ = BPF_EXIT_INSN(); } *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k); break; /* Jump transformation cannot use BPF block macros * everywhere as offset calculation and target updates * require a bit more work than the rest, i.e. jump * opcodes map as-is, but offsets need adjustment. */ #define BPF_EMIT_JMP \ do { \ const s32 off_min = S16_MIN, off_max = S16_MAX; \ s32 off; \ \ if (target >= len || target < 0) \ goto err; \ off = addrs ? addrs[target] - addrs[i] - 1 : 0; \ /* Adjust pc relative offset for 2nd or 3rd insn. */ \ off -= insn - tmp_insns; \ /* Reject anything not fitting into insn->off. */ \ if (off < off_min || off > off_max) \ goto err; \ insn->off = off; \ } while (0) case BPF_JMP | BPF_JA: target = i + fp->k + 1; insn->code = fp->code; BPF_EMIT_JMP; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) { /* BPF immediates are signed, zero extend * immediate into tmp register and use it * in compare insn. */ *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k); insn->dst_reg = BPF_REG_A; insn->src_reg = BPF_REG_TMP; bpf_src = BPF_X; } else { insn->dst_reg = BPF_REG_A; insn->imm = fp->k; bpf_src = BPF_SRC(fp->code); insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0; } /* Common case where 'jump_false' is next insn. */ if (fp->jf == 0) { insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; target = i + fp->jt + 1; BPF_EMIT_JMP; break; } /* Convert some jumps when 'jump_true' is next insn. */ if (fp->jt == 0) { switch (BPF_OP(fp->code)) { case BPF_JEQ: insn->code = BPF_JMP | BPF_JNE | bpf_src; break; case BPF_JGT: insn->code = BPF_JMP | BPF_JLE | bpf_src; break; case BPF_JGE: insn->code = BPF_JMP | BPF_JLT | bpf_src; break; default: goto jmp_rest; } target = i + fp->jf + 1; BPF_EMIT_JMP; break; } jmp_rest: /* Other jumps are mapped into two insns: Jxx and JA. */ target = i + fp->jt + 1; insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; BPF_EMIT_JMP; insn++; insn->code = BPF_JMP | BPF_JA; target = i + fp->jf + 1; BPF_EMIT_JMP; break; /* ldxb 4 * ([14] & 0xf) is remapped into 6 insns. */ case BPF_LDX | BPF_MSH | BPF_B: { struct sock_filter tmp = { .code = BPF_LD | BPF_ABS | BPF_B, .k = fp->k, }; *seen_ld_abs = true; /* X = A */ *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); /* A = BPF_R0 = *(u8 *) (skb->data + K) */ convert_bpf_ld_abs(&tmp, &insn); insn++; /* A &= 0xf */ *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf); /* A <<= 2 */ *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2); /* tmp = X */ *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X); /* X = A */ *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); /* A = tmp */ *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP); break; } /* RET_K is remapped into 2 insns. RET_A case doesn't need an * extra mov as BPF_REG_0 is already mapped into BPF_REG_A. */ case BPF_RET | BPF_A: case BPF_RET | BPF_K: if (BPF_RVAL(fp->code) == BPF_K) *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0, 0, fp->k); *insn = BPF_EXIT_INSN(); break; /* Store to stack. */ case BPF_ST: case BPF_STX: stack_off = fp->k * 4 + 4; *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) == BPF_ST ? BPF_REG_A : BPF_REG_X, -stack_off); /* check_load_and_stores() verifies that classic BPF can * load from stack only after write, so tracking * stack_depth for ST|STX insns is enough */ if (new_prog && new_prog->aux->stack_depth < stack_off) new_prog->aux->stack_depth = stack_off; break; /* Load from stack. */ case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: stack_off = fp->k * 4 + 4; *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? BPF_REG_A : BPF_REG_X, BPF_REG_FP, -stack_off); break; /* A = K or X = K */ case BPF_LD | BPF_IMM: case BPF_LDX | BPF_IMM: *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ? BPF_REG_A : BPF_REG_X, fp->k); break; /* X = A */ case BPF_MISC | BPF_TAX: *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); break; /* A = X */ case BPF_MISC | BPF_TXA: *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X); break; /* A = skb->len or X = skb->len */ case BPF_LD | BPF_W | BPF_LEN: case BPF_LDX | BPF_W | BPF_LEN: *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? BPF_REG_A : BPF_REG_X, BPF_REG_CTX, offsetof(struct sk_buff, len)); break; /* Access seccomp_data fields. */ case BPF_LDX | BPF_ABS | BPF_W: /* A = *(u32 *) (ctx + K) */ *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k); break; /* Unknown instruction. */ default: goto err; } insn++; if (new_prog) memcpy(new_insn, tmp_insns, sizeof(*insn) * (insn - tmp_insns)); new_insn += insn - tmp_insns; } if (!new_prog) { /* Only calculating new length. */ *new_len = new_insn - first_insn; if (*seen_ld_abs) *new_len += 4; /* Prologue bits. */ return 0; } pass++; if (new_flen != new_insn - first_insn) { new_flen = new_insn - first_insn; if (pass > 2) goto err; goto do_pass; } kfree(addrs); BUG_ON(*new_len != new_flen); return 0; err: kfree(addrs); return -EINVAL; } /* Security: * * As we dont want to clear mem[] array for each packet going through * __bpf_prog_run(), we check that filter loaded by user never try to read * a cell if not previously written, and we check all branches to be sure * a malicious user doesn't try to abuse us. */ static int check_load_and_stores(const struct sock_filter *filter, int flen) { u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */ int pc, ret = 0; BUILD_BUG_ON(BPF_MEMWORDS > 16); masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL); if (!masks) return -ENOMEM; memset(masks, 0xff, flen * sizeof(*masks)); for (pc = 0; pc < flen; pc++) { memvalid &= masks[pc]; switch (filter[pc].code) { case BPF_ST: case BPF_STX: memvalid |= (1 << filter[pc].k); break; case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: if (!(memvalid & (1 << filter[pc].k))) { ret = -EINVAL; goto error; } break; case BPF_JMP | BPF_JA: /* A jump must set masks on target */ masks[pc + 1 + filter[pc].k] &= memvalid; memvalid = ~0; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: /* A jump must set masks on targets */ masks[pc + 1 + filter[pc].jt] &= memvalid; masks[pc + 1 + filter[pc].jf] &= memvalid; memvalid = ~0; break; } } error: kfree(masks); return ret; } static bool chk_code_allowed(u16 code_to_probe) { static const bool codes[] = { /* 32 bit ALU operations */ [BPF_ALU | BPF_ADD | BPF_K] = true, [BPF_ALU | BPF_ADD | BPF_X] = true, [BPF_ALU | BPF_SUB | BPF_K] = true, [BPF_ALU | BPF_SUB | BPF_X] = true, [BPF_ALU | BPF_MUL | BPF_K] = true, [BPF_ALU | BPF_MUL | BPF_X] = true, [BPF_ALU | BPF_DIV | BPF_K] = true, [BPF_ALU | BPF_DIV | BPF_X] = true, [BPF_ALU | BPF_MOD | BPF_K] = true, [BPF_ALU | BPF_MOD | BPF_X] = true, [BPF_ALU | BPF_AND | BPF_K] = true, [BPF_ALU | BPF_AND | BPF_X] = true, [BPF_ALU | BPF_OR | BPF_K] = true, [BPF_ALU | BPF_OR | BPF_X] = true, [BPF_ALU | BPF_XOR | BPF_K] = true, [BPF_ALU | BPF_XOR | BPF_X] = true, [BPF_ALU | BPF_LSH | BPF_K] = true, [BPF_ALU | BPF_LSH | BPF_X] = true, [BPF_ALU | BPF_RSH | BPF_K] = true, [BPF_ALU | BPF_RSH | BPF_X] = true, [BPF_ALU | BPF_NEG] = true, /* Load instructions */ [BPF_LD | BPF_W | BPF_ABS] = true, [BPF_LD | BPF_H | BPF_ABS] = true, [BPF_LD | BPF_B | BPF_ABS] = true, [BPF_LD | BPF_W | BPF_LEN] = true, [BPF_LD | BPF_W | BPF_IND] = true, [BPF_LD | BPF_H | BPF_IND] = true, [BPF_LD | BPF_B | BPF_IND] = true, [BPF_LD | BPF_IMM] = true, [BPF_LD | BPF_MEM] = true, [BPF_LDX | BPF_W | BPF_LEN] = true, [BPF_LDX | BPF_B | BPF_MSH] = true, [BPF_LDX | BPF_IMM] = true, [BPF_LDX | BPF_MEM] = true, /* Store instructions */ [BPF_ST] = true, [BPF_STX] = true, /* Misc instructions */ [BPF_MISC | BPF_TAX] = true, [BPF_MISC | BPF_TXA] = true, /* Return instructions */ [BPF_RET | BPF_K] = true, [BPF_RET | BPF_A] = true, /* Jump instructions */ [BPF_JMP | BPF_JA] = true, [BPF_JMP | BPF_JEQ | BPF_K] = true, [BPF_JMP | BPF_JEQ | BPF_X] = true, [BPF_JMP | BPF_JGE | BPF_K] = true, [BPF_JMP | BPF_JGE | BPF_X] = true, [BPF_JMP | BPF_JGT | BPF_K] = true, [BPF_JMP | BPF_JGT | BPF_X] = true, [BPF_JMP | BPF_JSET | BPF_K] = true, [BPF_JMP | BPF_JSET | BPF_X] = true, }; if (code_to_probe >= ARRAY_SIZE(codes)) return false; return codes[code_to_probe]; } static bool bpf_check_basics_ok(const struct sock_filter *filter, unsigned int flen) { if (filter == NULL) return false; if (flen == 0 || flen > BPF_MAXINSNS) return false; return true; } /** * bpf_check_classic - verify socket filter code * @filter: filter to verify * @flen: length of filter * * Check the user's filter code. If we let some ugly * filter code slip through kaboom! The filter must contain * no references or jumps that are out of range, no illegal * instructions, and must end with a RET instruction. * * All jumps are forward as they are not signed. * * Returns 0 if the rule set is legal or -EINVAL if not. */ static int bpf_check_classic(const struct sock_filter *filter, unsigned int flen) { bool anc_found; int pc; /* Check the filter code now */ for (pc = 0; pc < flen; pc++) { const struct sock_filter *ftest = &filter[pc]; /* May we actually operate on this code? */ if (!chk_code_allowed(ftest->code)) return -EINVAL; /* Some instructions need special checks */ switch (ftest->code) { case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_K: /* Check for division by zero */ if (ftest->k == 0) return -EINVAL; break; case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_K: if (ftest->k >= 32) return -EINVAL; break; case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: case BPF_ST: case BPF_STX: /* Check for invalid memory addresses */ if (ftest->k >= BPF_MEMWORDS) return -EINVAL; break; case BPF_JMP | BPF_JA: /* Note, the large ftest->k might cause loops. * Compare this with conditional jumps below, * where offsets are limited. --ANK (981016) */ if (ftest->k >= (unsigned int)(flen - pc - 1)) return -EINVAL; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: /* Both conditionals must be safe */ if (pc + ftest->jt + 1 >= flen || pc + ftest->jf + 1 >= flen) return -EINVAL; break; case BPF_LD | BPF_W | BPF_ABS: case BPF_LD | BPF_H | BPF_ABS: case BPF_LD | BPF_B | BPF_ABS: anc_found = false; if (bpf_anc_helper(ftest) & BPF_ANC) anc_found = true; /* Ancillary operation unknown or unsupported */ if (anc_found == false && ftest->k >= SKF_AD_OFF) return -EINVAL; } } /* Last instruction must be a RET code */ switch (filter[flen - 1].code) { case BPF_RET | BPF_K: case BPF_RET | BPF_A: return check_load_and_stores(filter, flen); } return -EINVAL; } static int bpf_prog_store_orig_filter(struct bpf_prog *fp, const struct sock_fprog *fprog) { unsigned int fsize = bpf_classic_proglen(fprog); struct sock_fprog_kern *fkprog; fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL); if (!fp->orig_prog) return -ENOMEM; fkprog = fp->orig_prog; fkprog->len = fprog->len; fkprog->filter = kmemdup(fp->insns, fsize, GFP_KERNEL | __GFP_NOWARN); if (!fkprog->filter) { kfree(fp->orig_prog); return -ENOMEM; } return 0; } static void bpf_release_orig_filter(struct bpf_prog *fp) { struct sock_fprog_kern *fprog = fp->orig_prog; if (fprog) { kfree(fprog->filter); kfree(fprog); } } static void __bpf_prog_release(struct bpf_prog *prog) { if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) { bpf_prog_put(prog); } else { bpf_release_orig_filter(prog); bpf_prog_free(prog); } } static void __sk_filter_release(struct sk_filter *fp) { __bpf_prog_release(fp->prog); kfree(fp); } /** * sk_filter_release_rcu - Release a socket filter by rcu_head * @rcu: rcu_head that contains the sk_filter to free */ static void sk_filter_release_rcu(struct rcu_head *rcu) { struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu); __sk_filter_release(fp); } /** * sk_filter_release - release a socket filter * @fp: filter to remove * * Remove a filter from a socket and release its resources. */ static void sk_filter_release(struct sk_filter *fp) { if (refcount_dec_and_test(&fp->refcnt)) call_rcu(&fp->rcu, sk_filter_release_rcu); } void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) { u32 filter_size = bpf_prog_size(fp->prog->len); atomic_sub(filter_size, &sk->sk_omem_alloc); sk_filter_release(fp); } /* try to charge the socket memory if there is space available * return true on success */ static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp) { int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); u32 filter_size = bpf_prog_size(fp->prog->len); /* same check as in sock_kmalloc() */ if (filter_size <= optmem_max && atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) { atomic_add(filter_size, &sk->sk_omem_alloc); return true; } return false; } bool sk_filter_charge(struct sock *sk, struct sk_filter *fp) { if (!refcount_inc_not_zero(&fp->refcnt)) return false; if (!__sk_filter_charge(sk, fp)) { sk_filter_release(fp); return false; } return true; } static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp) { struct sock_filter *old_prog; struct bpf_prog *old_fp; int err, new_len, old_len = fp->len; bool seen_ld_abs = false; /* We are free to overwrite insns et al right here as it won't be used at * this point in time anymore internally after the migration to the eBPF * instruction representation. */ BUILD_BUG_ON(sizeof(struct sock_filter) != sizeof(struct bpf_insn)); /* Conversion cannot happen on overlapping memory areas, * so we need to keep the user BPF around until the 2nd * pass. At this time, the user BPF is stored in fp->insns. */ old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter), GFP_KERNEL | __GFP_NOWARN); if (!old_prog) { err = -ENOMEM; goto out_err; } /* 1st pass: calculate the new program length. */ err = bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs); if (err) goto out_err_free; /* Expand fp for appending the new filter representation. */ old_fp = fp; fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0); if (!fp) { /* The old_fp is still around in case we couldn't * allocate new memory, so uncharge on that one. */ fp = old_fp; err = -ENOMEM; goto out_err_free; } fp->len = new_len; /* 2nd pass: remap sock_filter insns into bpf_insn insns. */ err = bpf_convert_filter(old_prog, old_len, fp, &new_len, &seen_ld_abs); if (err) /* 2nd bpf_convert_filter() can fail only if it fails * to allocate memory, remapping must succeed. Note, * that at this time old_fp has already been released * by krealloc(). */ goto out_err_free; fp = bpf_prog_select_runtime(fp, &err); if (err) goto out_err_free; kfree(old_prog); return fp; out_err_free: kfree(old_prog); out_err: __bpf_prog_release(fp); return ERR_PTR(err); } static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp, bpf_aux_classic_check_t trans) { int err; fp->bpf_func = NULL; fp->jited = 0; err = bpf_check_classic(fp->insns, fp->len); if (err) { __bpf_prog_release(fp); return ERR_PTR(err); } /* There might be additional checks and transformations * needed on classic filters, f.e. in case of seccomp. */ if (trans) { err = trans(fp->insns, fp->len); if (err) { __bpf_prog_release(fp); return ERR_PTR(err); } } /* Probe if we can JIT compile the filter and if so, do * the compilation of the filter. */ bpf_jit_compile(fp); /* JIT compiler couldn't process this filter, so do the eBPF translation * for the optimized interpreter. */ if (!fp->jited) fp = bpf_migrate_filter(fp); return fp; } /** * bpf_prog_create - create an unattached filter * @pfp: the unattached filter that is created * @fprog: the filter program * * Create a filter independent of any socket. We first run some * sanity checks on it to make sure it does not explode on us later. * If an error occurs or there is insufficient memory for the filter * a negative errno code is returned. On success the return is zero. */ int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog) { unsigned int fsize = bpf_classic_proglen(fprog); struct bpf_prog *fp; /* Make sure new filter is there and in the right amounts. */ if (!bpf_check_basics_ok(fprog->filter, fprog->len)) return -EINVAL; fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!fp) return -ENOMEM; memcpy(fp->insns, fprog->filter, fsize); fp->len = fprog->len; /* Since unattached filters are not copied back to user * space through sk_get_filter(), we do not need to hold * a copy here, and can spare us the work. */ fp->orig_prog = NULL; /* bpf_prepare_filter() already takes care of freeing * memory in case something goes wrong. */ fp = bpf_prepare_filter(fp, NULL); if (IS_ERR(fp)) return PTR_ERR(fp); *pfp = fp; return 0; } EXPORT_SYMBOL_GPL(bpf_prog_create); /** * bpf_prog_create_from_user - create an unattached filter from user buffer * @pfp: the unattached filter that is created * @fprog: the filter program * @trans: post-classic verifier transformation handler * @save_orig: save classic BPF program * * This function effectively does the same as bpf_prog_create(), only * that it builds up its insns buffer from user space provided buffer. * It also allows for passing a bpf_aux_classic_check_t handler. */ int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, bpf_aux_classic_check_t trans, bool save_orig) { unsigned int fsize = bpf_classic_proglen(fprog); struct bpf_prog *fp; int err; /* Make sure new filter is there and in the right amounts. */ if (!bpf_check_basics_ok(fprog->filter, fprog->len)) return -EINVAL; fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!fp) return -ENOMEM; if (copy_from_user(fp->insns, fprog->filter, fsize)) { __bpf_prog_free(fp); return -EFAULT; } fp->len = fprog->len; fp->orig_prog = NULL; if (save_orig) { err = bpf_prog_store_orig_filter(fp, fprog); if (err) { __bpf_prog_free(fp); return -ENOMEM; } } /* bpf_prepare_filter() already takes care of freeing * memory in case something goes wrong. */ fp = bpf_prepare_filter(fp, trans); if (IS_ERR(fp)) return PTR_ERR(fp); *pfp = fp; return 0; } EXPORT_SYMBOL_GPL(bpf_prog_create_from_user); void bpf_prog_destroy(struct bpf_prog *fp) { __bpf_prog_release(fp); } EXPORT_SYMBOL_GPL(bpf_prog_destroy); static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk) { struct sk_filter *fp, *old_fp; fp = kmalloc(sizeof(*fp), GFP_KERNEL); if (!fp) return -ENOMEM; fp->prog = prog; if (!__sk_filter_charge(sk, fp)) { kfree(fp); return -ENOMEM; } refcount_set(&fp->refcnt, 1); old_fp = rcu_dereference_protected(sk->sk_filter, lockdep_sock_is_held(sk)); rcu_assign_pointer(sk->sk_filter, fp); if (old_fp) sk_filter_uncharge(sk, old_fp); return 0; } static struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk) { unsigned int fsize = bpf_classic_proglen(fprog); struct bpf_prog *prog; int err; if (sock_flag(sk, SOCK_FILTER_LOCKED)) return ERR_PTR(-EPERM); /* Make sure new filter is there and in the right amounts. */ if (!bpf_check_basics_ok(fprog->filter, fprog->len)) return ERR_PTR(-EINVAL); prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!prog) return ERR_PTR(-ENOMEM); if (copy_from_user(prog->insns, fprog->filter, fsize)) { __bpf_prog_free(prog); return ERR_PTR(-EFAULT); } prog->len = fprog->len; err = bpf_prog_store_orig_filter(prog, fprog); if (err) { __bpf_prog_free(prog); return ERR_PTR(-ENOMEM); } /* bpf_prepare_filter() already takes care of freeing * memory in case something goes wrong. */ return bpf_prepare_filter(prog, NULL); } /** * sk_attach_filter - attach a socket filter * @fprog: the filter program * @sk: the socket to use * * Attach the user's filter code. We first run some sanity checks on * it to make sure it does not explode on us later. If an error * occurs or there is insufficient memory for the filter a negative * errno code is returned. On success the return is zero. */ int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk) { struct bpf_prog *prog = __get_filter(fprog, sk); int err; if (IS_ERR(prog)) return PTR_ERR(prog); err = __sk_attach_prog(prog, sk); if (err < 0) { __bpf_prog_release(prog); return err; } return 0; } EXPORT_SYMBOL_GPL(sk_attach_filter); int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk) { struct bpf_prog *prog = __get_filter(fprog, sk); int err, optmem_max; if (IS_ERR(prog)) return PTR_ERR(prog); optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); if (bpf_prog_size(prog->len) > optmem_max) err = -ENOMEM; else err = reuseport_attach_prog(sk, prog); if (err) __bpf_prog_release(prog); return err; } static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk) { if (sock_flag(sk, SOCK_FILTER_LOCKED)) return ERR_PTR(-EPERM); return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); } int sk_attach_bpf(u32 ufd, struct sock *sk) { struct bpf_prog *prog = __get_bpf(ufd, sk); int err; if (IS_ERR(prog)) return PTR_ERR(prog); err = __sk_attach_prog(prog, sk); if (err < 0) { bpf_prog_put(prog); return err; } return 0; } int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk) { struct bpf_prog *prog; int err, optmem_max; if (sock_flag(sk, SOCK_FILTER_LOCKED)) return -EPERM; prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); if (PTR_ERR(prog) == -EINVAL) prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT); if (IS_ERR(prog)) return PTR_ERR(prog); if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) { /* Like other non BPF_PROG_TYPE_SOCKET_FILTER * bpf prog (e.g. sockmap). It depends on the * limitation imposed by bpf_prog_load(). * Hence, sysctl_optmem_max is not checked. */ if ((sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_DGRAM) || (sk->sk_protocol != IPPROTO_UDP && sk->sk_protocol != IPPROTO_TCP) || (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) { err = -ENOTSUPP; goto err_prog_put; } } else { /* BPF_PROG_TYPE_SOCKET_FILTER */ optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max); if (bpf_prog_size(prog->len) > optmem_max) { err = -ENOMEM; goto err_prog_put; } } err = reuseport_attach_prog(sk, prog); err_prog_put: if (err) bpf_prog_put(prog); return err; } void sk_reuseport_prog_free(struct bpf_prog *prog) { if (!prog) return; if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) bpf_prog_put(prog); else bpf_prog_destroy(prog); } struct bpf_scratchpad { union { __be32 diff[MAX_BPF_STACK / sizeof(__be32)]; u8 buff[MAX_BPF_STACK]; }; local_lock_t bh_lock; }; static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp) = { .bh_lock = INIT_LOCAL_LOCK(bh_lock), }; static inline int __bpf_try_make_writable(struct sk_buff *skb, unsigned int write_len) { #ifdef CONFIG_DEBUG_NET /* Avoid a splat in pskb_may_pull_reason() */ if (write_len > INT_MAX) return -EINVAL; #endif return skb_ensure_writable(skb, write_len); } static inline int bpf_try_make_writable(struct sk_buff *skb, unsigned int write_len) { int err = __bpf_try_make_writable(skb, write_len); bpf_compute_data_pointers(skb); return err; } static int bpf_try_make_head_writable(struct sk_buff *skb) { return bpf_try_make_writable(skb, skb_headlen(skb)); } static inline void bpf_push_mac_rcsum(struct sk_buff *skb) { if (skb_at_tc_ingress(skb)) skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len); } static inline void bpf_pull_mac_rcsum(struct sk_buff *skb) { if (skb_at_tc_ingress(skb)) skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len); } BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset, const void *, from, u32, len, u64, flags) { void *ptr; if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH))) return -EINVAL; if (unlikely(offset > INT_MAX)) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + len))) return -EFAULT; ptr = skb->data + offset; if (flags & BPF_F_RECOMPUTE_CSUM) __skb_postpull_rcsum(skb, ptr, len, offset); memcpy(ptr, from, len); if (flags & BPF_F_RECOMPUTE_CSUM) __skb_postpush_rcsum(skb, ptr, len, offset); if (flags & BPF_F_INVALIDATE_HASH) skb_clear_hash(skb); return 0; } static const struct bpf_func_proto bpf_skb_store_bytes_proto = { .func = bpf_skb_store_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) { return ____bpf_skb_store_bytes(skb, offset, from, len, flags); } BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset, void *, to, u32, len) { void *ptr; if (unlikely(offset > INT_MAX)) goto err_clear; ptr = skb_header_pointer(skb, offset, len, to); if (unlikely(!ptr)) goto err_clear; if (ptr != to) memcpy(to, ptr, len); return 0; err_clear: memset(to, 0, len); return -EFAULT; } static const struct bpf_func_proto bpf_skb_load_bytes_proto = { .func = bpf_skb_load_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) { return ____bpf_skb_load_bytes(skb, offset, to, len); } BPF_CALL_4(bpf_flow_dissector_load_bytes, const struct bpf_flow_dissector *, ctx, u32, offset, void *, to, u32, len) { void *ptr; if (unlikely(offset > 0xffff)) goto err_clear; if (unlikely(!ctx->skb)) goto err_clear; ptr = skb_header_pointer(ctx->skb, offset, len, to); if (unlikely(!ptr)) goto err_clear; if (ptr != to) memcpy(to, ptr, len); return 0; err_clear: memset(to, 0, len); return -EFAULT; } static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = { .func = bpf_flow_dissector_load_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb, u32, offset, void *, to, u32, len, u32, start_header) { u8 *end = skb_tail_pointer(skb); u8 *start, *ptr; if (unlikely(offset > 0xffff)) goto err_clear; switch (start_header) { case BPF_HDR_START_MAC: if (unlikely(!skb_mac_header_was_set(skb))) goto err_clear; start = skb_mac_header(skb); break; case BPF_HDR_START_NET: start = skb_network_header(skb); break; default: goto err_clear; } ptr = start + offset; if (likely(ptr + len <= end)) { memcpy(to, ptr, len); return 0; } err_clear: memset(to, 0, len); return -EFAULT; } static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = { .func = bpf_skb_load_bytes_relative, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len) { /* Idea is the following: should the needed direct read/write * test fail during runtime, we can pull in more data and redo * again, since implicitly, we invalidate previous checks here. * * Or, since we know how much we need to make read/writeable, * this can be done once at the program beginning for direct * access case. By this we overcome limitations of only current * headroom being accessible. */ return bpf_try_make_writable(skb, len ? : skb_headlen(skb)); } static const struct bpf_func_proto bpf_skb_pull_data_proto = { .func = bpf_skb_pull_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk) { return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL; } static const struct bpf_func_proto bpf_sk_fullsock_proto = { .func = bpf_sk_fullsock, .gpl_only = false, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_SOCK_COMMON, }; static inline int sk_skb_try_make_writable(struct sk_buff *skb, unsigned int write_len) { return __bpf_try_make_writable(skb, write_len); } BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len) { /* Idea is the following: should the needed direct read/write * test fail during runtime, we can pull in more data and redo * again, since implicitly, we invalidate previous checks here. * * Or, since we know how much we need to make read/writeable, * this can be done once at the program beginning for direct * access case. By this we overcome limitations of only current * headroom being accessible. */ return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb)); } static const struct bpf_func_proto sk_skb_pull_data_proto = { .func = sk_skb_pull_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset, u64, from, u64, to, u64, flags) { __sum16 *ptr; if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK))) return -EINVAL; if (unlikely(offset > 0xffff || offset & 1)) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) return -EFAULT; ptr = (__sum16 *)(skb->data + offset); switch (flags & BPF_F_HDR_FIELD_MASK) { case 0: if (unlikely(from != 0)) return -EINVAL; csum_replace_by_diff(ptr, to); break; case 2: csum_replace2(ptr, from, to); break; case 4: csum_replace4(ptr, from, to); break; default: return -EINVAL; } return 0; } static const struct bpf_func_proto bpf_l3_csum_replace_proto = { .func = bpf_l3_csum_replace, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset, u64, from, u64, to, u64, flags) { bool is_pseudo = flags & BPF_F_PSEUDO_HDR; bool is_mmzero = flags & BPF_F_MARK_MANGLED_0; bool do_mforce = flags & BPF_F_MARK_ENFORCE; __sum16 *ptr; if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE | BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK))) return -EINVAL; if (unlikely(offset > 0xffff || offset & 1)) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) return -EFAULT; ptr = (__sum16 *)(skb->data + offset); if (is_mmzero && !do_mforce && !*ptr) return 0; switch (flags & BPF_F_HDR_FIELD_MASK) { case 0: if (unlikely(from != 0)) return -EINVAL; inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo); break; case 2: inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo); break; case 4: inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo); break; default: return -EINVAL; } if (is_mmzero && !*ptr) *ptr = CSUM_MANGLED_0; return 0; } static const struct bpf_func_proto bpf_l4_csum_replace_proto = { .func = bpf_l4_csum_replace, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size, __be32 *, to, u32, to_size, __wsum, seed) { struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp); u32 diff_size = from_size + to_size; int i, j = 0; __wsum ret; /* This is quite flexible, some examples: * * from_size == 0, to_size > 0, seed := csum --> pushing data * from_size > 0, to_size == 0, seed := csum --> pulling data * from_size > 0, to_size > 0, seed := 0 --> diffing data * * Even for diffing, from_size and to_size don't need to be equal. */ if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) || diff_size > sizeof(sp->diff))) return -EINVAL; local_lock_nested_bh(&bpf_sp.bh_lock); for (i = 0; i < from_size / sizeof(__be32); i++, j++) sp->diff[j] = ~from[i]; for (i = 0; i < to_size / sizeof(__be32); i++, j++) sp->diff[j] = to[i]; ret = csum_partial(sp->diff, diff_size, seed); local_unlock_nested_bh(&bpf_sp.bh_lock); return ret; } static const struct bpf_func_proto bpf_csum_diff_proto = { .func = bpf_csum_diff, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE_OR_ZERO, .arg5_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum) { /* The interface is to be used in combination with bpf_csum_diff() * for direct packet writes. csum rotation for alignment as well * as emulating csum_sub() can be done from the eBPF program. */ if (skb->ip_summed == CHECKSUM_COMPLETE) return (skb->csum = csum_add(skb->csum, csum)); return -ENOTSUPP; } static const struct bpf_func_proto bpf_csum_update_proto = { .func = bpf_csum_update, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level) { /* The interface is to be used in combination with bpf_skb_adjust_room() * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET * is passed as flags, for example. */ switch (level) { case BPF_CSUM_LEVEL_INC: __skb_incr_checksum_unnecessary(skb); break; case BPF_CSUM_LEVEL_DEC: __skb_decr_checksum_unnecessary(skb); break; case BPF_CSUM_LEVEL_RESET: __skb_reset_checksum_unnecessary(skb); break; case BPF_CSUM_LEVEL_QUERY: return skb->ip_summed == CHECKSUM_UNNECESSARY ? skb->csum_level : -EACCES; default: return -EINVAL; } return 0; } static const struct bpf_func_proto bpf_csum_level_proto = { .func = bpf_csum_level, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb) { return dev_forward_skb_nomtu(dev, skb); } static inline int __bpf_rx_skb_no_mac(struct net_device *dev, struct sk_buff *skb) { int ret = ____dev_forward_skb(dev, skb, false); if (likely(!ret)) { skb->dev = dev; ret = netif_rx(skb); } return ret; } static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb) { int ret; if (dev_xmit_recursion()) { net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); kfree_skb(skb); return -ENETDOWN; } skb->dev = dev; skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb)); skb_clear_tstamp(skb); dev_xmit_recursion_inc(); ret = dev_queue_xmit(skb); dev_xmit_recursion_dec(); return ret; } static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev, u32 flags) { unsigned int mlen = skb_network_offset(skb); if (unlikely(skb->len <= mlen)) { kfree_skb(skb); return -ERANGE; } if (mlen) { __skb_pull(skb, mlen); /* At ingress, the mac header has already been pulled once. * At egress, skb_pospull_rcsum has to be done in case that * the skb is originated from ingress (i.e. a forwarded skb) * to ensure that rcsum starts at net header. */ if (!skb_at_tc_ingress(skb)) skb_postpull_rcsum(skb, skb_mac_header(skb), mlen); } skb_pop_mac_header(skb); skb_reset_mac_len(skb); return flags & BPF_F_INGRESS ? __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb); } static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev, u32 flags) { /* Verify that a link layer header is carried */ if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) { kfree_skb(skb); return -ERANGE; } bpf_push_mac_rcsum(skb); return flags & BPF_F_INGRESS ? __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb); } static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev, u32 flags) { if (dev_is_mac_header_xmit(dev)) return __bpf_redirect_common(skb, dev, flags); else return __bpf_redirect_no_mac(skb, dev, flags); } #if IS_ENABLED(CONFIG_IPV6) static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { u32 hh_len = LL_RESERVED_SPACE(dev); const struct in6_addr *nexthop; struct dst_entry *dst = NULL; struct neighbour *neigh; if (dev_xmit_recursion()) { net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); goto out_drop; } skb->dev = dev; skb_clear_tstamp(skb); if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { skb = skb_expand_head(skb, hh_len); if (!skb) return -ENOMEM; } rcu_read_lock(); if (!nh) { dst = skb_dst(skb); nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr); } else { nexthop = &nh->ipv6_nh; } neigh = ip_neigh_gw6(dev, nexthop); if (likely(!IS_ERR(neigh))) { int ret; sock_confirm_neigh(skb, neigh); local_bh_disable(); dev_xmit_recursion_inc(); ret = neigh_output(neigh, skb, false); dev_xmit_recursion_dec(); local_bh_enable(); rcu_read_unlock(); return ret; } rcu_read_unlock_bh(); if (dst) IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); out_drop: kfree_skb(skb); return -ENETDOWN; } static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { const struct ipv6hdr *ip6h = ipv6_hdr(skb); struct net *net = dev_net(dev); int err, ret = NET_XMIT_DROP; if (!nh) { struct dst_entry *dst; struct flowi6 fl6 = { .flowi6_flags = FLOWI_FLAG_ANYSRC, .flowi6_mark = skb->mark, .flowlabel = ip6_flowinfo(ip6h), .flowi6_oif = dev->ifindex, .flowi6_proto = ip6h->nexthdr, .daddr = ip6h->daddr, .saddr = ip6h->saddr, }; dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL); if (IS_ERR(dst)) goto out_drop; skb_dst_set(skb, dst); } else if (nh->nh_family != AF_INET6) { goto out_drop; } err = bpf_out_neigh_v6(net, skb, dev, nh); if (unlikely(net_xmit_eval(err))) DEV_STATS_INC(dev, tx_errors); else ret = NET_XMIT_SUCCESS; goto out_xmit; out_drop: DEV_STATS_INC(dev, tx_errors); kfree_skb(skb); out_xmit: return ret; } #else static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { kfree_skb(skb); return NET_XMIT_DROP; } #endif /* CONFIG_IPV6 */ #if IS_ENABLED(CONFIG_INET) static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { u32 hh_len = LL_RESERVED_SPACE(dev); struct neighbour *neigh; bool is_v6gw = false; if (dev_xmit_recursion()) { net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); goto out_drop; } skb->dev = dev; skb_clear_tstamp(skb); if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { skb = skb_expand_head(skb, hh_len); if (!skb) return -ENOMEM; } rcu_read_lock(); if (!nh) { struct rtable *rt = skb_rtable(skb); neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); } else if (nh->nh_family == AF_INET6) { neigh = ip_neigh_gw6(dev, &nh->ipv6_nh); is_v6gw = true; } else if (nh->nh_family == AF_INET) { neigh = ip_neigh_gw4(dev, nh->ipv4_nh); } else { rcu_read_unlock(); goto out_drop; } if (likely(!IS_ERR(neigh))) { int ret; sock_confirm_neigh(skb, neigh); local_bh_disable(); dev_xmit_recursion_inc(); ret = neigh_output(neigh, skb, is_v6gw); dev_xmit_recursion_dec(); local_bh_enable(); rcu_read_unlock(); return ret; } rcu_read_unlock(); out_drop: kfree_skb(skb); return -ENETDOWN; } static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { const struct iphdr *ip4h = ip_hdr(skb); struct net *net = dev_net(dev); int err, ret = NET_XMIT_DROP; if (!nh) { struct flowi4 fl4 = { .flowi4_flags = FLOWI_FLAG_ANYSRC, .flowi4_mark = skb->mark, .flowi4_tos = RT_TOS(ip4h->tos), .flowi4_oif = dev->ifindex, .flowi4_proto = ip4h->protocol, .daddr = ip4h->daddr, .saddr = ip4h->saddr, }; struct rtable *rt; rt = ip_route_output_flow(net, &fl4, NULL); if (IS_ERR(rt)) goto out_drop; if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) { ip_rt_put(rt); goto out_drop; } skb_dst_set(skb, &rt->dst); } err = bpf_out_neigh_v4(net, skb, dev, nh); if (unlikely(net_xmit_eval(err))) DEV_STATS_INC(dev, tx_errors); else ret = NET_XMIT_SUCCESS; goto out_xmit; out_drop: DEV_STATS_INC(dev, tx_errors); kfree_skb(skb); out_xmit: return ret; } #else static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { kfree_skb(skb); return NET_XMIT_DROP; } #endif /* CONFIG_INET */ static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev, struct bpf_nh_params *nh) { struct ethhdr *ethh = eth_hdr(skb); if (unlikely(skb->mac_header >= skb->network_header)) goto out; bpf_push_mac_rcsum(skb); if (is_multicast_ether_addr(ethh->h_dest)) goto out; skb_pull(skb, sizeof(*ethh)); skb_unset_mac_header(skb); skb_reset_network_header(skb); if (skb->protocol == htons(ETH_P_IP)) return __bpf_redirect_neigh_v4(skb, dev, nh); else if (skb->protocol == htons(ETH_P_IPV6)) return __bpf_redirect_neigh_v6(skb, dev, nh); out: kfree_skb(skb); return -ENOTSUPP; } /* Internal, non-exposed redirect flags. */ enum { BPF_F_NEIGH = (1ULL << 1), BPF_F_PEER = (1ULL << 2), BPF_F_NEXTHOP = (1ULL << 3), #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP) }; BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags) { struct net_device *dev; struct sk_buff *clone; int ret; if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL))) return -EINVAL; dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex); if (unlikely(!dev)) return -EINVAL; clone = skb_clone(skb, GFP_ATOMIC); if (unlikely(!clone)) return -ENOMEM; /* For direct write, we need to keep the invariant that the skbs * we're dealing with need to be uncloned. Should uncloning fail * here, we need to free the just generated clone to unclone once * again. */ ret = bpf_try_make_head_writable(skb); if (unlikely(ret)) { kfree_skb(clone); return -ENOMEM; } return __bpf_redirect(clone, dev, flags); } static const struct bpf_func_proto bpf_clone_redirect_proto = { .func = bpf_clone_redirect, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static struct net_device *skb_get_peer_dev(struct net_device *dev) { const struct net_device_ops *ops = dev->netdev_ops; if (likely(ops->ndo_get_peer_dev)) return INDIRECT_CALL_1(ops->ndo_get_peer_dev, netkit_peer_dev, dev); return NULL; } int skb_do_redirect(struct sk_buff *skb) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); struct net *net = dev_net(skb->dev); struct net_device *dev; u32 flags = ri->flags; dev = dev_get_by_index_rcu(net, ri->tgt_index); ri->tgt_index = 0; ri->flags = 0; if (unlikely(!dev)) goto out_drop; if (flags & BPF_F_PEER) { if (unlikely(!skb_at_tc_ingress(skb))) goto out_drop; dev = skb_get_peer_dev(dev); if (unlikely(!dev || !(dev->flags & IFF_UP) || net_eq(net, dev_net(dev)))) goto out_drop; skb->dev = dev; dev_sw_netstats_rx_add(dev, skb->len); return -EAGAIN; } return flags & BPF_F_NEIGH ? __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ? &ri->nh : NULL) : __bpf_redirect(skb, dev, flags); out_drop: kfree_skb(skb); return -EINVAL; } BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL))) return TC_ACT_SHOT; ri->flags = flags; ri->tgt_index = ifindex; return TC_ACT_REDIRECT; } static const struct bpf_func_proto bpf_redirect_proto = { .func = bpf_redirect, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); if (unlikely(flags)) return TC_ACT_SHOT; ri->flags = BPF_F_PEER; ri->tgt_index = ifindex; return TC_ACT_REDIRECT; } static const struct bpf_func_proto bpf_redirect_peer_proto = { .func = bpf_redirect_peer, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params, int, plen, u64, flags) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); if (unlikely((plen && plen < sizeof(*params)) || flags)) return TC_ACT_SHOT; ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0); ri->tgt_index = ifindex; BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params)); if (plen) memcpy(&ri->nh, params, sizeof(ri->nh)); return TC_ACT_REDIRECT; } static const struct bpf_func_proto bpf_redirect_neigh_proto = { .func = bpf_redirect_neigh, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes) { msg->apply_bytes = bytes; return 0; } static const struct bpf_func_proto bpf_msg_apply_bytes_proto = { .func = bpf_msg_apply_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes) { msg->cork_bytes = bytes; return 0; } static void sk_msg_reset_curr(struct sk_msg *msg) { u32 i = msg->sg.start; u32 len = 0; do { len += sk_msg_elem(msg, i)->length; sk_msg_iter_var_next(i); if (len >= msg->sg.size) break; } while (i != msg->sg.end); msg->sg.curr = i; msg->sg.copybreak = 0; } static const struct bpf_func_proto bpf_msg_cork_bytes_proto = { .func = bpf_msg_cork_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start, u32, end, u64, flags) { u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start; u32 first_sge, last_sge, i, shift, bytes_sg_total; struct scatterlist *sge; u8 *raw, *to, *from; struct page *page; if (unlikely(flags || end <= start)) return -EINVAL; /* First find the starting scatterlist element */ i = msg->sg.start; do { offset += len; len = sk_msg_elem(msg, i)->length; if (start < offset + len) break; sk_msg_iter_var_next(i); } while (i != msg->sg.end); if (unlikely(start >= offset + len)) return -EINVAL; first_sge = i; /* The start may point into the sg element so we need to also * account for the headroom. */ bytes_sg_total = start - offset + bytes; if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len) goto out; /* At this point we need to linearize multiple scatterlist * elements or a single shared page. Either way we need to * copy into a linear buffer exclusively owned by BPF. Then * place the buffer in the scatterlist and fixup the original * entries by removing the entries now in the linear buffer * and shifting the remaining entries. For now we do not try * to copy partial entries to avoid complexity of running out * of sg_entry slots. The downside is reading a single byte * will copy the entire sg entry. */ do { copy += sk_msg_elem(msg, i)->length; sk_msg_iter_var_next(i); if (bytes_sg_total <= copy) break; } while (i != msg->sg.end); last_sge = i; if (unlikely(bytes_sg_total > copy)) return -EINVAL; page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP, get_order(copy)); if (unlikely(!page)) return -ENOMEM; raw = page_address(page); i = first_sge; do { sge = sk_msg_elem(msg, i); from = sg_virt(sge); len = sge->length; to = raw + poffset; memcpy(to, from, len); poffset += len; sge->length = 0; put_page(sg_page(sge)); sk_msg_iter_var_next(i); } while (i != last_sge); sg_set_page(&msg->sg.data[first_sge], page, copy, 0); /* To repair sg ring we need to shift entries. If we only * had a single entry though we can just replace it and * be done. Otherwise walk the ring and shift the entries. */ WARN_ON_ONCE(last_sge == first_sge); shift = last_sge > first_sge ? last_sge - first_sge - 1 : NR_MSG_FRAG_IDS - first_sge + last_sge - 1; if (!shift) goto out; i = first_sge; sk_msg_iter_var_next(i); do { u32 move_from; if (i + shift >= NR_MSG_FRAG_IDS) move_from = i + shift - NR_MSG_FRAG_IDS; else move_from = i + shift; if (move_from == msg->sg.end) break; msg->sg.data[i] = msg->sg.data[move_from]; msg->sg.data[move_from].length = 0; msg->sg.data[move_from].page_link = 0; msg->sg.data[move_from].offset = 0; sk_msg_iter_var_next(i); } while (1); msg->sg.end = msg->sg.end - shift > msg->sg.end ? msg->sg.end - shift + NR_MSG_FRAG_IDS : msg->sg.end - shift; out: sk_msg_reset_curr(msg); msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset; msg->data_end = msg->data + bytes; return 0; } static const struct bpf_func_proto bpf_msg_pull_data_proto = { .func = bpf_msg_pull_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start, u32, len, u64, flags) { struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge; u32 new, i = 0, l = 0, space, copy = 0, offset = 0; u8 *raw, *to, *from; struct page *page; if (unlikely(flags)) return -EINVAL; if (unlikely(len == 0)) return 0; /* First find the starting scatterlist element */ i = msg->sg.start; do { offset += l; l = sk_msg_elem(msg, i)->length; if (start < offset + l) break; sk_msg_iter_var_next(i); } while (i != msg->sg.end); if (start >= offset + l) return -EINVAL; space = MAX_MSG_FRAGS - sk_msg_elem_used(msg); /* If no space available will fallback to copy, we need at * least one scatterlist elem available to push data into * when start aligns to the beginning of an element or two * when it falls inside an element. We handle the start equals * offset case because its the common case for inserting a * header. */ if (!space || (space == 1 && start != offset)) copy = msg->sg.data[i].length; page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP, get_order(copy + len)); if (unlikely(!page)) return -ENOMEM; if (copy) { int front, back; raw = page_address(page); psge = sk_msg_elem(msg, i); front = start - offset; back = psge->length - front; from = sg_virt(psge); if (front) memcpy(raw, from, front); if (back) { from += front; to = raw + front + len; memcpy(to, from, back); } put_page(sg_page(psge)); } else if (start - offset) { psge = sk_msg_elem(msg, i); rsge = sk_msg_elem_cpy(msg, i); psge->length = start - offset; rsge.length -= psge->length; rsge.offset += start; sk_msg_iter_var_next(i); sg_unmark_end(psge); sg_unmark_end(&rsge); sk_msg_iter_next(msg, end); } /* Slot(s) to place newly allocated data */ new = i; /* Shift one or two slots as needed */ if (!copy) { sge = sk_msg_elem_cpy(msg, i); sk_msg_iter_var_next(i); sg_unmark_end(&sge); sk_msg_iter_next(msg, end); nsge = sk_msg_elem_cpy(msg, i); if (rsge.length) { sk_msg_iter_var_next(i); nnsge = sk_msg_elem_cpy(msg, i); } while (i != msg->sg.end) { msg->sg.data[i] = sge; sge = nsge; sk_msg_iter_var_next(i); if (rsge.length) { nsge = nnsge; nnsge = sk_msg_elem_cpy(msg, i); } else { nsge = sk_msg_elem_cpy(msg, i); } } } /* Place newly allocated data buffer */ sk_mem_charge(msg->sk, len); msg->sg.size += len; __clear_bit(new, msg->sg.copy); sg_set_page(&msg->sg.data[new], page, len + copy, 0); if (rsge.length) { get_page(sg_page(&rsge)); sk_msg_iter_var_next(new); msg->sg.data[new] = rsge; } sk_msg_reset_curr(msg); sk_msg_compute_data_pointers(msg); return 0; } static const struct bpf_func_proto bpf_msg_push_data_proto = { .func = bpf_msg_push_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; static void sk_msg_shift_left(struct sk_msg *msg, int i) { int prev; do { prev = i; sk_msg_iter_var_next(i); msg->sg.data[prev] = msg->sg.data[i]; } while (i != msg->sg.end); sk_msg_iter_prev(msg, end); } static void sk_msg_shift_right(struct sk_msg *msg, int i) { struct scatterlist tmp, sge; sk_msg_iter_next(msg, end); sge = sk_msg_elem_cpy(msg, i); sk_msg_iter_var_next(i); tmp = sk_msg_elem_cpy(msg, i); while (i != msg->sg.end) { msg->sg.data[i] = sge; sk_msg_iter_var_next(i); sge = tmp; tmp = sk_msg_elem_cpy(msg, i); } } BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start, u32, len, u64, flags) { u32 i = 0, l = 0, space, offset = 0; u64 last = start + len; int pop; if (unlikely(flags)) return -EINVAL; /* First find the starting scatterlist element */ i = msg->sg.start; do { offset += l; l = sk_msg_elem(msg, i)->length; if (start < offset + l) break; sk_msg_iter_var_next(i); } while (i != msg->sg.end); /* Bounds checks: start and pop must be inside message */ if (start >= offset + l || last >= msg->sg.size) return -EINVAL; space = MAX_MSG_FRAGS - sk_msg_elem_used(msg); pop = len; /* --------------| offset * -| start |-------- len -------| * * |----- a ----|-------- pop -------|----- b ----| * |______________________________________________| length * * * a: region at front of scatter element to save * b: region at back of scatter element to save when length > A + pop * pop: region to pop from element, same as input 'pop' here will be * decremented below per iteration. * * Two top-level cases to handle when start != offset, first B is non * zero and second B is zero corresponding to when a pop includes more * than one element. * * Then if B is non-zero AND there is no space allocate space and * compact A, B regions into page. If there is space shift ring to * the right free'ing the next element in ring to place B, leaving * A untouched except to reduce length. */ if (start != offset) { struct scatterlist *nsge, *sge = sk_msg_elem(msg, i); int a = start; int b = sge->length - pop - a; sk_msg_iter_var_next(i); if (pop < sge->length - a) { if (space) { sge->length = a; sk_msg_shift_right(msg, i); nsge = sk_msg_elem(msg, i); get_page(sg_page(sge)); sg_set_page(nsge, sg_page(sge), b, sge->offset + pop + a); } else { struct page *page, *orig; u8 *to, *from; page = alloc_pages(__GFP_NOWARN | __GFP_COMP | GFP_ATOMIC, get_order(a + b)); if (unlikely(!page)) return -ENOMEM; sge->length = a; orig = sg_page(sge); from = sg_virt(sge); to = page_address(page); memcpy(to, from, a); memcpy(to + a, from + a + pop, b); sg_set_page(sge, page, a + b, 0); put_page(orig); } pop = 0; } else if (pop >= sge->length - a) { pop -= (sge->length - a); sge->length = a; } } /* From above the current layout _must_ be as follows, * * -| offset * -| start * * |---- pop ---|---------------- b ------------| * |____________________________________________| length * * Offset and start of the current msg elem are equal because in the * previous case we handled offset != start and either consumed the * entire element and advanced to the next element OR pop == 0. * * Two cases to handle here are first pop is less than the length * leaving some remainder b above. Simply adjust the element's layout * in this case. Or pop >= length of the element so that b = 0. In this * case advance to next element decrementing pop. */ while (pop) { struct scatterlist *sge = sk_msg_elem(msg, i); if (pop < sge->length) { sge->length -= pop; sge->offset += pop; pop = 0; } else { pop -= sge->length; sk_msg_shift_left(msg, i); } sk_msg_iter_var_next(i); } sk_mem_uncharge(msg->sk, len - pop); msg->sg.size -= (len - pop); sk_msg_reset_curr(msg); sk_msg_compute_data_pointers(msg); return 0; } static const struct bpf_func_proto bpf_msg_pop_data_proto = { .func = bpf_msg_pop_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; #ifdef CONFIG_CGROUP_NET_CLASSID BPF_CALL_0(bpf_get_cgroup_classid_curr) { return __task_get_classid(current); } const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = { .func = bpf_get_cgroup_classid_curr, .gpl_only = false, .ret_type = RET_INTEGER, }; BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb) { struct sock *sk = skb_to_full_sk(skb); if (!sk || !sk_fullsock(sk)) return 0; return sock_cgroup_classid(&sk->sk_cgrp_data); } static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = { .func = bpf_skb_cgroup_classid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; #endif BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb) { return task_get_classid(skb); } static const struct bpf_func_proto bpf_get_cgroup_classid_proto = { .func = bpf_get_cgroup_classid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb) { return dst_tclassid(skb); } static const struct bpf_func_proto bpf_get_route_realm_proto = { .func = bpf_get_route_realm, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb) { /* If skb_clear_hash() was called due to mangling, we can * trigger SW recalculation here. Later access to hash * can then use the inline skb->hash via context directly * instead of calling this helper again. */ return skb_get_hash(skb); } static const struct bpf_func_proto bpf_get_hash_recalc_proto = { .func = bpf_get_hash_recalc, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb) { /* After all direct packet write, this can be used once for * triggering a lazy recalc on next skb_get_hash() invocation. */ skb_clear_hash(skb); return 0; } static const struct bpf_func_proto bpf_set_hash_invalid_proto = { .func = bpf_set_hash_invalid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash) { /* Set user specified hash as L4(+), so that it gets returned * on skb_get_hash() call unless BPF prog later on triggers a * skb_clear_hash(). */ __skb_set_sw_hash(skb, hash, true); return 0; } static const struct bpf_func_proto bpf_set_hash_proto = { .func = bpf_set_hash, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto, u16, vlan_tci) { int ret; if (unlikely(vlan_proto != htons(ETH_P_8021Q) && vlan_proto != htons(ETH_P_8021AD))) vlan_proto = htons(ETH_P_8021Q); bpf_push_mac_rcsum(skb); ret = skb_vlan_push(skb, vlan_proto, vlan_tci); bpf_pull_mac_rcsum(skb); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_vlan_push_proto = { .func = bpf_skb_vlan_push, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb) { int ret; bpf_push_mac_rcsum(skb); ret = skb_vlan_pop(skb); bpf_pull_mac_rcsum(skb); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_vlan_pop_proto = { .func = bpf_skb_vlan_pop, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len) { /* Caller already did skb_cow() with len as headroom, * so no need to do it here. */ skb_push(skb, len); memmove(skb->data, skb->data + len, off); memset(skb->data + off, 0, len); /* No skb_postpush_rcsum(skb, skb->data + off, len) * needed here as it does not change the skb->csum * result for checksum complete when summing over * zeroed blocks. */ return 0; } static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len) { void *old_data; /* skb_ensure_writable() is not needed here, as we're * already working on an uncloned skb. */ if (unlikely(!pskb_may_pull(skb, off + len))) return -ENOMEM; old_data = skb->data; __skb_pull(skb, len); skb_postpull_rcsum(skb, old_data + off, len); memmove(skb->data, old_data, off); return 0; } static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len) { bool trans_same = skb->transport_header == skb->network_header; int ret; /* There's no need for __skb_push()/__skb_pull() pair to * get to the start of the mac header as we're guaranteed * to always start from here under eBPF. */ ret = bpf_skb_generic_push(skb, off, len); if (likely(!ret)) { skb->mac_header -= len; skb->network_header -= len; if (trans_same) skb->transport_header = skb->network_header; } return ret; } static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len) { bool trans_same = skb->transport_header == skb->network_header; int ret; /* Same here, __skb_push()/__skb_pull() pair not needed. */ ret = bpf_skb_generic_pop(skb, off, len); if (likely(!ret)) { skb->mac_header += len; skb->network_header += len; if (trans_same) skb->transport_header = skb->network_header; } return ret; } static int bpf_skb_proto_4_to_6(struct sk_buff *skb) { const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); u32 off = skb_mac_header_len(skb); int ret; ret = skb_cow(skb, len_diff); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_push(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */ if (shinfo->gso_type & SKB_GSO_TCPV4) { shinfo->gso_type &= ~SKB_GSO_TCPV4; shinfo->gso_type |= SKB_GSO_TCPV6; } } skb->protocol = htons(ETH_P_IPV6); skb_clear_hash(skb); return 0; } static int bpf_skb_proto_6_to_4(struct sk_buff *skb) { const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); u32 off = skb_mac_header_len(skb); int ret; ret = skb_unclone(skb, GFP_ATOMIC); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_pop(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */ if (shinfo->gso_type & SKB_GSO_TCPV6) { shinfo->gso_type &= ~SKB_GSO_TCPV6; shinfo->gso_type |= SKB_GSO_TCPV4; } } skb->protocol = htons(ETH_P_IP); skb_clear_hash(skb); return 0; } static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto) { __be16 from_proto = skb->protocol; if (from_proto == htons(ETH_P_IP) && to_proto == htons(ETH_P_IPV6)) return bpf_skb_proto_4_to_6(skb); if (from_proto == htons(ETH_P_IPV6) && to_proto == htons(ETH_P_IP)) return bpf_skb_proto_6_to_4(skb); return -ENOTSUPP; } BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto, u64, flags) { int ret; if (unlikely(flags)) return -EINVAL; /* General idea is that this helper does the basic groundwork * needed for changing the protocol, and eBPF program fills the * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace() * and other helpers, rather than passing a raw buffer here. * * The rationale is to keep this minimal and without a need to * deal with raw packet data. F.e. even if we would pass buffers * here, the program still needs to call the bpf_lX_csum_replace() * helpers anyway. Plus, this way we keep also separation of * concerns, since f.e. bpf_skb_store_bytes() should only take * care of stores. * * Currently, additional options and extension header space are * not supported, but flags register is reserved so we can adapt * that. For offloads, we mark packet as dodgy, so that headers * need to be verified first. */ ret = bpf_skb_proto_xlat(skb, proto); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_change_proto_proto = { .func = bpf_skb_change_proto, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type) { /* We only allow a restricted subset to be changed for now. */ if (unlikely(!skb_pkt_type_ok(skb->pkt_type) || !skb_pkt_type_ok(pkt_type))) return -EINVAL; skb->pkt_type = pkt_type; return 0; } static const struct bpf_func_proto bpf_skb_change_type_proto = { .func = bpf_skb_change_type, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; static u32 bpf_skb_net_base_len(const struct sk_buff *skb) { switch (skb->protocol) { case htons(ETH_P_IP): return sizeof(struct iphdr); case htons(ETH_P_IPV6): return sizeof(struct ipv6hdr); default: return ~0U; } } #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \ BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \ BPF_F_ADJ_ROOM_DECAP_L3_IPV6) #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \ BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \ BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \ BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \ BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \ BPF_F_ADJ_ROOM_ENCAP_L2( \ BPF_ADJ_ROOM_ENCAP_L2_MASK) | \ BPF_F_ADJ_ROOM_DECAP_L3_MASK) static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff, u64 flags) { u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT; bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK; u16 mac_len = 0, inner_net = 0, inner_trans = 0; unsigned int gso_type = SKB_GSO_DODGY; int ret; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) { /* udp gso_size delineates datagrams, only allow if fixed */ if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) || !(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) return -ENOTSUPP; } ret = skb_cow_head(skb, len_diff); if (unlikely(ret < 0)) return ret; if (encap) { if (skb->protocol != htons(ETH_P_IP) && skb->protocol != htons(ETH_P_IPV6)) return -ENOTSUPP; if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 && flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) return -EINVAL; if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE && flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) return -EINVAL; if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH && inner_mac_len < ETH_HLEN) return -EINVAL; if (skb->encapsulation) return -EALREADY; mac_len = skb->network_header - skb->mac_header; inner_net = skb->network_header; if (inner_mac_len > len_diff) return -EINVAL; inner_trans = skb->transport_header; } ret = bpf_skb_net_hdr_push(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (encap) { skb->inner_mac_header = inner_net - inner_mac_len; skb->inner_network_header = inner_net; skb->inner_transport_header = inner_trans; if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH) skb_set_inner_protocol(skb, htons(ETH_P_TEB)); else skb_set_inner_protocol(skb, skb->protocol); skb->encapsulation = 1; skb_set_network_header(skb, mac_len); if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) gso_type |= SKB_GSO_UDP_TUNNEL; else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE) gso_type |= SKB_GSO_GRE; else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) gso_type |= SKB_GSO_IPXIP6; else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4) gso_type |= SKB_GSO_IPXIP4; if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE || flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) { int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ? sizeof(struct ipv6hdr) : sizeof(struct iphdr); skb_set_transport_header(skb, mac_len + nh_len); } /* Match skb->protocol to new outer l3 protocol */ if (skb->protocol == htons(ETH_P_IP) && flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6) skb->protocol = htons(ETH_P_IPV6); else if (skb->protocol == htons(ETH_P_IPV6) && flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4) skb->protocol = htons(ETH_P_IP); } if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= gso_type; shinfo->gso_segs = 0; /* Due to header growth, MSS needs to be downgraded. * There is a BUG_ON() when segmenting the frag_list with * head_frag true, so linearize the skb after downgrading * the MSS. */ if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) { skb_decrease_gso_size(shinfo, len_diff); if (shinfo->frag_list) return skb_linearize(skb); } } return 0; } static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff, u64 flags) { int ret; if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO | BPF_F_ADJ_ROOM_DECAP_L3_MASK | BPF_F_ADJ_ROOM_NO_CSUM_RESET))) return -EINVAL; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) { /* udp gso_size delineates datagrams, only allow if fixed */ if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) || !(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) return -ENOTSUPP; } ret = skb_unclone(skb, GFP_ATOMIC); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_pop(skb, off, len_diff); if (unlikely(ret < 0)) return ret; /* Match skb->protocol to new outer l3 protocol */ if (skb->protocol == htons(ETH_P_IP) && flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6) skb->protocol = htons(ETH_P_IPV6); else if (skb->protocol == htons(ETH_P_IPV6) && flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4) skb->protocol = htons(ETH_P_IP); if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* Due to header shrink, MSS can be upgraded. */ if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) skb_increase_gso_size(shinfo, len_diff); /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } return 0; } #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff, u32, mode, u64, flags) { u32 len_diff_abs = abs(len_diff); bool shrink = len_diff < 0; int ret = 0; if (unlikely(flags || mode)) return -EINVAL; if (unlikely(len_diff_abs > 0xfffU)) return -EFAULT; if (!shrink) { ret = skb_cow(skb, len_diff); if (unlikely(ret < 0)) return ret; __skb_push(skb, len_diff_abs); memset(skb->data, 0, len_diff_abs); } else { if (unlikely(!pskb_may_pull(skb, len_diff_abs))) return -ENOMEM; __skb_pull(skb, len_diff_abs); } if (tls_sw_has_ctx_rx(skb->sk)) { struct strp_msg *rxm = strp_msg(skb); rxm->full_len += len_diff; } return ret; } static const struct bpf_func_proto sk_skb_adjust_room_proto = { .func = sk_skb_adjust_room, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff, u32, mode, u64, flags) { u32 len_cur, len_diff_abs = abs(len_diff); u32 len_min = bpf_skb_net_base_len(skb); u32 len_max = BPF_SKB_MAX_LEN; __be16 proto = skb->protocol; bool shrink = len_diff < 0; u32 off; int ret; if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK | BPF_F_ADJ_ROOM_NO_CSUM_RESET))) return -EINVAL; if (unlikely(len_diff_abs > 0xfffU)) return -EFAULT; if (unlikely(proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))) return -ENOTSUPP; off = skb_mac_header_len(skb); switch (mode) { case BPF_ADJ_ROOM_NET: off += bpf_skb_net_base_len(skb); break; case BPF_ADJ_ROOM_MAC: break; default: return -ENOTSUPP; } if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) { if (!shrink) return -EINVAL; switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) { case BPF_F_ADJ_ROOM_DECAP_L3_IPV4: len_min = sizeof(struct iphdr); break; case BPF_F_ADJ_ROOM_DECAP_L3_IPV6: len_min = sizeof(struct ipv6hdr); break; default: return -EINVAL; } } len_cur = skb->len - skb_network_offset(skb); if ((shrink && (len_diff_abs >= len_cur || len_cur - len_diff_abs < len_min)) || (!shrink && (skb->len + len_diff_abs > len_max && !skb_is_gso(skb)))) return -ENOTSUPP; ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) : bpf_skb_net_grow(skb, off, len_diff_abs, flags); if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET)) __skb_reset_checksum_unnecessary(skb); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_adjust_room_proto = { .func = bpf_skb_adjust_room, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; static u32 __bpf_skb_min_len(const struct sk_buff *skb) { u32 min_len = skb_network_offset(skb); if (skb_transport_header_was_set(skb)) min_len = skb_transport_offset(skb); if (skb->ip_summed == CHECKSUM_PARTIAL) min_len = skb_checksum_start_offset(skb) + skb->csum_offset + sizeof(__sum16); return min_len; } static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len) { unsigned int old_len = skb->len; int ret; ret = __skb_grow_rcsum(skb, new_len); if (!ret) memset(skb->data + old_len, 0, new_len - old_len); return ret; } static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len) { return __skb_trim_rcsum(skb, new_len); } static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len, u64 flags) { u32 max_len = BPF_SKB_MAX_LEN; u32 min_len = __bpf_skb_min_len(skb); int ret; if (unlikely(flags || new_len > max_len || new_len < min_len)) return -EINVAL; if (skb->encapsulation) return -ENOTSUPP; /* The basic idea of this helper is that it's performing the * needed work to either grow or trim an skb, and eBPF program * rewrites the rest via helpers like bpf_skb_store_bytes(), * bpf_lX_csum_replace() and others rather than passing a raw * buffer here. This one is a slow path helper and intended * for replies with control messages. * * Like in bpf_skb_change_proto(), we want to keep this rather * minimal and without protocol specifics so that we are able * to separate concerns as in bpf_skb_store_bytes() should only * be the one responsible for writing buffers. * * It's really expected to be a slow path operation here for * control message replies, so we're implicitly linearizing, * uncloning and drop offloads from the skb by this. */ ret = __bpf_try_make_writable(skb, skb->len); if (!ret) { if (new_len > skb->len) ret = bpf_skb_grow_rcsum(skb, new_len); else if (new_len < skb->len) ret = bpf_skb_trim_rcsum(skb, new_len); if (!ret && skb_is_gso(skb)) skb_gso_reset(skb); } return ret; } BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len, u64, flags) { int ret = __bpf_skb_change_tail(skb, new_len, flags); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_change_tail_proto = { .func = bpf_skb_change_tail, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len, u64, flags) { return __bpf_skb_change_tail(skb, new_len, flags); } static const struct bpf_func_proto sk_skb_change_tail_proto = { .func = sk_skb_change_tail, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room, u64 flags) { u32 max_len = BPF_SKB_MAX_LEN; u32 new_len = skb->len + head_room; int ret; if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) || new_len < skb->len)) return -EINVAL; ret = skb_cow(skb, head_room); if (likely(!ret)) { /* Idea for this helper is that we currently only * allow to expand on mac header. This means that * skb->protocol network header, etc, stay as is. * Compared to bpf_skb_change_tail(), we're more * flexible due to not needing to linearize or * reset GSO. Intention for this helper is to be * used by an L3 skb that needs to push mac header * for redirection into L2 device. */ __skb_push(skb, head_room); memset(skb->data, 0, head_room); skb_reset_mac_header(skb); skb_reset_mac_len(skb); } return ret; } BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room, u64, flags) { int ret = __bpf_skb_change_head(skb, head_room, flags); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_change_head_proto = { .func = bpf_skb_change_head, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room, u64, flags) { return __bpf_skb_change_head(skb, head_room, flags); } static const struct bpf_func_proto sk_skb_change_head_proto = { .func = sk_skb_change_head, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp) { return xdp_get_buff_len(xdp); } static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = { .func = bpf_xdp_get_buff_len, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff) const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = { .func = bpf_xdp_get_buff_len, .gpl_only = false, .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0], }; static unsigned long xdp_get_metalen(const struct xdp_buff *xdp) { return xdp_data_meta_unsupported(xdp) ? 0 : xdp->data - xdp->data_meta; } BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset) { void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); unsigned long metalen = xdp_get_metalen(xdp); void *data_start = xdp_frame_end + metalen; void *data = xdp->data + offset; if (unlikely(data < data_start || data > xdp->data_end - ETH_HLEN)) return -EINVAL; if (metalen) memmove(xdp->data_meta + offset, xdp->data_meta, metalen); xdp->data_meta += offset; xdp->data = data; return 0; } static const struct bpf_func_proto bpf_xdp_adjust_head_proto = { .func = bpf_xdp_adjust_head, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf, unsigned long len, bool flush) { unsigned long ptr_len, ptr_off = 0; skb_frag_t *next_frag, *end_frag; struct skb_shared_info *sinfo; void *src, *dst; u8 *ptr_buf; if (likely(xdp->data_end - xdp->data >= off + len)) { src = flush ? buf : xdp->data + off; dst = flush ? xdp->data + off : buf; memcpy(dst, src, len); return; } sinfo = xdp_get_shared_info_from_buff(xdp); end_frag = &sinfo->frags[sinfo->nr_frags]; next_frag = &sinfo->frags[0]; ptr_len = xdp->data_end - xdp->data; ptr_buf = xdp->data; while (true) { if (off < ptr_off + ptr_len) { unsigned long copy_off = off - ptr_off; unsigned long copy_len = min(len, ptr_len - copy_off); src = flush ? buf : ptr_buf + copy_off; dst = flush ? ptr_buf + copy_off : buf; memcpy(dst, src, copy_len); off += copy_len; len -= copy_len; buf += copy_len; } if (!len || next_frag == end_frag) break; ptr_off += ptr_len; ptr_buf = skb_frag_address(next_frag); ptr_len = skb_frag_size(next_frag); next_frag++; } } void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len) { u32 size = xdp->data_end - xdp->data; struct skb_shared_info *sinfo; void *addr = xdp->data; int i; if (unlikely(offset > 0xffff || len > 0xffff)) return ERR_PTR(-EFAULT); if (unlikely(offset + len > xdp_get_buff_len(xdp))) return ERR_PTR(-EINVAL); if (likely(offset < size)) /* linear area */ goto out; sinfo = xdp_get_shared_info_from_buff(xdp); offset -= size; for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */ u32 frag_size = skb_frag_size(&sinfo->frags[i]); if (offset < frag_size) { addr = skb_frag_address(&sinfo->frags[i]); size = frag_size; break; } offset -= frag_size; } out: return offset + len <= size ? addr + offset : NULL; } BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset, void *, buf, u32, len) { void *ptr; ptr = bpf_xdp_pointer(xdp, offset, len); if (IS_ERR(ptr)) return PTR_ERR(ptr); if (!ptr) bpf_xdp_copy_buf(xdp, offset, buf, len, false); else memcpy(buf, ptr, len); return 0; } static const struct bpf_func_proto bpf_xdp_load_bytes_proto = { .func = bpf_xdp_load_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len) { return ____bpf_xdp_load_bytes(xdp, offset, buf, len); } BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset, void *, buf, u32, len) { void *ptr; ptr = bpf_xdp_pointer(xdp, offset, len); if (IS_ERR(ptr)) return PTR_ERR(ptr); if (!ptr) bpf_xdp_copy_buf(xdp, offset, buf, len, true); else memcpy(ptr, buf, len); return 0; } static const struct bpf_func_proto bpf_xdp_store_bytes_proto = { .func = bpf_xdp_store_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len) { return ____bpf_xdp_store_bytes(xdp, offset, buf, len); } static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset) { struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1]; struct xdp_rxq_info *rxq = xdp->rxq; unsigned int tailroom; if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz) return -EOPNOTSUPP; tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag); if (unlikely(offset > tailroom)) return -EINVAL; memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset); skb_frag_size_add(frag, offset); sinfo->xdp_frags_size += offset; if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) xsk_buff_get_tail(xdp)->data_end += offset; return 0; } static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink, struct xdp_mem_info *mem_info, bool release) { struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp); if (release) { xsk_buff_del_tail(zc_frag); __xdp_return(NULL, mem_info, false, zc_frag); } else { zc_frag->data_end -= shrink; } } static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag, int shrink) { struct xdp_mem_info *mem_info = &xdp->rxq->mem; bool release = skb_frag_size(frag) == shrink; if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) { bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release); goto out; } if (release) { struct page *page = skb_frag_page(frag); __xdp_return(page_address(page), mem_info, false, NULL); } out: return release; } static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset) { struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); int i, n_frags_free = 0, len_free = 0; if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN)) return -EINVAL; for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) { skb_frag_t *frag = &sinfo->frags[i]; int shrink = min_t(int, offset, skb_frag_size(frag)); len_free += shrink; offset -= shrink; if (bpf_xdp_shrink_data(xdp, frag, shrink)) { n_frags_free++; } else { skb_frag_size_sub(frag, shrink); break; } } sinfo->nr_frags -= n_frags_free; sinfo->xdp_frags_size -= len_free; if (unlikely(!sinfo->nr_frags)) { xdp_buff_clear_frags_flag(xdp); xdp->data_end -= offset; } return 0; } BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset) { void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */ void *data_end = xdp->data_end + offset; if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */ if (offset < 0) return bpf_xdp_frags_shrink_tail(xdp, -offset); return bpf_xdp_frags_increase_tail(xdp, offset); } /* Notice that xdp_data_hard_end have reserved some tailroom */ if (unlikely(data_end > data_hard_end)) return -EINVAL; if (unlikely(data_end < xdp->data + ETH_HLEN)) return -EINVAL; /* Clear memory area on grow, can contain uninit kernel memory */ if (offset > 0) memset(xdp->data_end, 0, offset); xdp->data_end = data_end; return 0; } static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = { .func = bpf_xdp_adjust_tail, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset) { void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); void *meta = xdp->data_meta + offset; unsigned long metalen = xdp->data - meta; if (xdp_data_meta_unsupported(xdp)) return -ENOTSUPP; if (unlikely(meta < xdp_frame_end || meta > xdp->data)) return -EINVAL; if (unlikely(xdp_metalen_invalid(metalen))) return -EACCES; xdp->data_meta = meta; return 0; } static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = { .func = bpf_xdp_adjust_meta, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; /** * DOC: xdp redirect * * XDP_REDIRECT works by a three-step process, implemented in the functions * below: * * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target * of the redirect and store it (along with some other metadata) in a per-CPU * struct bpf_redirect_info. * * 2. When the program returns the XDP_REDIRECT return code, the driver will * call xdp_do_redirect() which will use the information in struct * bpf_redirect_info to actually enqueue the frame into a map type-specific * bulk queue structure. * * 3. Before exiting its NAPI poll loop, the driver will call * xdp_do_flush(), which will flush all the different bulk queues, * thus completing the redirect. Note that xdp_do_flush() must be * called before napi_complete_done() in the driver, as the * XDP_REDIRECT logic relies on being inside a single NAPI instance * through to the xdp_do_flush() call for RCU protection of all * in-kernel data structures. */ /* * Pointers to the map entries will be kept around for this whole sequence of * steps, protected by RCU. However, there is no top-level rcu_read_lock() in * the core code; instead, the RCU protection relies on everything happening * inside a single NAPI poll sequence, which means it's between a pair of calls * to local_bh_disable()/local_bh_enable(). * * The map entries are marked as __rcu and the map code makes sure to * dereference those pointers with rcu_dereference_check() in a way that works * for both sections that to hold an rcu_read_lock() and sections that are * called from NAPI without a separate rcu_read_lock(). The code below does not * use RCU annotations, but relies on those in the map code. */ void xdp_do_flush(void) { struct list_head *lh_map, *lh_dev, *lh_xsk; bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk); if (lh_dev) __dev_flush(lh_dev); if (lh_map) __cpu_map_flush(lh_map); if (lh_xsk) __xsk_map_flush(lh_xsk); } EXPORT_SYMBOL_GPL(xdp_do_flush); #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL) void xdp_do_check_flushed(struct napi_struct *napi) { struct list_head *lh_map, *lh_dev, *lh_xsk; bool missed = false; bpf_net_ctx_get_all_used_flush_lists(&lh_map, &lh_dev, &lh_xsk); if (lh_dev) { __dev_flush(lh_dev); missed = true; } if (lh_map) { __cpu_map_flush(lh_map); missed = true; } if (lh_xsk) { __xsk_map_flush(lh_xsk); missed = true; } WARN_ONCE(missed, "Missing xdp_do_flush() invocation after NAPI by %ps\n", napi->poll); } #endif DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key); u32 xdp_master_redirect(struct xdp_buff *xdp) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); struct net_device *master, *slave; master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev); slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp); if (slave && slave != xdp->rxq->dev) { /* The target device is different from the receiving device, so * redirect it to the new device. * Using XDP_REDIRECT gets the correct behaviour from XDP enabled * drivers to unmap the packet from their rx ring. */ ri->tgt_index = slave->ifindex; ri->map_id = INT_MAX; ri->map_type = BPF_MAP_TYPE_UNSPEC; return XDP_REDIRECT; } return XDP_TX; } EXPORT_SYMBOL_GPL(xdp_master_redirect); static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri, struct net_device *dev, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { enum bpf_map_type map_type = ri->map_type; void *fwd = ri->tgt_value; u32 map_id = ri->map_id; int err; ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */ ri->map_type = BPF_MAP_TYPE_UNSPEC; err = __xsk_map_redirect(fwd, xdp); if (unlikely(err)) goto err; _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index); return 0; err: _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err); return err; } static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri, struct net_device *dev, struct xdp_frame *xdpf, struct bpf_prog *xdp_prog) { enum bpf_map_type map_type = ri->map_type; void *fwd = ri->tgt_value; u32 map_id = ri->map_id; u32 flags = ri->flags; struct bpf_map *map; int err; ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */ ri->flags = 0; ri->map_type = BPF_MAP_TYPE_UNSPEC; if (unlikely(!xdpf)) { err = -EOVERFLOW; goto err; } switch (map_type) { case BPF_MAP_TYPE_DEVMAP: fallthrough; case BPF_MAP_TYPE_DEVMAP_HASH: if (unlikely(flags & BPF_F_BROADCAST)) { map = READ_ONCE(ri->map); /* The map pointer is cleared when the map is being torn * down by dev_map_free() */ if (unlikely(!map)) { err = -ENOENT; break; } WRITE_ONCE(ri->map, NULL); err = dev_map_enqueue_multi(xdpf, dev, map, flags & BPF_F_EXCLUDE_INGRESS); } else { err = dev_map_enqueue(fwd, xdpf, dev); } break; case BPF_MAP_TYPE_CPUMAP: err = cpu_map_enqueue(fwd, xdpf, dev); break; case BPF_MAP_TYPE_UNSPEC: if (map_id == INT_MAX) { fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index); if (unlikely(!fwd)) { err = -EINVAL; break; } err = dev_xdp_enqueue(fwd, xdpf, dev); break; } fallthrough; default: err = -EBADRQC; } if (unlikely(err)) goto err; _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index); return 0; err: _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err); return err; } int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); enum bpf_map_type map_type = ri->map_type; if (map_type == BPF_MAP_TYPE_XSKMAP) return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog); return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp), xdp_prog); } EXPORT_SYMBOL_GPL(xdp_do_redirect); int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp, struct xdp_frame *xdpf, struct bpf_prog *xdp_prog) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); enum bpf_map_type map_type = ri->map_type; if (map_type == BPF_MAP_TYPE_XSKMAP) return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog); return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog); } EXPORT_SYMBOL_GPL(xdp_do_redirect_frame); static int xdp_do_generic_redirect_map(struct net_device *dev, struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *xdp_prog, void *fwd, enum bpf_map_type map_type, u32 map_id, u32 flags) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); struct bpf_map *map; int err; switch (map_type) { case BPF_MAP_TYPE_DEVMAP: fallthrough; case BPF_MAP_TYPE_DEVMAP_HASH: if (unlikely(flags & BPF_F_BROADCAST)) { map = READ_ONCE(ri->map); /* The map pointer is cleared when the map is being torn * down by dev_map_free() */ if (unlikely(!map)) { err = -ENOENT; break; } WRITE_ONCE(ri->map, NULL); err = dev_map_redirect_multi(dev, skb, xdp_prog, map, flags & BPF_F_EXCLUDE_INGRESS); } else { err = dev_map_generic_redirect(fwd, skb, xdp_prog); } if (unlikely(err)) goto err; break; case BPF_MAP_TYPE_XSKMAP: err = xsk_generic_rcv(fwd, xdp); if (err) goto err; consume_skb(skb); break; case BPF_MAP_TYPE_CPUMAP: err = cpu_map_generic_redirect(fwd, skb); if (unlikely(err)) goto err; break; default: err = -EBADRQC; goto err; } _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index); return 0; err: _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err); return err; } int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); enum bpf_map_type map_type = ri->map_type; void *fwd = ri->tgt_value; u32 map_id = ri->map_id; u32 flags = ri->flags; int err; ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */ ri->flags = 0; ri->map_type = BPF_MAP_TYPE_UNSPEC; if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) { fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index); if (unlikely(!fwd)) { err = -EINVAL; goto err; } err = xdp_ok_fwd_dev(fwd, skb->len); if (unlikely(err)) goto err; skb->dev = fwd; _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index); generic_xdp_tx(skb, xdp_prog); return 0; } return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags); err: _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err); return err; } BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = bpf_net_ctx_get_ri(); if (unlikely(flags)) return XDP_ABORTED; /* NB! Map type UNSPEC and map_id == INT_MAX (never generated * by map_idr) is used for ifindex based XDP redirect. */ ri->tgt_index = ifindex; ri->map_id = INT_MAX; ri->map_type = BPF_MAP_TYPE_UNSPEC; return XDP_REDIRECT; } static const struct bpf_func_proto bpf_xdp_redirect_proto = { .func = bpf_xdp_redirect, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key, u64, flags) { return map->ops->map_redirect(map, key, flags); } static const struct bpf_func_proto bpf_xdp_redirect_map_proto = { .func = bpf_xdp_redirect_map, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static unsigned long bpf_skb_copy(void *dst_buff, const void *skb, unsigned long off, unsigned long len) { void *ptr = skb_header_pointer(skb, off, len, dst_buff); if (unlikely(!ptr)) return len; if (ptr != dst_buff) memcpy(dst_buff, ptr, len); return 0; } BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map, u64, flags, void *, meta, u64, meta_size) { u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32; if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) return -EINVAL; if (unlikely(!skb || skb_size > skb->len)) return -EFAULT; return bpf_event_output(map, flags, meta, meta_size, skb, skb_size, bpf_skb_copy); } static const struct bpf_func_proto bpf_skb_event_output_proto = { .func = bpf_skb_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff) const struct bpf_func_proto bpf_skb_output_proto = { .func = bpf_skb_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &bpf_skb_output_btf_ids[0], .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; static unsigned short bpf_tunnel_key_af(u64 flags) { return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET; } BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to, u32, size, u64, flags) { const struct ip_tunnel_info *info = skb_tunnel_info(skb); u8 compat[sizeof(struct bpf_tunnel_key)]; void *to_orig = to; int err; if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_TUNINFO_FLAGS)))) { err = -EINVAL; goto err_clear; } if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) { err = -EPROTO; goto err_clear; } if (unlikely(size != sizeof(struct bpf_tunnel_key))) { err = -EINVAL; switch (size) { case offsetof(struct bpf_tunnel_key, local_ipv6[0]): case offsetof(struct bpf_tunnel_key, tunnel_label): case offsetof(struct bpf_tunnel_key, tunnel_ext): goto set_compat; case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): /* Fixup deprecated structure layouts here, so we have * a common path later on. */ if (ip_tunnel_info_af(info) != AF_INET) goto err_clear; set_compat: to = (struct bpf_tunnel_key *)compat; break; default: goto err_clear; } } to->tunnel_id = be64_to_cpu(info->key.tun_id); to->tunnel_tos = info->key.tos; to->tunnel_ttl = info->key.ttl; if (flags & BPF_F_TUNINFO_FLAGS) to->tunnel_flags = ip_tunnel_flags_to_be16(info->key.tun_flags); else to->tunnel_ext = 0; if (flags & BPF_F_TUNINFO_IPV6) { memcpy(to->remote_ipv6, &info->key.u.ipv6.src, sizeof(to->remote_ipv6)); memcpy(to->local_ipv6, &info->key.u.ipv6.dst, sizeof(to->local_ipv6)); to->tunnel_label = be32_to_cpu(info->key.label); } else { to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src); memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst); memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3); to->tunnel_label = 0; } if (unlikely(size != sizeof(struct bpf_tunnel_key))) memcpy(to_orig, to, size); return 0; err_clear: memset(to_orig, 0, size); return err; } static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = { .func = bpf_skb_get_tunnel_key, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_UNINIT_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size) { const struct ip_tunnel_info *info = skb_tunnel_info(skb); int err; if (unlikely(!info || !ip_tunnel_is_options_present(info->key.tun_flags))) { err = -ENOENT; goto err_clear; } if (unlikely(size < info->options_len)) { err = -ENOMEM; goto err_clear; } ip_tunnel_info_opts_get(to, info); if (size > info->options_len) memset(to + info->options_len, 0, size - info->options_len); return info->options_len; err_clear: memset(to, 0, size); return err; } static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = { .func = bpf_skb_get_tunnel_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_UNINIT_MEM, .arg3_type = ARG_CONST_SIZE, }; static struct metadata_dst __percpu *md_dst; BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb, const struct bpf_tunnel_key *, from, u32, size, u64, flags) { struct metadata_dst *md = this_cpu_ptr(md_dst); u8 compat[sizeof(struct bpf_tunnel_key)]; struct ip_tunnel_info *info; if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX | BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER | BPF_F_NO_TUNNEL_KEY))) return -EINVAL; if (unlikely(size != sizeof(struct bpf_tunnel_key))) { switch (size) { case offsetof(struct bpf_tunnel_key, local_ipv6[0]): case offsetof(struct bpf_tunnel_key, tunnel_label): case offsetof(struct bpf_tunnel_key, tunnel_ext): case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): /* Fixup deprecated structure layouts here, so we have * a common path later on. */ memcpy(compat, from, size); memset(compat + size, 0, sizeof(compat) - size); from = (const struct bpf_tunnel_key *) compat; break; default: return -EINVAL; } } if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) || from->tunnel_ext)) return -EINVAL; skb_dst_drop(skb); dst_hold((struct dst_entry *) md); skb_dst_set(skb, (struct dst_entry *) md); info = &md->u.tun_info; memset(info, 0, sizeof(*info)); info->mode = IP_TUNNEL_INFO_TX; __set_bit(IP_TUNNEL_NOCACHE_BIT, info->key.tun_flags); __assign_bit(IP_TUNNEL_DONT_FRAGMENT_BIT, info->key.tun_flags, flags & BPF_F_DONT_FRAGMENT); __assign_bit(IP_TUNNEL_CSUM_BIT, info->key.tun_flags, !(flags & BPF_F_ZERO_CSUM_TX)); __assign_bit(IP_TUNNEL_SEQ_BIT, info->key.tun_flags, flags & BPF_F_SEQ_NUMBER); __assign_bit(IP_TUNNEL_KEY_BIT, info->key.tun_flags, !(flags & BPF_F_NO_TUNNEL_KEY)); info->key.tun_id = cpu_to_be64(from->tunnel_id); info->key.tos = from->tunnel_tos; info->key.ttl = from->tunnel_ttl; if (flags & BPF_F_TUNINFO_IPV6) { info->mode |= IP_TUNNEL_INFO_IPV6; memcpy(&info->key.u.ipv6.dst, from->remote_ipv6, sizeof(from->remote_ipv6)); memcpy(&info->key.u.ipv6.src, from->local_ipv6, sizeof(from->local_ipv6)); info->key.label = cpu_to_be32(from->tunnel_label) & IPV6_FLOWLABEL_MASK; } else { info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4); info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4); info->key.flow_flags = FLOWI_FLAG_ANYSRC; } return 0; } static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = { .func = bpf_skb_set_tunnel_key, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb, const u8 *, from, u32, size) { struct ip_tunnel_info *info = skb_tunnel_info(skb); const struct metadata_dst *md = this_cpu_ptr(md_dst); IP_TUNNEL_DECLARE_FLAGS(present) = { }; if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1)))) return -EINVAL; if (unlikely(size > IP_TUNNEL_OPTS_MAX)) return -ENOMEM; ip_tunnel_set_options_present(present); ip_tunnel_info_opts_set(info, from, size, present); return 0; } static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = { .func = bpf_skb_set_tunnel_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto * bpf_get_skb_set_tunnel_proto(enum bpf_func_id which) { if (!md_dst) { struct metadata_dst __percpu *tmp; tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX, METADATA_IP_TUNNEL, GFP_KERNEL); if (!tmp) return NULL; if (cmpxchg(&md_dst, NULL, tmp)) metadata_dst_free_percpu(tmp); } switch (which) { case BPF_FUNC_skb_set_tunnel_key: return &bpf_skb_set_tunnel_key_proto; case BPF_FUNC_skb_set_tunnel_opt: return &bpf_skb_set_tunnel_opt_proto; default: return NULL; } } BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map, u32, idx) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct cgroup *cgrp; struct sock *sk; sk = skb_to_full_sk(skb); if (!sk || !sk_fullsock(sk)) return -ENOENT; if (unlikely(idx >= array->map.max_entries)) return -E2BIG; cgrp = READ_ONCE(array->ptrs[idx]); if (unlikely(!cgrp)) return -EAGAIN; return sk_under_cgroup_hierarchy(sk, cgrp); } static const struct bpf_func_proto bpf_skb_under_cgroup_proto = { .func = bpf_skb_under_cgroup, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; #ifdef CONFIG_SOCK_CGROUP_DATA static inline u64 __bpf_sk_cgroup_id(struct sock *sk) { struct cgroup *cgrp; sk = sk_to_full_sk(sk); if (!sk || !sk_fullsock(sk)) return 0; cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); return cgroup_id(cgrp); } BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb) { return __bpf_sk_cgroup_id(skb->sk); } static const struct bpf_func_proto bpf_skb_cgroup_id_proto = { .func = bpf_skb_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk, int ancestor_level) { struct cgroup *ancestor; struct cgroup *cgrp; sk = sk_to_full_sk(sk); if (!sk || !sk_fullsock(sk)) return 0; cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); ancestor = cgroup_ancestor(cgrp, ancestor_level); if (!ancestor) return 0; return cgroup_id(ancestor); } BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int, ancestor_level) { return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level); } static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = { .func = bpf_skb_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk) { return __bpf_sk_cgroup_id(sk); } static const struct bpf_func_proto bpf_sk_cgroup_id_proto = { .func = bpf_sk_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, }; BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level) { return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level); } static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = { .func = bpf_sk_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_ANYTHING, }; #endif static unsigned long bpf_xdp_copy(void *dst, const void *ctx, unsigned long off, unsigned long len) { struct xdp_buff *xdp = (struct xdp_buff *)ctx; bpf_xdp_copy_buf(xdp, off, dst, len, false); return 0; } BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map, u64, flags, void *, meta, u64, meta_size) { u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32; if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) return -EINVAL; if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp))) return -EFAULT; return bpf_event_output(map, flags, meta, meta_size, xdp, xdp_size, bpf_xdp_copy); } static const struct bpf_func_proto bpf_xdp_event_output_proto = { .func = bpf_xdp_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff) const struct bpf_func_proto bpf_xdp_output_proto = { .func = bpf_xdp_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &bpf_xdp_output_btf_ids[0], .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb) { return skb->sk ? __sock_gen_cookie(skb->sk) : 0; } static const struct bpf_func_proto bpf_get_socket_cookie_proto = { .func = bpf_get_socket_cookie, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx) { return __sock_gen_cookie(ctx->sk); } static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = { .func = bpf_get_socket_cookie_sock_addr, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx) { return __sock_gen_cookie(ctx); } static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = { .func = bpf_get_socket_cookie_sock, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk) { return sk ? sock_gen_cookie(sk) : 0; } const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = { .func = bpf_get_socket_ptr_cookie, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL, }; BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx) { return __sock_gen_cookie(ctx->sk); } static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = { .func = bpf_get_socket_cookie_sock_ops, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; static u64 __bpf_get_netns_cookie(struct sock *sk) { const struct net *net = sk ? sock_net(sk) : &init_net; return net->net_cookie; } BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx) { return __bpf_get_netns_cookie(ctx); } static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = { .func = bpf_get_netns_cookie_sock, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX_OR_NULL, }; BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx) { return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); } static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = { .func = bpf_get_netns_cookie_sock_addr, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX_OR_NULL, }; BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx) { return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); } static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = { .func = bpf_get_netns_cookie_sock_ops, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX_OR_NULL, }; BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx) { return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL); } static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = { .func = bpf_get_netns_cookie_sk_msg, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX_OR_NULL, }; BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb) { struct sock *sk = sk_to_full_sk(skb->sk); kuid_t kuid; if (!sk || !sk_fullsock(sk)) return overflowuid; kuid = sock_net_uid(sock_net(sk), sk); return from_kuid_munged(sock_net(sk)->user_ns, kuid); } static const struct bpf_func_proto bpf_get_socket_uid_proto = { .func = bpf_get_socket_uid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; static int sol_socket_sockopt(struct sock *sk, int optname, char *optval, int *optlen, bool getopt) { switch (optname) { case SO_REUSEADDR: case SO_SNDBUF: case SO_RCVBUF: case SO_KEEPALIVE: case SO_PRIORITY: case SO_REUSEPORT: case SO_RCVLOWAT: case SO_MARK: case SO_MAX_PACING_RATE: case SO_BINDTOIFINDEX: case SO_TXREHASH: if (*optlen != sizeof(int)) return -EINVAL; break; case SO_BINDTODEVICE: break; default: return -EINVAL; } if (getopt) { if (optname == SO_BINDTODEVICE) return -EINVAL; return sk_getsockopt(sk, SOL_SOCKET, optname, KERNEL_SOCKPTR(optval), KERNEL_SOCKPTR(optlen)); } return sk_setsockopt(sk, SOL_SOCKET, optname, KERNEL_SOCKPTR(optval), *optlen); } static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname, char *optval, int optlen) { struct tcp_sock *tp = tcp_sk(sk); unsigned long timeout; int val; if (optlen != sizeof(int)) return -EINVAL; val = *(int *)optval; /* Only some options are supported */ switch (optname) { case TCP_BPF_IW: if (val <= 0 || tp->data_segs_out > tp->syn_data) return -EINVAL; tcp_snd_cwnd_set(tp, val); break; case TCP_BPF_SNDCWND_CLAMP: if (val <= 0) return -EINVAL; tp->snd_cwnd_clamp = val; tp->snd_ssthresh = val; break; case TCP_BPF_DELACK_MAX: timeout = usecs_to_jiffies(val); if (timeout > TCP_DELACK_MAX || timeout < TCP_TIMEOUT_MIN) return -EINVAL; inet_csk(sk)->icsk_delack_max = timeout; break; case TCP_BPF_RTO_MIN: timeout = usecs_to_jiffies(val); if (timeout > TCP_RTO_MIN || timeout < TCP_TIMEOUT_MIN) return -EINVAL; inet_csk(sk)->icsk_rto_min = timeout; break; default: return -EINVAL; } return 0; } static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval, int *optlen, bool getopt) { struct tcp_sock *tp; int ret; if (*optlen < 2) return -EINVAL; if (getopt) { if (!inet_csk(sk)->icsk_ca_ops) return -EINVAL; /* BPF expects NULL-terminated tcp-cc string */ optval[--(*optlen)] = '\0'; return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION, KERNEL_SOCKPTR(optval), KERNEL_SOCKPTR(optlen)); } /* "cdg" is the only cc that alloc a ptr * in inet_csk_ca area. The bpf-tcp-cc may * overwrite this ptr after switching to cdg. */ if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen)) return -ENOTSUPP; /* It stops this looping * * .init => bpf_setsockopt(tcp_cc) => .init => * bpf_setsockopt(tcp_cc)" => .init => .... * * The second bpf_setsockopt(tcp_cc) is not allowed * in order to break the loop when both .init * are the same bpf prog. * * This applies even the second bpf_setsockopt(tcp_cc) * does not cause a loop. This limits only the first * '.init' can call bpf_setsockopt(TCP_CONGESTION) to * pick a fallback cc (eg. peer does not support ECN) * and the second '.init' cannot fallback to * another. */ tp = tcp_sk(sk); if (tp->bpf_chg_cc_inprogress) return -EBUSY; tp->bpf_chg_cc_inprogress = 1; ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION, KERNEL_SOCKPTR(optval), *optlen); tp->bpf_chg_cc_inprogress = 0; return ret; } static int sol_tcp_sockopt(struct sock *sk, int optname, char *optval, int *optlen, bool getopt) { if (sk->sk_protocol != IPPROTO_TCP) return -EINVAL; switch (optname) { case TCP_NODELAY: case TCP_MAXSEG: case TCP_KEEPIDLE: case TCP_KEEPINTVL: case TCP_KEEPCNT: case TCP_SYNCNT: case TCP_WINDOW_CLAMP: case TCP_THIN_LINEAR_TIMEOUTS: case TCP_USER_TIMEOUT: case TCP_NOTSENT_LOWAT: case TCP_SAVE_SYN: if (*optlen != sizeof(int)) return -EINVAL; break; case TCP_CONGESTION: return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt); case TCP_SAVED_SYN: if (*optlen < 1) return -EINVAL; break; default: if (getopt) return -EINVAL; return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen); } if (getopt) { if (optname == TCP_SAVED_SYN) { struct tcp_sock *tp = tcp_sk(sk); if (!tp->saved_syn || *optlen > tcp_saved_syn_len(tp->saved_syn)) return -EINVAL; memcpy(optval, tp->saved_syn->data, *optlen); /* It cannot free tp->saved_syn here because it * does not know if the user space still needs it. */ return 0; } return do_tcp_getsockopt(sk, SOL_TCP, optname, KERNEL_SOCKPTR(optval), KERNEL_SOCKPTR(optlen)); } return do_tcp_setsockopt(sk, SOL_TCP, optname, KERNEL_SOCKPTR(optval), *optlen); } static int sol_ip_sockopt(struct sock *sk, int optname, char *optval, int *optlen, bool getopt) { if (sk->sk_family != AF_INET) return -EINVAL; switch (optname) { case IP_TOS: if (*optlen != sizeof(int)) return -EINVAL; break; default: return -EINVAL; } if (getopt) return do_ip_getsockopt(sk, SOL_IP, optname, KERNEL_SOCKPTR(optval), KERNEL_SOCKPTR(optlen)); return do_ip_setsockopt(sk, SOL_IP, optname, KERNEL_SOCKPTR(optval), *optlen); } static int sol_ipv6_sockopt(struct sock *sk, int optname, char *optval, int *optlen, bool getopt) { if (sk->sk_family != AF_INET6) return -EINVAL; switch (optname) { case IPV6_TCLASS: case IPV6_AUTOFLOWLABEL: if (*optlen != sizeof(int)) return -EINVAL; break; default: return -EINVAL; } if (getopt) return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname, KERNEL_SOCKPTR(optval), KERNEL_SOCKPTR(optlen)); return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname, KERNEL_SOCKPTR(optval), *optlen); } static int __bpf_setsockopt(struct sock *sk, int level, int optname, char *optval, int optlen) { if (!sk_fullsock(sk)) return -EINVAL; if (level == SOL_SOCKET) return sol_socket_sockopt(sk, optname, optval, &optlen, false); else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP) return sol_ip_sockopt(sk, optname, optval, &optlen, false); else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6) return sol_ipv6_sockopt(sk, optname, optval, &optlen, false); else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP) return sol_tcp_sockopt(sk, optname, optval, &optlen, false); return -EINVAL; } static int _bpf_setsockopt(struct sock *sk, int level, int optname, char *optval, int optlen) { if (sk_fullsock(sk)) sock_owned_by_me(sk); return __bpf_setsockopt(sk, level, optname, optval, optlen); } static int __bpf_getsockopt(struct sock *sk, int level, int optname, char *optval, int optlen) { int err, saved_optlen = optlen; if (!sk_fullsock(sk)) { err = -EINVAL; goto done; } if (level == SOL_SOCKET) err = sol_socket_sockopt(sk, optname, optval, &optlen, true); else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP) err = sol_tcp_sockopt(sk, optname, optval, &optlen, true); else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP) err = sol_ip_sockopt(sk, optname, optval, &optlen, true); else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6) err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true); else err = -EINVAL; done: if (err) optlen = 0; if (optlen < saved_optlen) memset(optval + optlen, 0, saved_optlen - optlen); return err; } static int _bpf_getsockopt(struct sock *sk, int level, int optname, char *optval, int optlen) { if (sk_fullsock(sk)) sock_owned_by_me(sk); return __bpf_getsockopt(sk, level, optname, optval, optlen); } BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level, int, optname, char *, optval, int, optlen) { return _bpf_setsockopt(sk, level, optname, optval, optlen); } const struct bpf_func_proto bpf_sk_setsockopt_proto = { .func = bpf_sk_setsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level, int, optname, char *, optval, int, optlen) { return _bpf_getsockopt(sk, level, optname, optval, optlen); } const struct bpf_func_proto bpf_sk_getsockopt_proto = { .func = bpf_sk_getsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_UNINIT_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level, int, optname, char *, optval, int, optlen) { return __bpf_setsockopt(sk, level, optname, optval, optlen); } const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = { .func = bpf_unlocked_sk_setsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level, int, optname, char *, optval, int, optlen) { return __bpf_getsockopt(sk, level, optname, optval, optlen); } const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = { .func = bpf_unlocked_sk_getsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_UNINIT_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx, int, level, int, optname, char *, optval, int, optlen) { return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen); } static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = { .func = bpf_sock_addr_setsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx, int, level, int, optname, char *, optval, int, optlen) { return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen); } static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = { .func = bpf_sock_addr_getsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_UNINIT_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock, int, level, int, optname, char *, optval, int, optlen) { return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen); } static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = { .func = bpf_sock_ops_setsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE, }; static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock, int optname, const u8 **start) { struct sk_buff *syn_skb = bpf_sock->syn_skb; const u8 *hdr_start; int ret; if (syn_skb) { /* sk is a request_sock here */ if (optname == TCP_BPF_SYN) { hdr_start = syn_skb->data; ret = tcp_hdrlen(syn_skb); } else if (optname == TCP_BPF_SYN_IP) { hdr_start = skb_network_header(syn_skb); ret = skb_network_header_len(syn_skb) + tcp_hdrlen(syn_skb); } else { /* optname == TCP_BPF_SYN_MAC */ hdr_start = skb_mac_header(syn_skb); ret = skb_mac_header_len(syn_skb) + skb_network_header_len(syn_skb) + tcp_hdrlen(syn_skb); } } else { struct sock *sk = bpf_sock->sk; struct saved_syn *saved_syn; if (sk->sk_state == TCP_NEW_SYN_RECV) /* synack retransmit. bpf_sock->syn_skb will * not be available. It has to resort to * saved_syn (if it is saved). */ saved_syn = inet_reqsk(sk)->saved_syn; else saved_syn = tcp_sk(sk)->saved_syn; if (!saved_syn) return -ENOENT; if (optname == TCP_BPF_SYN) { hdr_start = saved_syn->data + saved_syn->mac_hdrlen + saved_syn->network_hdrlen; ret = saved_syn->tcp_hdrlen; } else if (optname == TCP_BPF_SYN_IP) { hdr_start = saved_syn->data + saved_syn->mac_hdrlen; ret = saved_syn->network_hdrlen + saved_syn->tcp_hdrlen; } else { /* optname == TCP_BPF_SYN_MAC */ /* TCP_SAVE_SYN may not have saved the mac hdr */ if (!saved_syn->mac_hdrlen) return -ENOENT; hdr_start = saved_syn->data; ret = saved_syn->mac_hdrlen + saved_syn->network_hdrlen + saved_syn->tcp_hdrlen; } } *start = hdr_start; return ret; } BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock, int, level, int, optname, char *, optval, int, optlen) { if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP && optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) { int ret, copy_len = 0; const u8 *start; ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start); if (ret > 0) { copy_len = ret; if (optlen < copy_len) { copy_len = optlen; ret = -ENOSPC; } memcpy(optval, start, copy_len); } /* Zero out unused buffer at the end */ memset(optval + copy_len, 0, optlen - copy_len); return ret; } return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen); } static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = { .func = bpf_sock_ops_getsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_UNINIT_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock, int, argval) { struct sock *sk = bpf_sock->sk; int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS; if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk)) return -EINVAL; tcp_sk(sk)->bpf_sock_ops_cb_flags = val; return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS); } static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = { .func = bpf_sock_ops_cb_flags_set, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly; EXPORT_SYMBOL_GPL(ipv6_bpf_stub); BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr, int, addr_len) { #ifdef CONFIG_INET struct sock *sk = ctx->sk; u32 flags = BIND_FROM_BPF; int err; err = -EINVAL; if (addr_len < offsetofend(struct sockaddr, sa_family)) return err; if (addr->sa_family == AF_INET) { if (addr_len < sizeof(struct sockaddr_in)) return err; if (((struct sockaddr_in *)addr)->sin_port == htons(0)) flags |= BIND_FORCE_ADDRESS_NO_PORT; return __inet_bind(sk, addr, addr_len, flags); #if IS_ENABLED(CONFIG_IPV6) } else if (addr->sa_family == AF_INET6) { if (addr_len < SIN6_LEN_RFC2133) return err; if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0)) flags |= BIND_FORCE_ADDRESS_NO_PORT; /* ipv6_bpf_stub cannot be NULL, since it's called from * bpf_cgroup_inet6_connect hook and ipv6 is already loaded */ return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags); #endif /* CONFIG_IPV6 */ } #endif /* CONFIG_INET */ return -EAFNOSUPPORT; } static const struct bpf_func_proto bpf_bind_proto = { .func = bpf_bind, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE, }; #ifdef CONFIG_XFRM #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \ (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) struct metadata_dst __percpu *xfrm_bpf_md_dst; EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst); #endif BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index, struct bpf_xfrm_state *, to, u32, size, u64, flags) { const struct sec_path *sp = skb_sec_path(skb); const struct xfrm_state *x; if (!sp || unlikely(index >= sp->len || flags)) goto err_clear; x = sp->xvec[index]; if (unlikely(size != sizeof(struct bpf_xfrm_state))) goto err_clear; to->reqid = x->props.reqid; to->spi = x->id.spi; to->family = x->props.family; to->ext = 0; if (to->family == AF_INET6) { memcpy(to->remote_ipv6, x->props.saddr.a6, sizeof(to->remote_ipv6)); } else { to->remote_ipv4 = x->props.saddr.a4; memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); } return 0; err_clear: memset(to, 0, size); return -EINVAL; } static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = { .func = bpf_skb_get_xfrm_state, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; #endif #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6) static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu) { params->h_vlan_TCI = 0; params->h_vlan_proto = 0; if (mtu) params->mtu_result = mtu; /* union with tot_len */ return 0; } #endif #if IS_ENABLED(CONFIG_INET) static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params, u32 flags, bool check_mtu) { struct fib_nh_common *nhc; struct in_device *in_dev; struct neighbour *neigh; struct net_device *dev; struct fib_result res; struct flowi4 fl4; u32 mtu = 0; int err; dev = dev_get_by_index_rcu(net, params->ifindex); if (unlikely(!dev)) return -ENODEV; /* verify forwarding is enabled on this interface */ in_dev = __in_dev_get_rcu(dev); if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev))) return BPF_FIB_LKUP_RET_FWD_DISABLED; if (flags & BPF_FIB_LOOKUP_OUTPUT) { fl4.flowi4_iif = 1; fl4.flowi4_oif = params->ifindex; } else { fl4.flowi4_iif = params->ifindex; fl4.flowi4_oif = 0; } fl4.flowi4_tos = params->tos & IPTOS_RT_MASK; fl4.flowi4_scope = RT_SCOPE_UNIVERSE; fl4.flowi4_flags = 0; fl4.flowi4_proto = params->l4_protocol; fl4.daddr = params->ipv4_dst; fl4.saddr = params->ipv4_src; fl4.fl4_sport = params->sport; fl4.fl4_dport = params->dport; fl4.flowi4_multipath_hash = 0; if (flags & BPF_FIB_LOOKUP_DIRECT) { u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; struct fib_table *tb; if (flags & BPF_FIB_LOOKUP_TBID) { tbid = params->tbid; /* zero out for vlan output */ params->tbid = 0; } tb = fib_get_table(net, tbid); if (unlikely(!tb)) return BPF_FIB_LKUP_RET_NOT_FWDED; err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF); } else { if (flags & BPF_FIB_LOOKUP_MARK) fl4.flowi4_mark = params->mark; else fl4.flowi4_mark = 0; fl4.flowi4_secid = 0; fl4.flowi4_tun_key.tun_id = 0; fl4.flowi4_uid = sock_net_uid(net, NULL); err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF); } if (err) { /* map fib lookup errors to RTN_ type */ if (err == -EINVAL) return BPF_FIB_LKUP_RET_BLACKHOLE; if (err == -EHOSTUNREACH) return BPF_FIB_LKUP_RET_UNREACHABLE; if (err == -EACCES) return BPF_FIB_LKUP_RET_PROHIBIT; return BPF_FIB_LKUP_RET_NOT_FWDED; } if (res.type != RTN_UNICAST) return BPF_FIB_LKUP_RET_NOT_FWDED; if (fib_info_num_path(res.fi) > 1) fib_select_path(net, &res, &fl4, NULL); if (check_mtu) { mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst); if (params->tot_len > mtu) { params->mtu_result = mtu; /* union with tot_len */ return BPF_FIB_LKUP_RET_FRAG_NEEDED; } } nhc = res.nhc; /* do not handle lwt encaps right now */ if (nhc->nhc_lwtstate) return BPF_FIB_LKUP_RET_UNSUPP_LWT; dev = nhc->nhc_dev; params->rt_metric = res.fi->fib_priority; params->ifindex = dev->ifindex; if (flags & BPF_FIB_LOOKUP_SRC) params->ipv4_src = fib_result_prefsrc(net, &res); /* xdp and cls_bpf programs are run in RCU-bh so * rcu_read_lock_bh is not needed here */ if (likely(nhc->nhc_gw_family != AF_INET6)) { if (nhc->nhc_gw_family) params->ipv4_dst = nhc->nhc_gw.ipv4; } else { struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst; params->family = AF_INET6; *dst = nhc->nhc_gw.ipv6; } if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH) goto set_fwd_params; if (likely(nhc->nhc_gw_family != AF_INET6)) neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst); else neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst); if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID)) return BPF_FIB_LKUP_RET_NO_NEIGH; memcpy(params->dmac, neigh->ha, ETH_ALEN); memcpy(params->smac, dev->dev_addr, ETH_ALEN); set_fwd_params: return bpf_fib_set_fwd_params(params, mtu); } #endif #if IS_ENABLED(CONFIG_IPV6) static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params, u32 flags, bool check_mtu) { struct in6_addr *src = (struct in6_addr *) params->ipv6_src; struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst; struct fib6_result res = {}; struct neighbour *neigh; struct net_device *dev; struct inet6_dev *idev; struct flowi6 fl6; int strict = 0; int oif, err; u32 mtu = 0; /* link local addresses are never forwarded */ if (rt6_need_strict(dst) || rt6_need_strict(src)) return BPF_FIB_LKUP_RET_NOT_FWDED; dev = dev_get_by_index_rcu(net, params->ifindex); if (unlikely(!dev)) return -ENODEV; idev = __in6_dev_get_safely(dev); if (unlikely(!idev || !READ_ONCE(idev->cnf.forwarding))) return BPF_FIB_LKUP_RET_FWD_DISABLED; if (flags & BPF_FIB_LOOKUP_OUTPUT) { fl6.flowi6_iif = 1; oif = fl6.flowi6_oif = params->ifindex; } else { oif = fl6.flowi6_iif = params->ifindex; fl6.flowi6_oif = 0; strict = RT6_LOOKUP_F_HAS_SADDR; } fl6.flowlabel = params->flowinfo; fl6.flowi6_scope = 0; fl6.flowi6_flags = 0; fl6.mp_hash = 0; fl6.flowi6_proto = params->l4_protocol; fl6.daddr = *dst; fl6.saddr = *src; fl6.fl6_sport = params->sport; fl6.fl6_dport = params->dport; if (flags & BPF_FIB_LOOKUP_DIRECT) { u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; struct fib6_table *tb; if (flags & BPF_FIB_LOOKUP_TBID) { tbid = params->tbid; /* zero out for vlan output */ params->tbid = 0; } tb = ipv6_stub->fib6_get_table(net, tbid); if (unlikely(!tb)) return BPF_FIB_LKUP_RET_NOT_FWDED; err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res, strict); } else { if (flags & BPF_FIB_LOOKUP_MARK) fl6.flowi6_mark = params->mark; else fl6.flowi6_mark = 0; fl6.flowi6_secid = 0; fl6.flowi6_tun_key.tun_id = 0; fl6.flowi6_uid = sock_net_uid(net, NULL); err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict); } if (unlikely(err || IS_ERR_OR_NULL(res.f6i) || res.f6i == net->ipv6.fib6_null_entry)) return BPF_FIB_LKUP_RET_NOT_FWDED; switch (res.fib6_type) { /* only unicast is forwarded */ case RTN_UNICAST: break; case RTN_BLACKHOLE: return BPF_FIB_LKUP_RET_BLACKHOLE; case RTN_UNREACHABLE: return BPF_FIB_LKUP_RET_UNREACHABLE; case RTN_PROHIBIT: return BPF_FIB_LKUP_RET_PROHIBIT; default: return BPF_FIB_LKUP_RET_NOT_FWDED; } ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif, fl6.flowi6_oif != 0, NULL, strict); if (check_mtu) { mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src); if (params->tot_len > mtu) { params->mtu_result = mtu; /* union with tot_len */ return BPF_FIB_LKUP_RET_FRAG_NEEDED; } } if (res.nh->fib_nh_lws) return BPF_FIB_LKUP_RET_UNSUPP_LWT; if (res.nh->fib_nh_gw_family) *dst = res.nh->fib_nh_gw6; dev = res.nh->fib_nh_dev; params->rt_metric = res.f6i->fib6_metric; params->ifindex = dev->ifindex; if (flags & BPF_FIB_LOOKUP_SRC) { if (res.f6i->fib6_prefsrc.plen) { *src = res.f6i->fib6_prefsrc.addr; } else { err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev, &fl6.daddr, 0, src); if (err) return BPF_FIB_LKUP_RET_NO_SRC_ADDR; } } if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH) goto set_fwd_params; /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is * not needed here. */ neigh = __ipv6_neigh_lookup_noref_stub(dev, dst); if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID)) return BPF_FIB_LKUP_RET_NO_NEIGH; memcpy(params->dmac, neigh->ha, ETH_ALEN); memcpy(params->smac, dev->dev_addr, ETH_ALEN); set_fwd_params: return bpf_fib_set_fwd_params(params, mtu); } #endif #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \ BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \ BPF_FIB_LOOKUP_SRC | BPF_FIB_LOOKUP_MARK) BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx, struct bpf_fib_lookup *, params, int, plen, u32, flags) { if (plen < sizeof(*params)) return -EINVAL; if (flags & ~BPF_FIB_LOOKUP_MASK) return -EINVAL; switch (params->family) { #if IS_ENABLED(CONFIG_INET) case AF_INET: return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params, flags, true); #endif #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params, flags, true); #endif } return -EAFNOSUPPORT; } static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = { .func = bpf_xdp_fib_lookup, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb, struct bpf_fib_lookup *, params, int, plen, u32, flags) { struct net *net = dev_net(skb->dev); int rc = -EAFNOSUPPORT; bool check_mtu = false; if (plen < sizeof(*params)) return -EINVAL; if (flags & ~BPF_FIB_LOOKUP_MASK) return -EINVAL; if (params->tot_len) check_mtu = true; switch (params->family) { #if IS_ENABLED(CONFIG_INET) case AF_INET: rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu); break; #endif #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu); break; #endif } if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) { struct net_device *dev; /* When tot_len isn't provided by user, check skb * against MTU of FIB lookup resulting net_device */ dev = dev_get_by_index_rcu(net, params->ifindex); if (!is_skb_forwardable(dev, skb)) rc = BPF_FIB_LKUP_RET_FRAG_NEEDED; params->mtu_result = dev->mtu; /* union with tot_len */ } return rc; } static const struct bpf_func_proto bpf_skb_fib_lookup_proto = { .func = bpf_skb_fib_lookup, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; static struct net_device *__dev_via_ifindex(struct net_device *dev_curr, u32 ifindex) { struct net *netns = dev_net(dev_curr); /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */ if (ifindex == 0) return dev_curr; return dev_get_by_index_rcu(netns, ifindex); } BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb, u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags) { int ret = BPF_MTU_CHK_RET_FRAG_NEEDED; struct net_device *dev = skb->dev; int skb_len, dev_len; int mtu; if (unlikely(flags & ~(BPF_MTU_CHK_SEGS))) return -EINVAL; if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len))) return -EINVAL; dev = __dev_via_ifindex(dev, ifindex); if (unlikely(!dev)) return -ENODEV; mtu = READ_ONCE(dev->mtu); dev_len = mtu + dev->hard_header_len; /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */ skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len; skb_len += len_diff; /* minus result pass check */ if (skb_len <= dev_len) { ret = BPF_MTU_CHK_RET_SUCCESS; goto out; } /* At this point, skb->len exceed MTU, but as it include length of all * segments, it can still be below MTU. The SKB can possibly get * re-segmented in transmit path (see validate_xmit_skb). Thus, user * must choose if segs are to be MTU checked. */ if (skb_is_gso(skb)) { ret = BPF_MTU_CHK_RET_SUCCESS; if (flags & BPF_MTU_CHK_SEGS && !skb_gso_validate_network_len(skb, mtu)) ret = BPF_MTU_CHK_RET_SEGS_TOOBIG; } out: /* BPF verifier guarantees valid pointer */ *mtu_len = mtu; return ret; } BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp, u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags) { struct net_device *dev = xdp->rxq->dev; int xdp_len = xdp->data_end - xdp->data; int ret = BPF_MTU_CHK_RET_SUCCESS; int mtu, dev_len; /* XDP variant doesn't support multi-buffer segment check (yet) */ if (unlikely(flags)) return -EINVAL; dev = __dev_via_ifindex(dev, ifindex); if (unlikely(!dev)) return -ENODEV; mtu = READ_ONCE(dev->mtu); /* Add L2-header as dev MTU is L3 size */ dev_len = mtu + dev->hard_header_len; /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */ if (*mtu_len) xdp_len = *mtu_len + dev->hard_header_len; xdp_len += len_diff; /* minus result pass check */ if (xdp_len > dev_len) ret = BPF_MTU_CHK_RET_FRAG_NEEDED; /* BPF verifier guarantees valid pointer */ *mtu_len = mtu; return ret; } static const struct bpf_func_proto bpf_skb_check_mtu_proto = { .func = bpf_skb_check_mtu, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_INT, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; static const struct bpf_func_proto bpf_xdp_check_mtu_proto = { .func = bpf_xdp_check_mtu, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_INT, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) { int err; struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr; if (!seg6_validate_srh(srh, len, false)) return -EINVAL; switch (type) { case BPF_LWT_ENCAP_SEG6_INLINE: if (skb->protocol != htons(ETH_P_IPV6)) return -EBADMSG; err = seg6_do_srh_inline(skb, srh); break; case BPF_LWT_ENCAP_SEG6: skb_reset_inner_headers(skb); skb->encapsulation = 1; err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6); break; default: return -EINVAL; } bpf_compute_data_pointers(skb); if (err) return err; skb_set_transport_header(skb, sizeof(struct ipv6hdr)); return seg6_lookup_nexthop(skb, NULL, 0); } #endif /* CONFIG_IPV6_SEG6_BPF */ #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len, bool ingress) { return bpf_lwt_push_ip_encap(skb, hdr, len, ingress); } #endif BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr, u32, len) { switch (type) { #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) case BPF_LWT_ENCAP_SEG6: case BPF_LWT_ENCAP_SEG6_INLINE: return bpf_push_seg6_encap(skb, type, hdr, len); #endif #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) case BPF_LWT_ENCAP_IP: return bpf_push_ip_encap(skb, hdr, len, true /* ingress */); #endif default: return -EINVAL; } } BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type, void *, hdr, u32, len) { switch (type) { #if IS_ENABLED(CONFIG_LWTUNNEL_BPF) case BPF_LWT_ENCAP_IP: return bpf_push_ip_encap(skb, hdr, len, false /* egress */); #endif default: return -EINVAL; } } static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = { .func = bpf_lwt_in_push_encap, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE }; static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = { .func = bpf_lwt_xmit_push_encap, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE }; #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset, const void *, from, u32, len) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); struct ipv6_sr_hdr *srh = srh_state->srh; void *srh_tlvs, *srh_end, *ptr; int srhoff = 0; lockdep_assert_held(&srh_state->bh_lock); if (srh == NULL) return -EINVAL; srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4)); srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen); ptr = skb->data + offset; if (ptr >= srh_tlvs && ptr + len <= srh_end) srh_state->valid = false; else if (ptr < (void *)&srh->flags || ptr + len > (void *)&srh->segments) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + len))) return -EFAULT; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return -EINVAL; srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); memcpy(skb->data + offset, from, len); return 0; } static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = { .func = bpf_lwt_seg6_store_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE }; static void bpf_update_srh_state(struct sk_buff *skb) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); int srhoff = 0; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) { srh_state->srh = NULL; } else { srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); srh_state->hdrlen = srh_state->srh->hdrlen << 3; srh_state->valid = true; } } BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb, u32, action, void *, param, u32, param_len) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); int hdroff = 0; int err; lockdep_assert_held(&srh_state->bh_lock); switch (action) { case SEG6_LOCAL_ACTION_END_X: if (!seg6_bpf_has_valid_srh(skb)) return -EBADMSG; if (param_len != sizeof(struct in6_addr)) return -EINVAL; return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0); case SEG6_LOCAL_ACTION_END_T: if (!seg6_bpf_has_valid_srh(skb)) return -EBADMSG; if (param_len != sizeof(int)) return -EINVAL; return seg6_lookup_nexthop(skb, NULL, *(int *)param); case SEG6_LOCAL_ACTION_END_DT6: if (!seg6_bpf_has_valid_srh(skb)) return -EBADMSG; if (param_len != sizeof(int)) return -EINVAL; if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0) return -EBADMSG; if (!pskb_pull(skb, hdroff)) return -EBADMSG; skb_postpull_rcsum(skb, skb_network_header(skb), hdroff); skb_reset_network_header(skb); skb_reset_transport_header(skb); skb->encapsulation = 0; bpf_compute_data_pointers(skb); bpf_update_srh_state(skb); return seg6_lookup_nexthop(skb, NULL, *(int *)param); case SEG6_LOCAL_ACTION_END_B6: if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) return -EBADMSG; err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE, param, param_len); if (!err) bpf_update_srh_state(skb); return err; case SEG6_LOCAL_ACTION_END_B6_ENCAP: if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) return -EBADMSG; err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6, param, param_len); if (!err) bpf_update_srh_state(skb); return err; default: return -EINVAL; } } static const struct bpf_func_proto bpf_lwt_seg6_action_proto = { .func = bpf_lwt_seg6_action, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg4_type = ARG_CONST_SIZE }; BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset, s32, len) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); struct ipv6_sr_hdr *srh = srh_state->srh; void *srh_end, *srh_tlvs, *ptr; struct ipv6hdr *hdr; int srhoff = 0; int ret; lockdep_assert_held(&srh_state->bh_lock); if (unlikely(srh == NULL)) return -EINVAL; srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) + ((srh->first_segment + 1) << 4)); srh_end = (void *)((unsigned char *)srh + sizeof(*srh) + srh_state->hdrlen); ptr = skb->data + offset; if (unlikely(ptr < srh_tlvs || ptr > srh_end)) return -EFAULT; if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end)) return -EFAULT; if (len > 0) { ret = skb_cow_head(skb, len); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_push(skb, offset, len); } else { ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len); } bpf_compute_data_pointers(skb); if (unlikely(ret < 0)) return ret; hdr = (struct ipv6hdr *)skb->data; hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return -EINVAL; srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); srh_state->hdrlen += len; srh_state->valid = false; return 0; } static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = { .func = bpf_lwt_seg6_adjust_srh, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; #endif /* CONFIG_IPV6_SEG6_BPF */ #ifdef CONFIG_INET static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple, int dif, int sdif, u8 family, u8 proto) { struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo; bool refcounted = false; struct sock *sk = NULL; if (family == AF_INET) { __be32 src4 = tuple->ipv4.saddr; __be32 dst4 = tuple->ipv4.daddr; if (proto == IPPROTO_TCP) sk = __inet_lookup(net, hinfo, NULL, 0, src4, tuple->ipv4.sport, dst4, tuple->ipv4.dport, dif, sdif, &refcounted); else sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport, dst4, tuple->ipv4.dport, dif, sdif, net->ipv4.udp_table, NULL); #if IS_ENABLED(CONFIG_IPV6) } else { struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr; struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr; if (proto == IPPROTO_TCP) sk = __inet6_lookup(net, hinfo, NULL, 0, src6, tuple->ipv6.sport, dst6, ntohs(tuple->ipv6.dport), dif, sdif, &refcounted); else if (likely(ipv6_bpf_stub)) sk = ipv6_bpf_stub->udp6_lib_lookup(net, src6, tuple->ipv6.sport, dst6, tuple->ipv6.dport, dif, sdif, net->ipv4.udp_table, NULL); #endif } if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) { WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); sk = NULL; } return sk; } /* bpf_skc_lookup performs the core lookup for different types of sockets, * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE. */ static struct sock * __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id, u64 flags, int sdif) { struct sock *sk = NULL; struct net *net; u8 family; if (len == sizeof(tuple->ipv4)) family = AF_INET; else if (len == sizeof(tuple->ipv6)) family = AF_INET6; else return NULL; if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX))) goto out; if (sdif < 0) { if (family == AF_INET) sdif = inet_sdif(skb); else sdif = inet6_sdif(skb); } if ((s32)netns_id < 0) { net = caller_net; sk = sk_lookup(net, tuple, ifindex, sdif, family, proto); } else { net = get_net_ns_by_id(caller_net, netns_id); if (unlikely(!net)) goto out; sk = sk_lookup(net, tuple, ifindex, sdif, family, proto); put_net(net); } out: return sk; } static struct sock * __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id, u64 flags, int sdif) { struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto, netns_id, flags, sdif); if (sk) { struct sock *sk2 = sk_to_full_sk(sk); /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk * sock refcnt is decremented to prevent a request_sock leak. */ if (!sk_fullsock(sk2)) sk2 = NULL; if (sk2 != sk) { sock_gen_put(sk); /* Ensure there is no need to bump sk2 refcnt */ if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) { WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); return NULL; } sk = sk2; } } return sk; } static struct sock * bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, u8 proto, u64 netns_id, u64 flags) { struct net *caller_net; int ifindex; if (skb->dev) { caller_net = dev_net(skb->dev); ifindex = skb->dev->ifindex; } else { caller_net = sock_net(skb->sk); ifindex = 0; } return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto, netns_id, flags, -1); } static struct sock * bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len, u8 proto, u64 netns_id, u64 flags) { struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id, flags); if (sk) { struct sock *sk2 = sk_to_full_sk(sk); /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk * sock refcnt is decremented to prevent a request_sock leak. */ if (!sk_fullsock(sk2)) sk2 = NULL; if (sk2 != sk) { sock_gen_put(sk); /* Ensure there is no need to bump sk2 refcnt */ if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) { WARN_ONCE(1, "Found non-RCU, unreferenced socket!"); return NULL; } sk = sk2; } } return sk; } BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP, netns_id, flags); } static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = { .func = bpf_skc_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP, netns_id, flags); } static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = { .func = bpf_sk_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP, netns_id, flags); } static const struct bpf_func_proto bpf_sk_lookup_udp_proto = { .func = bpf_sk_lookup_udp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { struct net_device *dev = skb->dev; int ifindex = dev->ifindex, sdif = dev_sdif(dev); struct net *caller_net = dev_net(dev); return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, IPPROTO_TCP, netns_id, flags, sdif); } static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = { .func = bpf_tc_skc_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { struct net_device *dev = skb->dev; int ifindex = dev->ifindex, sdif = dev_sdif(dev); struct net *caller_net = dev_net(dev); return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net, ifindex, IPPROTO_TCP, netns_id, flags, sdif); } static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = { .func = bpf_tc_sk_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { struct net_device *dev = skb->dev; int ifindex = dev->ifindex, sdif = dev_sdif(dev); struct net *caller_net = dev_net(dev); return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net, ifindex, IPPROTO_UDP, netns_id, flags, sdif); } static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = { .func = bpf_tc_sk_lookup_udp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_sk_release, struct sock *, sk) { if (sk && sk_is_refcounted(sk)) sock_gen_put(sk); return 0; } static const struct bpf_func_proto bpf_sk_release_proto = { .func = bpf_sk_release, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE, }; BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) { struct net_device *dev = ctx->rxq->dev; int ifindex = dev->ifindex, sdif = dev_sdif(dev); struct net *caller_net = dev_net(dev); return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex, IPPROTO_UDP, netns_id, flags, sdif); } static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = { .func = bpf_xdp_sk_lookup_udp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) { struct net_device *dev = ctx->rxq->dev; int ifindex = dev->ifindex, sdif = dev_sdif(dev); struct net *caller_net = dev_net(dev); return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net, ifindex, IPPROTO_TCP, netns_id, flags, sdif); } static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = { .func = bpf_xdp_skc_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags) { struct net_device *dev = ctx->rxq->dev; int ifindex = dev->ifindex, sdif = dev_sdif(dev); struct net *caller_net = dev_net(dev); return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex, IPPROTO_TCP, netns_id, flags, sdif); } static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = { .func = bpf_xdp_sk_lookup_tcp, .gpl_only = false, .pkt_access = true, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, sock_net(ctx->sk), 0, IPPROTO_TCP, netns_id, flags, -1); } static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = { .func = bpf_sock_addr_skc_lookup_tcp, .gpl_only = false, .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0, IPPROTO_TCP, netns_id, flags, -1); } static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = { .func = bpf_sock_addr_sk_lookup_tcp, .gpl_only = false, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx, struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags) { return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0, IPPROTO_UDP, netns_id, flags, -1); } static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = { .func = bpf_sock_addr_sk_lookup_udp, .gpl_only = false, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE_OR_ZERO, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { if (off < 0 || off >= offsetofend(struct bpf_tcp_sock, icsk_retransmits)) return false; if (off % size != 0) return false; switch (off) { case offsetof(struct bpf_tcp_sock, bytes_received): case offsetof(struct bpf_tcp_sock, bytes_acked): return size == sizeof(__u64); default: return size == sizeof(__u32); } } u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; #define BPF_TCP_SOCK_GET_COMMON(FIELD) \ do { \ BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \ sizeof_field(struct bpf_tcp_sock, FIELD)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\ si->dst_reg, si->src_reg, \ offsetof(struct tcp_sock, FIELD)); \ } while (0) #define BPF_INET_SOCK_GET_COMMON(FIELD) \ do { \ BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \ FIELD) > \ sizeof_field(struct bpf_tcp_sock, FIELD)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct inet_connection_sock, \ FIELD), \ si->dst_reg, si->src_reg, \ offsetof( \ struct inet_connection_sock, \ FIELD)); \ } while (0) BTF_TYPE_EMIT(struct bpf_tcp_sock); switch (si->off) { case offsetof(struct bpf_tcp_sock, rtt_min): BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) != sizeof(struct minmax)); BUILD_BUG_ON(sizeof(struct minmax) < sizeof(struct minmax_sample)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct tcp_sock, rtt_min) + offsetof(struct minmax_sample, v)); break; case offsetof(struct bpf_tcp_sock, snd_cwnd): BPF_TCP_SOCK_GET_COMMON(snd_cwnd); break; case offsetof(struct bpf_tcp_sock, srtt_us): BPF_TCP_SOCK_GET_COMMON(srtt_us); break; case offsetof(struct bpf_tcp_sock, snd_ssthresh): BPF_TCP_SOCK_GET_COMMON(snd_ssthresh); break; case offsetof(struct bpf_tcp_sock, rcv_nxt): BPF_TCP_SOCK_GET_COMMON(rcv_nxt); break; case offsetof(struct bpf_tcp_sock, snd_nxt): BPF_TCP_SOCK_GET_COMMON(snd_nxt); break; case offsetof(struct bpf_tcp_sock, snd_una): BPF_TCP_SOCK_GET_COMMON(snd_una); break; case offsetof(struct bpf_tcp_sock, mss_cache): BPF_TCP_SOCK_GET_COMMON(mss_cache); break; case offsetof(struct bpf_tcp_sock, ecn_flags): BPF_TCP_SOCK_GET_COMMON(ecn_flags); break; case offsetof(struct bpf_tcp_sock, rate_delivered): BPF_TCP_SOCK_GET_COMMON(rate_delivered); break; case offsetof(struct bpf_tcp_sock, rate_interval_us): BPF_TCP_SOCK_GET_COMMON(rate_interval_us); break; case offsetof(struct bpf_tcp_sock, packets_out): BPF_TCP_SOCK_GET_COMMON(packets_out); break; case offsetof(struct bpf_tcp_sock, retrans_out): BPF_TCP_SOCK_GET_COMMON(retrans_out); break; case offsetof(struct bpf_tcp_sock, total_retrans): BPF_TCP_SOCK_GET_COMMON(total_retrans); break; case offsetof(struct bpf_tcp_sock, segs_in): BPF_TCP_SOCK_GET_COMMON(segs_in); break; case offsetof(struct bpf_tcp_sock, data_segs_in): BPF_TCP_SOCK_GET_COMMON(data_segs_in); break; case offsetof(struct bpf_tcp_sock, segs_out): BPF_TCP_SOCK_GET_COMMON(segs_out); break; case offsetof(struct bpf_tcp_sock, data_segs_out): BPF_TCP_SOCK_GET_COMMON(data_segs_out); break; case offsetof(struct bpf_tcp_sock, lost_out): BPF_TCP_SOCK_GET_COMMON(lost_out); break; case offsetof(struct bpf_tcp_sock, sacked_out): BPF_TCP_SOCK_GET_COMMON(sacked_out); break; case offsetof(struct bpf_tcp_sock, bytes_received): BPF_TCP_SOCK_GET_COMMON(bytes_received); break; case offsetof(struct bpf_tcp_sock, bytes_acked): BPF_TCP_SOCK_GET_COMMON(bytes_acked); break; case offsetof(struct bpf_tcp_sock, dsack_dups): BPF_TCP_SOCK_GET_COMMON(dsack_dups); break; case offsetof(struct bpf_tcp_sock, delivered): BPF_TCP_SOCK_GET_COMMON(delivered); break; case offsetof(struct bpf_tcp_sock, delivered_ce): BPF_TCP_SOCK_GET_COMMON(delivered_ce); break; case offsetof(struct bpf_tcp_sock, icsk_retransmits): BPF_INET_SOCK_GET_COMMON(icsk_retransmits); break; } return insn - insn_buf; } BPF_CALL_1(bpf_tcp_sock, struct sock *, sk) { if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP) return (unsigned long)sk; return (unsigned long)NULL; } const struct bpf_func_proto bpf_tcp_sock_proto = { .func = bpf_tcp_sock, .gpl_only = false, .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL, .arg1_type = ARG_PTR_TO_SOCK_COMMON, }; BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk) { sk = sk_to_full_sk(sk); if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE)) return (unsigned long)sk; return (unsigned long)NULL; } static const struct bpf_func_proto bpf_get_listener_sock_proto = { .func = bpf_get_listener_sock, .gpl_only = false, .ret_type = RET_PTR_TO_SOCKET_OR_NULL, .arg1_type = ARG_PTR_TO_SOCK_COMMON, }; BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb) { unsigned int iphdr_len; switch (skb_protocol(skb, true)) { case cpu_to_be16(ETH_P_IP): iphdr_len = sizeof(struct iphdr); break; case cpu_to_be16(ETH_P_IPV6): iphdr_len = sizeof(struct ipv6hdr); break; default: return 0; } if (skb_headlen(skb) < iphdr_len) return 0; if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len)) return 0; return INET_ECN_set_ce(skb); } bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id)) return false; if (off % size != 0) return false; switch (off) { default: return size == sizeof(__u32); } } u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; #define BPF_XDP_SOCK_GET(FIELD) \ do { \ BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \ sizeof_field(struct bpf_xdp_sock, FIELD)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\ si->dst_reg, si->src_reg, \ offsetof(struct xdp_sock, FIELD)); \ } while (0) switch (si->off) { case offsetof(struct bpf_xdp_sock, queue_id): BPF_XDP_SOCK_GET(queue_id); break; } return insn - insn_buf; } static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = { .func = bpf_skb_ecn_set_ce, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len, struct tcphdr *, th, u32, th_len) { #ifdef CONFIG_SYN_COOKIES int ret; if (unlikely(!sk || th_len < sizeof(*th))) return -EINVAL; /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */ if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN) return -EINVAL; if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies)) return -EINVAL; if (!th->ack || th->rst || th->syn) return -ENOENT; if (unlikely(iph_len < sizeof(struct iphdr))) return -EINVAL; if (tcp_synq_no_recent_overflow(sk)) return -ENOENT; /* Both struct iphdr and struct ipv6hdr have the version field at the * same offset so we can cast to the shorter header (struct iphdr). */ switch (((struct iphdr *)iph)->version) { case 4: if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk)) return -EINVAL; ret = __cookie_v4_check((struct iphdr *)iph, th); break; #if IS_BUILTIN(CONFIG_IPV6) case 6: if (unlikely(iph_len < sizeof(struct ipv6hdr))) return -EINVAL; if (sk->sk_family != AF_INET6) return -EINVAL; ret = __cookie_v6_check((struct ipv6hdr *)iph, th); break; #endif /* CONFIG_IPV6 */ default: return -EPROTONOSUPPORT; } if (ret > 0) return 0; return -ENOENT; #else return -ENOTSUPP; #endif } static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = { .func = bpf_tcp_check_syncookie, .gpl_only = true, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len, struct tcphdr *, th, u32, th_len) { #ifdef CONFIG_SYN_COOKIES u32 cookie; u16 mss; if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4)) return -EINVAL; if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN) return -EINVAL; if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies)) return -ENOENT; if (!th->syn || th->ack || th->fin || th->rst) return -EINVAL; if (unlikely(iph_len < sizeof(struct iphdr))) return -EINVAL; /* Both struct iphdr and struct ipv6hdr have the version field at the * same offset so we can cast to the shorter header (struct iphdr). */ switch (((struct iphdr *)iph)->version) { case 4: if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk)) return -EINVAL; mss = tcp_v4_get_syncookie(sk, iph, th, &cookie); break; #if IS_BUILTIN(CONFIG_IPV6) case 6: if (unlikely(iph_len < sizeof(struct ipv6hdr))) return -EINVAL; if (sk->sk_family != AF_INET6) return -EINVAL; mss = tcp_v6_get_syncookie(sk, iph, th, &cookie); break; #endif /* CONFIG_IPV6 */ default: return -EPROTONOSUPPORT; } if (mss == 0) return -ENOENT; return cookie | ((u64)mss << 32); #else return -EOPNOTSUPP; #endif /* CONFIG_SYN_COOKIES */ } static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = { .func = bpf_tcp_gen_syncookie, .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */ .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags) { if (!sk || flags != 0) return -EINVAL; if (!skb_at_tc_ingress(skb)) return -EOPNOTSUPP; if (unlikely(dev_net(skb->dev) != sock_net(sk))) return -ENETUNREACH; if (sk_unhashed(sk)) return -EOPNOTSUPP; if (sk_is_refcounted(sk) && unlikely(!refcount_inc_not_zero(&sk->sk_refcnt))) return -ENOENT; skb_orphan(skb); skb->sk = sk; skb->destructor = sock_pfree; return 0; } static const struct bpf_func_proto bpf_sk_assign_proto = { .func = bpf_sk_assign, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .arg3_type = ARG_ANYTHING, }; static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend, u8 search_kind, const u8 *magic, u8 magic_len, bool *eol) { u8 kind, kind_len; *eol = false; while (op < opend) { kind = op[0]; if (kind == TCPOPT_EOL) { *eol = true; return ERR_PTR(-ENOMSG); } else if (kind == TCPOPT_NOP) { op++; continue; } if (opend - op < 2 || opend - op < op[1] || op[1] < 2) /* Something is wrong in the received header. * Follow the TCP stack's tcp_parse_options() * and just bail here. */ return ERR_PTR(-EFAULT); kind_len = op[1]; if (search_kind == kind) { if (!magic_len) return op; if (magic_len > kind_len - 2) return ERR_PTR(-ENOMSG); if (!memcmp(&op[2], magic, magic_len)) return op; } op += kind_len; } return ERR_PTR(-ENOMSG); } BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, void *, search_res, u32, len, u64, flags) { bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN; const u8 *op, *opend, *magic, *search = search_res; u8 search_kind, search_len, copy_len, magic_len; int ret; /* 2 byte is the minimal option len except TCPOPT_NOP and * TCPOPT_EOL which are useless for the bpf prog to learn * and this helper disallow loading them also. */ if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN) return -EINVAL; search_kind = search[0]; search_len = search[1]; if (search_len > len || search_kind == TCPOPT_NOP || search_kind == TCPOPT_EOL) return -EINVAL; if (search_kind == TCPOPT_EXP || search_kind == 253) { /* 16 or 32 bit magic. +2 for kind and kind length */ if (search_len != 4 && search_len != 6) return -EINVAL; magic = &search[2]; magic_len = search_len - 2; } else { if (search_len) return -EINVAL; magic = NULL; magic_len = 0; } if (load_syn) { ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op); if (ret < 0) return ret; opend = op + ret; op += sizeof(struct tcphdr); } else { if (!bpf_sock->skb || bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB) /* This bpf_sock->op cannot call this helper */ return -EPERM; opend = bpf_sock->skb_data_end; op = bpf_sock->skb->data + sizeof(struct tcphdr); } op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len, &eol); if (IS_ERR(op)) return PTR_ERR(op); copy_len = op[1]; ret = copy_len; if (copy_len > len) { ret = -ENOSPC; copy_len = len; } memcpy(search_res, op, copy_len); return ret; } static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = { .func = bpf_sock_ops_load_hdr_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, const void *, from, u32, len, u64, flags) { u8 new_kind, new_kind_len, magic_len = 0, *opend; const u8 *op, *new_op, *magic = NULL; struct sk_buff *skb; bool eol; if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB) return -EPERM; if (len < 2 || flags) return -EINVAL; new_op = from; new_kind = new_op[0]; new_kind_len = new_op[1]; if (new_kind_len > len || new_kind == TCPOPT_NOP || new_kind == TCPOPT_EOL) return -EINVAL; if (new_kind_len > bpf_sock->remaining_opt_len) return -ENOSPC; /* 253 is another experimental kind */ if (new_kind == TCPOPT_EXP || new_kind == 253) { if (new_kind_len < 4) return -EINVAL; /* Match for the 2 byte magic also. * RFC 6994: the magic could be 2 or 4 bytes. * Hence, matching by 2 byte only is on the * conservative side but it is the right * thing to do for the 'search-for-duplication' * purpose. */ magic = &new_op[2]; magic_len = 2; } /* Check for duplication */ skb = bpf_sock->skb; op = skb->data + sizeof(struct tcphdr); opend = bpf_sock->skb_data_end; op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len, &eol); if (!IS_ERR(op)) return -EEXIST; if (PTR_ERR(op) != -ENOMSG) return PTR_ERR(op); if (eol) /* The option has been ended. Treat it as no more * header option can be written. */ return -ENOSPC; /* No duplication found. Store the header option. */ memcpy(opend, from, new_kind_len); bpf_sock->remaining_opt_len -= new_kind_len; bpf_sock->skb_data_end += new_kind_len; return 0; } static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = { .func = bpf_sock_ops_store_hdr_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock, u32, len, u64, flags) { if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB) return -EPERM; if (flags || len < 2) return -EINVAL; if (len > bpf_sock->remaining_opt_len) return -ENOSPC; bpf_sock->remaining_opt_len -= len; return 0; } static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = { .func = bpf_sock_ops_reserve_hdr_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb, u64, tstamp, u32, tstamp_type) { /* skb_clear_delivery_time() is done for inet protocol */ if (skb->protocol != htons(ETH_P_IP) && skb->protocol != htons(ETH_P_IPV6)) return -EOPNOTSUPP; switch (tstamp_type) { case BPF_SKB_CLOCK_REALTIME: skb->tstamp = tstamp; skb->tstamp_type = SKB_CLOCK_REALTIME; break; case BPF_SKB_CLOCK_MONOTONIC: if (!tstamp) return -EINVAL; skb->tstamp = tstamp; skb->tstamp_type = SKB_CLOCK_MONOTONIC; break; case BPF_SKB_CLOCK_TAI: if (!tstamp) return -EINVAL; skb->tstamp = tstamp; skb->tstamp_type = SKB_CLOCK_TAI; break; default: return -EINVAL; } return 0; } static const struct bpf_func_proto bpf_skb_set_tstamp_proto = { .func = bpf_skb_set_tstamp, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; #ifdef CONFIG_SYN_COOKIES BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph, struct tcphdr *, th, u32, th_len) { u32 cookie; u16 mss; if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4)) return -EINVAL; mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT; cookie = __cookie_v4_init_sequence(iph, th, &mss); return cookie | ((u64)mss << 32); } static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = { .func = bpf_tcp_raw_gen_syncookie_ipv4, .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */ .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM, .arg1_size = sizeof(struct iphdr), .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph, struct tcphdr *, th, u32, th_len) { #if IS_BUILTIN(CONFIG_IPV6) const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) - sizeof(struct ipv6hdr); u32 cookie; u16 mss; if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4)) return -EINVAL; mss = tcp_parse_mss_option(th, 0) ?: mss_clamp; cookie = __cookie_v6_init_sequence(iph, th, &mss); return cookie | ((u64)mss << 32); #else return -EPROTONOSUPPORT; #endif } static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = { .func = bpf_tcp_raw_gen_syncookie_ipv6, .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */ .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM, .arg1_size = sizeof(struct ipv6hdr), .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph, struct tcphdr *, th) { if (__cookie_v4_check(iph, th) > 0) return 0; return -EACCES; } static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = { .func = bpf_tcp_raw_check_syncookie_ipv4, .gpl_only = true, /* __cookie_v4_check is GPL */ .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM, .arg1_size = sizeof(struct iphdr), .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM, .arg2_size = sizeof(struct tcphdr), }; BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph, struct tcphdr *, th) { #if IS_BUILTIN(CONFIG_IPV6) if (__cookie_v6_check(iph, th) > 0) return 0; return -EACCES; #else return -EPROTONOSUPPORT; #endif } static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = { .func = bpf_tcp_raw_check_syncookie_ipv6, .gpl_only = true, /* __cookie_v6_check is GPL */ .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM, .arg1_size = sizeof(struct ipv6hdr), .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM, .arg2_size = sizeof(struct tcphdr), }; #endif /* CONFIG_SYN_COOKIES */ #endif /* CONFIG_INET */ bool bpf_helper_changes_pkt_data(void *func) { if (func == bpf_skb_vlan_push || func == bpf_skb_vlan_pop || func == bpf_skb_store_bytes || func == bpf_skb_change_proto || func == bpf_skb_change_head || func == sk_skb_change_head || func == bpf_skb_change_tail || func == sk_skb_change_tail || func == bpf_skb_adjust_room || func == sk_skb_adjust_room || func == bpf_skb_pull_data || func == sk_skb_pull_data || func == bpf_clone_redirect || func == bpf_l3_csum_replace || func == bpf_l4_csum_replace || func == bpf_xdp_adjust_head || func == bpf_xdp_adjust_meta || func == bpf_msg_pull_data || func == bpf_msg_push_data || func == bpf_msg_pop_data || func == bpf_xdp_adjust_tail || #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) func == bpf_lwt_seg6_store_bytes || func == bpf_lwt_seg6_adjust_srh || func == bpf_lwt_seg6_action || #endif #ifdef CONFIG_INET func == bpf_sock_ops_store_hdr_opt || #endif func == bpf_lwt_in_push_encap || func == bpf_lwt_xmit_push_encap) return true; return false; } const struct bpf_func_proto bpf_event_output_data_proto __weak; const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak; static const struct bpf_func_proto * sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { const struct bpf_func_proto *func_proto; func_proto = cgroup_common_func_proto(func_id, prog); if (func_proto) return func_proto; func_proto = cgroup_current_func_proto(func_id, prog); if (func_proto) return func_proto; switch (func_id) { case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_sock_proto; case BPF_FUNC_get_netns_cookie: return &bpf_get_netns_cookie_sock_proto; case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_cg_sock_proto; case BPF_FUNC_ktime_get_coarse_ns: return &bpf_ktime_get_coarse_ns_proto; default: return bpf_base_func_proto(func_id, prog); } } static const struct bpf_func_proto * sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { const struct bpf_func_proto *func_proto; func_proto = cgroup_common_func_proto(func_id, prog); if (func_proto) return func_proto; func_proto = cgroup_current_func_proto(func_id, prog); if (func_proto) return func_proto; switch (func_id) { case BPF_FUNC_bind: switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: return &bpf_bind_proto; default: return NULL; } case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_sock_addr_proto; case BPF_FUNC_get_netns_cookie: return &bpf_get_netns_cookie_sock_addr_proto; case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_tcp: return &bpf_sock_addr_sk_lookup_tcp_proto; case BPF_FUNC_sk_lookup_udp: return &bpf_sock_addr_sk_lookup_udp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_sock_addr_skc_lookup_tcp_proto; #endif /* CONFIG_INET */ case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; case BPF_FUNC_setsockopt: switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_BIND: case BPF_CGROUP_INET6_BIND: case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: case BPF_CGROUP_UNIX_CONNECT: case BPF_CGROUP_UDP4_RECVMSG: case BPF_CGROUP_UDP6_RECVMSG: case BPF_CGROUP_UNIX_RECVMSG: case BPF_CGROUP_UDP4_SENDMSG: case BPF_CGROUP_UDP6_SENDMSG: case BPF_CGROUP_UNIX_SENDMSG: case BPF_CGROUP_INET4_GETPEERNAME: case BPF_CGROUP_INET6_GETPEERNAME: case BPF_CGROUP_UNIX_GETPEERNAME: case BPF_CGROUP_INET4_GETSOCKNAME: case BPF_CGROUP_INET6_GETSOCKNAME: case BPF_CGROUP_UNIX_GETSOCKNAME: return &bpf_sock_addr_setsockopt_proto; default: return NULL; } case BPF_FUNC_getsockopt: switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_BIND: case BPF_CGROUP_INET6_BIND: case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: case BPF_CGROUP_UNIX_CONNECT: case BPF_CGROUP_UDP4_RECVMSG: case BPF_CGROUP_UDP6_RECVMSG: case BPF_CGROUP_UNIX_RECVMSG: case BPF_CGROUP_UDP4_SENDMSG: case BPF_CGROUP_UDP6_SENDMSG: case BPF_CGROUP_UNIX_SENDMSG: case BPF_CGROUP_INET4_GETPEERNAME: case BPF_CGROUP_INET6_GETPEERNAME: case BPF_CGROUP_UNIX_GETPEERNAME: case BPF_CGROUP_INET4_GETSOCKNAME: case BPF_CGROUP_INET6_GETSOCKNAME: case BPF_CGROUP_UNIX_GETSOCKNAME: return &bpf_sock_addr_getsockopt_proto; default: return NULL; } default: return bpf_sk_base_func_proto(func_id, prog); } } static const struct bpf_func_proto * sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_load_bytes_relative: return &bpf_skb_load_bytes_relative_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_proto; case BPF_FUNC_get_socket_uid: return &bpf_get_socket_uid_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; default: return bpf_sk_base_func_proto(func_id, prog); } } const struct bpf_func_proto bpf_sk_storage_get_proto __weak; const struct bpf_func_proto bpf_sk_storage_delete_proto __weak; static const struct bpf_func_proto * cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { const struct bpf_func_proto *func_proto; func_proto = cgroup_common_func_proto(func_id, prog); if (func_proto) return func_proto; switch (func_id) { case BPF_FUNC_sk_fullsock: return &bpf_sk_fullsock_proto; case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; #ifdef CONFIG_SOCK_CGROUP_DATA case BPF_FUNC_skb_cgroup_id: return &bpf_skb_cgroup_id_proto; case BPF_FUNC_skb_ancestor_cgroup_id: return &bpf_skb_ancestor_cgroup_id_proto; case BPF_FUNC_sk_cgroup_id: return &bpf_sk_cgroup_id_proto; case BPF_FUNC_sk_ancestor_cgroup_id: return &bpf_sk_ancestor_cgroup_id_proto; #endif #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_tcp: return &bpf_sk_lookup_tcp_proto; case BPF_FUNC_sk_lookup_udp: return &bpf_sk_lookup_udp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_skc_lookup_tcp_proto; case BPF_FUNC_tcp_sock: return &bpf_tcp_sock_proto; case BPF_FUNC_get_listener_sock: return &bpf_get_listener_sock_proto; case BPF_FUNC_skb_ecn_set_ce: return &bpf_skb_ecn_set_ce_proto; #endif default: return sk_filter_func_proto(func_id, prog); } } static const struct bpf_func_proto * tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_store_bytes: return &bpf_skb_store_bytes_proto; case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_load_bytes_relative: return &bpf_skb_load_bytes_relative_proto; case BPF_FUNC_skb_pull_data: return &bpf_skb_pull_data_proto; case BPF_FUNC_csum_diff: return &bpf_csum_diff_proto; case BPF_FUNC_csum_update: return &bpf_csum_update_proto; case BPF_FUNC_csum_level: return &bpf_csum_level_proto; case BPF_FUNC_l3_csum_replace: return &bpf_l3_csum_replace_proto; case BPF_FUNC_l4_csum_replace: return &bpf_l4_csum_replace_proto; case BPF_FUNC_clone_redirect: return &bpf_clone_redirect_proto; case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_proto; case BPF_FUNC_skb_vlan_push: return &bpf_skb_vlan_push_proto; case BPF_FUNC_skb_vlan_pop: return &bpf_skb_vlan_pop_proto; case BPF_FUNC_skb_change_proto: return &bpf_skb_change_proto_proto; case BPF_FUNC_skb_change_type: return &bpf_skb_change_type_proto; case BPF_FUNC_skb_adjust_room: return &bpf_skb_adjust_room_proto; case BPF_FUNC_skb_change_tail: return &bpf_skb_change_tail_proto; case BPF_FUNC_skb_change_head: return &bpf_skb_change_head_proto; case BPF_FUNC_skb_get_tunnel_key: return &bpf_skb_get_tunnel_key_proto; case BPF_FUNC_skb_set_tunnel_key: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_skb_get_tunnel_opt: return &bpf_skb_get_tunnel_opt_proto; case BPF_FUNC_skb_set_tunnel_opt: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_redirect: return &bpf_redirect_proto; case BPF_FUNC_redirect_neigh: return &bpf_redirect_neigh_proto; case BPF_FUNC_redirect_peer: return &bpf_redirect_peer_proto; case BPF_FUNC_get_route_realm: return &bpf_get_route_realm_proto; case BPF_FUNC_get_hash_recalc: return &bpf_get_hash_recalc_proto; case BPF_FUNC_set_hash_invalid: return &bpf_set_hash_invalid_proto; case BPF_FUNC_set_hash: return &bpf_set_hash_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_skb_under_cgroup: return &bpf_skb_under_cgroup_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_proto; case BPF_FUNC_get_socket_uid: return &bpf_get_socket_uid_proto; case BPF_FUNC_fib_lookup: return &bpf_skb_fib_lookup_proto; case BPF_FUNC_check_mtu: return &bpf_skb_check_mtu_proto; case BPF_FUNC_sk_fullsock: return &bpf_sk_fullsock_proto; case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; #ifdef CONFIG_XFRM case BPF_FUNC_skb_get_xfrm_state: return &bpf_skb_get_xfrm_state_proto; #endif #ifdef CONFIG_CGROUP_NET_CLASSID case BPF_FUNC_skb_cgroup_classid: return &bpf_skb_cgroup_classid_proto; #endif #ifdef CONFIG_SOCK_CGROUP_DATA case BPF_FUNC_skb_cgroup_id: return &bpf_skb_cgroup_id_proto; case BPF_FUNC_skb_ancestor_cgroup_id: return &bpf_skb_ancestor_cgroup_id_proto; #endif #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_tcp: return &bpf_tc_sk_lookup_tcp_proto; case BPF_FUNC_sk_lookup_udp: return &bpf_tc_sk_lookup_udp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_tcp_sock: return &bpf_tcp_sock_proto; case BPF_FUNC_get_listener_sock: return &bpf_get_listener_sock_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_tc_skc_lookup_tcp_proto; case BPF_FUNC_tcp_check_syncookie: return &bpf_tcp_check_syncookie_proto; case BPF_FUNC_skb_ecn_set_ce: return &bpf_skb_ecn_set_ce_proto; case BPF_FUNC_tcp_gen_syncookie: return &bpf_tcp_gen_syncookie_proto; case BPF_FUNC_sk_assign: return &bpf_sk_assign_proto; case BPF_FUNC_skb_set_tstamp: return &bpf_skb_set_tstamp_proto; #ifdef CONFIG_SYN_COOKIES case BPF_FUNC_tcp_raw_gen_syncookie_ipv4: return &bpf_tcp_raw_gen_syncookie_ipv4_proto; case BPF_FUNC_tcp_raw_gen_syncookie_ipv6: return &bpf_tcp_raw_gen_syncookie_ipv6_proto; case BPF_FUNC_tcp_raw_check_syncookie_ipv4: return &bpf_tcp_raw_check_syncookie_ipv4_proto; case BPF_FUNC_tcp_raw_check_syncookie_ipv6: return &bpf_tcp_raw_check_syncookie_ipv6_proto; #endif #endif default: return bpf_sk_base_func_proto(func_id, prog); } } static const struct bpf_func_proto * xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_perf_event_output: return &bpf_xdp_event_output_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_csum_diff: return &bpf_csum_diff_proto; case BPF_FUNC_xdp_adjust_head: return &bpf_xdp_adjust_head_proto; case BPF_FUNC_xdp_adjust_meta: return &bpf_xdp_adjust_meta_proto; case BPF_FUNC_redirect: return &bpf_xdp_redirect_proto; case BPF_FUNC_redirect_map: return &bpf_xdp_redirect_map_proto; case BPF_FUNC_xdp_adjust_tail: return &bpf_xdp_adjust_tail_proto; case BPF_FUNC_xdp_get_buff_len: return &bpf_xdp_get_buff_len_proto; case BPF_FUNC_xdp_load_bytes: return &bpf_xdp_load_bytes_proto; case BPF_FUNC_xdp_store_bytes: return &bpf_xdp_store_bytes_proto; case BPF_FUNC_fib_lookup: return &bpf_xdp_fib_lookup_proto; case BPF_FUNC_check_mtu: return &bpf_xdp_check_mtu_proto; #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_udp: return &bpf_xdp_sk_lookup_udp_proto; case BPF_FUNC_sk_lookup_tcp: return &bpf_xdp_sk_lookup_tcp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_xdp_skc_lookup_tcp_proto; case BPF_FUNC_tcp_check_syncookie: return &bpf_tcp_check_syncookie_proto; case BPF_FUNC_tcp_gen_syncookie: return &bpf_tcp_gen_syncookie_proto; #ifdef CONFIG_SYN_COOKIES case BPF_FUNC_tcp_raw_gen_syncookie_ipv4: return &bpf_tcp_raw_gen_syncookie_ipv4_proto; case BPF_FUNC_tcp_raw_gen_syncookie_ipv6: return &bpf_tcp_raw_gen_syncookie_ipv6_proto; case BPF_FUNC_tcp_raw_check_syncookie_ipv4: return &bpf_tcp_raw_check_syncookie_ipv4_proto; case BPF_FUNC_tcp_raw_check_syncookie_ipv6: return &bpf_tcp_raw_check_syncookie_ipv6_proto; #endif #endif default: return bpf_sk_base_func_proto(func_id, prog); } #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES) /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The * kfuncs are defined in two different modules, and we want to be able * to use them interchangeably with the same BTF type ID. Because modules * can't de-duplicate BTF IDs between each other, we need the type to be * referenced in the vmlinux BTF or the verifier will get confused about * the different types. So we add this dummy type reference which will * be included in vmlinux BTF, allowing both modules to refer to the * same type ID. */ BTF_TYPE_EMIT(struct nf_conn___init); #endif } const struct bpf_func_proto bpf_sock_map_update_proto __weak; const struct bpf_func_proto bpf_sock_hash_update_proto __weak; static const struct bpf_func_proto * sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { const struct bpf_func_proto *func_proto; func_proto = cgroup_common_func_proto(func_id, prog); if (func_proto) return func_proto; switch (func_id) { case BPF_FUNC_setsockopt: return &bpf_sock_ops_setsockopt_proto; case BPF_FUNC_getsockopt: return &bpf_sock_ops_getsockopt_proto; case BPF_FUNC_sock_ops_cb_flags_set: return &bpf_sock_ops_cb_flags_set_proto; case BPF_FUNC_sock_map_update: return &bpf_sock_map_update_proto; case BPF_FUNC_sock_hash_update: return &bpf_sock_hash_update_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_sock_ops_proto; case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; case BPF_FUNC_get_netns_cookie: return &bpf_get_netns_cookie_sock_ops_proto; #ifdef CONFIG_INET case BPF_FUNC_load_hdr_opt: return &bpf_sock_ops_load_hdr_opt_proto; case BPF_FUNC_store_hdr_opt: return &bpf_sock_ops_store_hdr_opt_proto; case BPF_FUNC_reserve_hdr_opt: return &bpf_sock_ops_reserve_hdr_opt_proto; case BPF_FUNC_tcp_sock: return &bpf_tcp_sock_proto; #endif /* CONFIG_INET */ default: return bpf_sk_base_func_proto(func_id, prog); } } const struct bpf_func_proto bpf_msg_redirect_map_proto __weak; const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak; static const struct bpf_func_proto * sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_msg_redirect_map: return &bpf_msg_redirect_map_proto; case BPF_FUNC_msg_redirect_hash: return &bpf_msg_redirect_hash_proto; case BPF_FUNC_msg_apply_bytes: return &bpf_msg_apply_bytes_proto; case BPF_FUNC_msg_cork_bytes: return &bpf_msg_cork_bytes_proto; case BPF_FUNC_msg_pull_data: return &bpf_msg_pull_data_proto; case BPF_FUNC_msg_push_data: return &bpf_msg_push_data_proto; case BPF_FUNC_msg_pop_data: return &bpf_msg_pop_data_proto; case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; case BPF_FUNC_get_current_uid_gid: return &bpf_get_current_uid_gid_proto; case BPF_FUNC_sk_storage_get: return &bpf_sk_storage_get_proto; case BPF_FUNC_sk_storage_delete: return &bpf_sk_storage_delete_proto; case BPF_FUNC_get_netns_cookie: return &bpf_get_netns_cookie_sk_msg_proto; #ifdef CONFIG_CGROUP_NET_CLASSID case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_curr_proto; #endif default: return bpf_sk_base_func_proto(func_id, prog); } } const struct bpf_func_proto bpf_sk_redirect_map_proto __weak; const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak; static const struct bpf_func_proto * sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_store_bytes: return &bpf_skb_store_bytes_proto; case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_pull_data: return &sk_skb_pull_data_proto; case BPF_FUNC_skb_change_tail: return &sk_skb_change_tail_proto; case BPF_FUNC_skb_change_head: return &sk_skb_change_head_proto; case BPF_FUNC_skb_adjust_room: return &sk_skb_adjust_room_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_proto; case BPF_FUNC_get_socket_uid: return &bpf_get_socket_uid_proto; case BPF_FUNC_sk_redirect_map: return &bpf_sk_redirect_map_proto; case BPF_FUNC_sk_redirect_hash: return &bpf_sk_redirect_hash_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; #ifdef CONFIG_INET case BPF_FUNC_sk_lookup_tcp: return &bpf_sk_lookup_tcp_proto; case BPF_FUNC_sk_lookup_udp: return &bpf_sk_lookup_udp_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; case BPF_FUNC_skc_lookup_tcp: return &bpf_skc_lookup_tcp_proto; #endif default: return bpf_sk_base_func_proto(func_id, prog); } } static const struct bpf_func_proto * flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_load_bytes: return &bpf_flow_dissector_load_bytes_proto; default: return bpf_sk_base_func_proto(func_id, prog); } } static const struct bpf_func_proto * lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_pull_data: return &bpf_skb_pull_data_proto; case BPF_FUNC_csum_diff: return &bpf_csum_diff_proto; case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_proto; case BPF_FUNC_get_route_realm: return &bpf_get_route_realm_proto; case BPF_FUNC_get_hash_recalc: return &bpf_get_hash_recalc_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_skb_under_cgroup: return &bpf_skb_under_cgroup_proto; default: return bpf_sk_base_func_proto(func_id, prog); } } static const struct bpf_func_proto * lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_lwt_push_encap: return &bpf_lwt_in_push_encap_proto; default: return lwt_out_func_proto(func_id, prog); } } static const struct bpf_func_proto * lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_get_tunnel_key: return &bpf_skb_get_tunnel_key_proto; case BPF_FUNC_skb_set_tunnel_key: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_skb_get_tunnel_opt: return &bpf_skb_get_tunnel_opt_proto; case BPF_FUNC_skb_set_tunnel_opt: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_redirect: return &bpf_redirect_proto; case BPF_FUNC_clone_redirect: return &bpf_clone_redirect_proto; case BPF_FUNC_skb_change_tail: return &bpf_skb_change_tail_proto; case BPF_FUNC_skb_change_head: return &bpf_skb_change_head_proto; case BPF_FUNC_skb_store_bytes: return &bpf_skb_store_bytes_proto; case BPF_FUNC_csum_update: return &bpf_csum_update_proto; case BPF_FUNC_csum_level: return &bpf_csum_level_proto; case BPF_FUNC_l3_csum_replace: return &bpf_l3_csum_replace_proto; case BPF_FUNC_l4_csum_replace: return &bpf_l4_csum_replace_proto; case BPF_FUNC_set_hash_invalid: return &bpf_set_hash_invalid_proto; case BPF_FUNC_lwt_push_encap: return &bpf_lwt_xmit_push_encap_proto; default: return lwt_out_func_proto(func_id, prog); } } static const struct bpf_func_proto * lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) case BPF_FUNC_lwt_seg6_store_bytes: return &bpf_lwt_seg6_store_bytes_proto; case BPF_FUNC_lwt_seg6_action: return &bpf_lwt_seg6_action_proto; case BPF_FUNC_lwt_seg6_adjust_srh: return &bpf_lwt_seg6_adjust_srh_proto; #endif default: return lwt_out_func_proto(func_id, prog); } } static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct __sk_buff)) return false; /* The verifier guarantees that size > 0. */ if (off % size != 0) return false; switch (off) { case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): if (off + size > offsetofend(struct __sk_buff, cb[4])) return false; break; case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]): case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]): case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4): case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4): case bpf_ctx_range(struct __sk_buff, data): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, data_end): if (size != size_default) return false; break; case bpf_ctx_range_ptr(struct __sk_buff, flow_keys): return false; case bpf_ctx_range(struct __sk_buff, hwtstamp): if (type == BPF_WRITE || size != sizeof(__u64)) return false; break; case bpf_ctx_range(struct __sk_buff, tstamp): if (size != sizeof(__u64)) return false; break; case offsetof(struct __sk_buff, sk): if (type == BPF_WRITE || size != sizeof(__u64)) return false; info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL; break; case offsetof(struct __sk_buff, tstamp_type): return false; case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1: /* Explicitly prohibit access to padding in __sk_buff. */ return false; default: /* Only narrow read access allowed for now. */ if (type == BPF_WRITE) { if (size != size_default) return false; } else { bpf_ctx_record_field_size(info, size_default); if (!bpf_ctx_narrow_access_ok(off, size, size_default)) return false; } } return true; } static bool sk_filter_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range(struct __sk_buff, data): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, data_end): case bpf_ctx_range_till(struct __sk_buff, family, local_port): case bpf_ctx_range(struct __sk_buff, tstamp): case bpf_ctx_range(struct __sk_buff, wire_len): case bpf_ctx_range(struct __sk_buff, hwtstamp): return false; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): break; default: return false; } } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool cg_skb_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, wire_len): return false; case bpf_ctx_range(struct __sk_buff, data): case bpf_ctx_range(struct __sk_buff, data_end): if (!bpf_token_capable(prog->aux->token, CAP_BPF)) return false; break; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, mark): case bpf_ctx_range(struct __sk_buff, priority): case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): break; case bpf_ctx_range(struct __sk_buff, tstamp): if (!bpf_token_capable(prog->aux->token, CAP_BPF)) return false; break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool lwt_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range_till(struct __sk_buff, family, local_port): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, tstamp): case bpf_ctx_range(struct __sk_buff, wire_len): case bpf_ctx_range(struct __sk_buff, hwtstamp): return false; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, mark): case bpf_ctx_range(struct __sk_buff, priority): case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return bpf_skb_is_valid_access(off, size, type, prog, info); } /* Attach type specific accesses */ static bool __sock_filter_check_attach_type(int off, enum bpf_access_type access_type, enum bpf_attach_type attach_type) { switch (off) { case offsetof(struct bpf_sock, bound_dev_if): case offsetof(struct bpf_sock, mark): case offsetof(struct bpf_sock, priority): switch (attach_type) { case BPF_CGROUP_INET_SOCK_CREATE: case BPF_CGROUP_INET_SOCK_RELEASE: goto full_access; default: return false; } case bpf_ctx_range(struct bpf_sock, src_ip4): switch (attach_type) { case BPF_CGROUP_INET4_POST_BIND: goto read_only; default: return false; } case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): switch (attach_type) { case BPF_CGROUP_INET6_POST_BIND: goto read_only; default: return false; } case bpf_ctx_range(struct bpf_sock, src_port): switch (attach_type) { case BPF_CGROUP_INET4_POST_BIND: case BPF_CGROUP_INET6_POST_BIND: goto read_only; default: return false; } } read_only: return access_type == BPF_READ; full_access: return true; } bool bpf_sock_common_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range_till(struct bpf_sock, type, priority): return false; default: return bpf_sock_is_valid_access(off, size, type, info); } } bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); int field_size; if (off < 0 || off >= sizeof(struct bpf_sock)) return false; if (off % size != 0) return false; switch (off) { case offsetof(struct bpf_sock, state): case offsetof(struct bpf_sock, family): case offsetof(struct bpf_sock, type): case offsetof(struct bpf_sock, protocol): case offsetof(struct bpf_sock, src_port): case offsetof(struct bpf_sock, rx_queue_mapping): case bpf_ctx_range(struct bpf_sock, src_ip4): case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): case bpf_ctx_range(struct bpf_sock, dst_ip4): case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]): bpf_ctx_record_field_size(info, size_default); return bpf_ctx_narrow_access_ok(off, size, size_default); case bpf_ctx_range(struct bpf_sock, dst_port): field_size = size == size_default ? size_default : sizeof_field(struct bpf_sock, dst_port); bpf_ctx_record_field_size(info, field_size); return bpf_ctx_narrow_access_ok(off, size, field_size); case offsetofend(struct bpf_sock, dst_port) ... offsetof(struct bpf_sock, dst_ip4) - 1: return false; } return size == size_default; } static bool sock_filter_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (!bpf_sock_is_valid_access(off, size, type, info)) return false; return __sock_filter_check_attach_type(off, type, prog->expected_attach_type); } static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog) { /* Neither direct read nor direct write requires any preliminary * action. */ return 0; } static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog, int drop_verdict) { struct bpf_insn *insn = insn_buf; if (!direct_write) return 0; /* if (!skb->cloned) * goto start; * * (Fast-path, otherwise approximation that we might be * a clone, do the rest in helper.) */ *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET); *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK); *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7); /* ret = bpf_skb_pull_data(skb, 0); */ *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2); *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_pull_data); /* if (!ret) * goto restore; * return TC_ACT_SHOT; */ *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2); *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict); *insn++ = BPF_EXIT_INSN(); /* restore: */ *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); /* start: */ *insn++ = prog->insnsi[0]; return insn - insn_buf; } static int bpf_gen_ld_abs(const struct bpf_insn *orig, struct bpf_insn *insn_buf) { bool indirect = BPF_MODE(orig->code) == BPF_IND; struct bpf_insn *insn = insn_buf; if (!indirect) { *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm); } else { *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg); if (orig->imm) *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm); } /* We're guaranteed here that CTX is in R6. */ *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX); switch (BPF_SIZE(orig->code)) { case BPF_B: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache); break; case BPF_H: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache); break; case BPF_W: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache); break; } *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2); *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); *insn++ = BPF_EXIT_INSN(); return insn - insn_buf; } static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog) { return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT); } static bool tc_cls_act_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, mark): case bpf_ctx_range(struct __sk_buff, tc_index): case bpf_ctx_range(struct __sk_buff, priority): case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): case bpf_ctx_range(struct __sk_buff, tstamp): case bpf_ctx_range(struct __sk_buff, queue_mapping): break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_meta): info->reg_type = PTR_TO_PACKET_META; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; case bpf_ctx_range_till(struct __sk_buff, family, local_port): return false; case offsetof(struct __sk_buff, tstamp_type): /* The convert_ctx_access() on reading and writing * __sk_buff->tstamp depends on whether the bpf prog * has used __sk_buff->tstamp_type or not. * Thus, we need to set prog->tstamp_type_access * earlier during is_valid_access() here. */ ((struct bpf_prog *)prog)->tstamp_type_access = 1; return size == sizeof(__u8); } return bpf_skb_is_valid_access(off, size, type, prog, info); } DEFINE_MUTEX(nf_conn_btf_access_lock); EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock); int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off, int size); EXPORT_SYMBOL_GPL(nfct_btf_struct_access); static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off, int size) { int ret = -EACCES; mutex_lock(&nf_conn_btf_access_lock); if (nfct_btf_struct_access) ret = nfct_btf_struct_access(log, reg, off, size); mutex_unlock(&nf_conn_btf_access_lock); return ret; } static bool __is_valid_xdp_access(int off, int size) { if (off < 0 || off >= sizeof(struct xdp_md)) return false; if (off % size != 0) return false; if (size != sizeof(__u32)) return false; return true; } static bool xdp_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (prog->expected_attach_type != BPF_XDP_DEVMAP) { switch (off) { case offsetof(struct xdp_md, egress_ifindex): return false; } } if (type == BPF_WRITE) { if (bpf_prog_is_offloaded(prog->aux)) { switch (off) { case offsetof(struct xdp_md, rx_queue_index): return __is_valid_xdp_access(off, size); } } return false; } switch (off) { case offsetof(struct xdp_md, data): info->reg_type = PTR_TO_PACKET; break; case offsetof(struct xdp_md, data_meta): info->reg_type = PTR_TO_PACKET_META; break; case offsetof(struct xdp_md, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return __is_valid_xdp_access(off, size); } void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act) { const u32 act_max = XDP_REDIRECT; pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n", act > act_max ? "Illegal" : "Driver unsupported", act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A"); } EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action); static int xdp_btf_struct_access(struct bpf_verifier_log *log, const struct bpf_reg_state *reg, int off, int size) { int ret = -EACCES; mutex_lock(&nf_conn_btf_access_lock); if (nfct_btf_struct_access) ret = nfct_btf_struct_access(log, reg, off, size); mutex_unlock(&nf_conn_btf_access_lock); return ret; } static bool sock_addr_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct bpf_sock_addr)) return false; if (off % size != 0) return false; /* Disallow access to fields not belonging to the attach type's address * family. */ switch (off) { case bpf_ctx_range(struct bpf_sock_addr, user_ip4): switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_BIND: case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET4_GETPEERNAME: case BPF_CGROUP_INET4_GETSOCKNAME: case BPF_CGROUP_UDP4_SENDMSG: case BPF_CGROUP_UDP4_RECVMSG: break; default: return false; } break; case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): switch (prog->expected_attach_type) { case BPF_CGROUP_INET6_BIND: case BPF_CGROUP_INET6_CONNECT: case BPF_CGROUP_INET6_GETPEERNAME: case BPF_CGROUP_INET6_GETSOCKNAME: case BPF_CGROUP_UDP6_SENDMSG: case BPF_CGROUP_UDP6_RECVMSG: break; default: return false; } break; case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): switch (prog->expected_attach_type) { case BPF_CGROUP_UDP4_SENDMSG: break; default: return false; } break; case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], msg_src_ip6[3]): switch (prog->expected_attach_type) { case BPF_CGROUP_UDP6_SENDMSG: break; default: return false; } break; } switch (off) { case bpf_ctx_range(struct bpf_sock_addr, user_ip4): case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], msg_src_ip6[3]): case bpf_ctx_range(struct bpf_sock_addr, user_port): if (type == BPF_READ) { bpf_ctx_record_field_size(info, size_default); if (bpf_ctx_wide_access_ok(off, size, struct bpf_sock_addr, user_ip6)) return true; if (bpf_ctx_wide_access_ok(off, size, struct bpf_sock_addr, msg_src_ip6)) return true; if (!bpf_ctx_narrow_access_ok(off, size, size_default)) return false; } else { if (bpf_ctx_wide_access_ok(off, size, struct bpf_sock_addr, user_ip6)) return true; if (bpf_ctx_wide_access_ok(off, size, struct bpf_sock_addr, msg_src_ip6)) return true; if (size != size_default) return false; } break; case offsetof(struct bpf_sock_addr, sk): if (type != BPF_READ) return false; if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_SOCKET; break; default: if (type == BPF_READ) { if (size != size_default) return false; } else { return false; } } return true; } static bool sock_ops_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct bpf_sock_ops)) return false; /* The verifier guarantees that size > 0. */ if (off % size != 0) return false; if (type == BPF_WRITE) { switch (off) { case offsetof(struct bpf_sock_ops, reply): case offsetof(struct bpf_sock_ops, sk_txhash): if (size != size_default) return false; break; default: return false; } } else { switch (off) { case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received, bytes_acked): if (size != sizeof(__u64)) return false; break; case offsetof(struct bpf_sock_ops, sk): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_SOCKET_OR_NULL; break; case offsetof(struct bpf_sock_ops, skb_data): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_PACKET; break; case offsetof(struct bpf_sock_ops, skb_data_end): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_PACKET_END; break; case offsetof(struct bpf_sock_ops, skb_tcp_flags): bpf_ctx_record_field_size(info, size_default); return bpf_ctx_narrow_access_ok(off, size, size_default); case offsetof(struct bpf_sock_ops, skb_hwtstamp): if (size != sizeof(__u64)) return false; break; default: if (size != size_default) return false; break; } } return true; } static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog) { return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP); } static bool sk_skb_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, tstamp): case bpf_ctx_range(struct __sk_buff, wire_len): case bpf_ctx_range(struct __sk_buff, hwtstamp): return false; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_index): case bpf_ctx_range(struct __sk_buff, priority): break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, mark): return false; case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool sk_msg_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (type == BPF_WRITE) return false; if (off % size != 0) return false; switch (off) { case offsetof(struct sk_msg_md, data): info->reg_type = PTR_TO_PACKET; if (size != sizeof(__u64)) return false; break; case offsetof(struct sk_msg_md, data_end): info->reg_type = PTR_TO_PACKET_END; if (size != sizeof(__u64)) return false; break; case offsetof(struct sk_msg_md, sk): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_SOCKET; break; case bpf_ctx_range(struct sk_msg_md, family): case bpf_ctx_range(struct sk_msg_md, remote_ip4): case bpf_ctx_range(struct sk_msg_md, local_ip4): case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]): case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]): case bpf_ctx_range(struct sk_msg_md, remote_port): case bpf_ctx_range(struct sk_msg_md, local_port): case bpf_ctx_range(struct sk_msg_md, size): if (size != sizeof(__u32)) return false; break; default: return false; } return true; } static bool flow_dissector_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct __sk_buff)) return false; if (type == BPF_WRITE) return false; switch (off) { case bpf_ctx_range(struct __sk_buff, data): if (size != size_default) return false; info->reg_type = PTR_TO_PACKET; return true; case bpf_ctx_range(struct __sk_buff, data_end): if (size != size_default) return false; info->reg_type = PTR_TO_PACKET_END; return true; case bpf_ctx_range_ptr(struct __sk_buff, flow_keys): if (size != sizeof(__u64)) return false; info->reg_type = PTR_TO_FLOW_KEYS; return true; default: return false; } } static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct __sk_buff, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data), si->dst_reg, si->src_reg, offsetof(struct bpf_flow_dissector, data)); break; case offsetof(struct __sk_buff, data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end), si->dst_reg, si->src_reg, offsetof(struct bpf_flow_dissector, data_end)); break; case offsetof(struct __sk_buff, flow_keys): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys), si->dst_reg, si->src_reg, offsetof(struct bpf_flow_dissector, flow_keys)); break; } return insn - insn_buf; } static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si, struct bpf_insn *insn) { __u8 value_reg = si->dst_reg; __u8 skb_reg = si->src_reg; BUILD_BUG_ON(__SKB_CLOCK_MAX != (int)BPF_SKB_CLOCK_TAI); BUILD_BUG_ON(SKB_CLOCK_REALTIME != (int)BPF_SKB_CLOCK_REALTIME); BUILD_BUG_ON(SKB_CLOCK_MONOTONIC != (int)BPF_SKB_CLOCK_MONOTONIC); BUILD_BUG_ON(SKB_CLOCK_TAI != (int)BPF_SKB_CLOCK_TAI); *insn++ = BPF_LDX_MEM(BPF_B, value_reg, skb_reg, SKB_BF_MONO_TC_OFFSET); *insn++ = BPF_ALU32_IMM(BPF_AND, value_reg, SKB_TSTAMP_TYPE_MASK); #ifdef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_RSH, value_reg, SKB_TSTAMP_TYPE_RSHIFT); #else BUILD_BUG_ON(!(SKB_TSTAMP_TYPE_MASK & 0x1)); #endif return insn; } static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg, struct bpf_insn *insn) { /* si->dst_reg = skb_shinfo(SKB); */ #ifdef NET_SKBUFF_DATA_USES_OFFSET *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end), BPF_REG_AX, skb_reg, offsetof(struct sk_buff, end)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head), dst_reg, skb_reg, offsetof(struct sk_buff, head)); *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX); #else *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end), dst_reg, skb_reg, offsetof(struct sk_buff, end)); #endif return insn; } static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog, const struct bpf_insn *si, struct bpf_insn *insn) { __u8 value_reg = si->dst_reg; __u8 skb_reg = si->src_reg; #ifdef CONFIG_NET_XGRESS /* If the tstamp_type is read, * the bpf prog is aware the tstamp could have delivery time. * Thus, read skb->tstamp as is if tstamp_type_access is true. */ if (!prog->tstamp_type_access) { /* AX is needed because src_reg and dst_reg could be the same */ __u8 tmp_reg = BPF_REG_AX; *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET); /* check if ingress mask bits is set */ *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1); *insn++ = BPF_JMP_A(4); *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, SKB_TSTAMP_TYPE_MASK, 1); *insn++ = BPF_JMP_A(2); /* skb->tc_at_ingress && skb->tstamp_type, * read 0 as the (rcv) timestamp. */ *insn++ = BPF_MOV64_IMM(value_reg, 0); *insn++ = BPF_JMP_A(1); } #endif *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg, offsetof(struct sk_buff, tstamp)); return insn; } static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog, const struct bpf_insn *si, struct bpf_insn *insn) { __u8 value_reg = si->src_reg; __u8 skb_reg = si->dst_reg; #ifdef CONFIG_NET_XGRESS /* If the tstamp_type is read, * the bpf prog is aware the tstamp could have delivery time. * Thus, write skb->tstamp as is if tstamp_type_access is true. * Otherwise, writing at ingress will have to clear the * skb->tstamp_type bit also. */ if (!prog->tstamp_type_access) { __u8 tmp_reg = BPF_REG_AX; *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET); /* Writing __sk_buff->tstamp as ingress, goto <clear> */ *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1); /* goto <store> */ *insn++ = BPF_JMP_A(2); /* <clear>: skb->tstamp_type */ *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_TSTAMP_TYPE_MASK); *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET); } #endif /* <store>: skb->tstamp = tstamp */ *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM, skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm); return insn; } #define BPF_EMIT_STORE(size, si, off) \ BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \ (si)->dst_reg, (si)->src_reg, (off), (si)->imm) static u32 bpf_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct __sk_buff, len): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, len, 4, target_size)); break; case offsetof(struct __sk_buff, protocol): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, protocol, 2, target_size)); break; case offsetof(struct __sk_buff, vlan_proto): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, vlan_proto, 2, target_size)); break; case offsetof(struct __sk_buff, priority): if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_W, si, bpf_target_off(struct sk_buff, priority, 4, target_size)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, priority, 4, target_size)); break; case offsetof(struct __sk_buff, ingress_ifindex): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, skb_iif, 4, target_size)); break; case offsetof(struct __sk_buff, ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), si->dst_reg, si->src_reg, offsetof(struct sk_buff, dev)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct net_device, ifindex, 4, target_size)); break; case offsetof(struct __sk_buff, hash): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, hash, 4, target_size)); break; case offsetof(struct __sk_buff, mark): if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_W, si, bpf_target_off(struct sk_buff, mark, 4, target_size)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, mark, 4, target_size)); break; case offsetof(struct __sk_buff, pkt_type): *target_size = 1; *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg, PKT_TYPE_OFFSET); *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX); #ifdef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5); #endif break; case offsetof(struct __sk_buff, queue_mapping): if (type == BPF_WRITE) { u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size); if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) { *insn++ = BPF_JMP_A(0); /* noop */ break; } if (BPF_CLASS(si->code) == BPF_STX) *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1); *insn++ = BPF_EMIT_STORE(BPF_H, si, off); } else { *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, queue_mapping, 2, target_size)); } break; case offsetof(struct __sk_buff, vlan_present): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, vlan_all, 4, target_size)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1); break; case offsetof(struct __sk_buff, vlan_tci): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, vlan_tci, 2, target_size)); break; case offsetof(struct __sk_buff, cb[0]) ... offsetofend(struct __sk_buff, cb[4]) - 1: BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20); BUILD_BUG_ON((offsetof(struct sk_buff, cb) + offsetof(struct qdisc_skb_cb, data)) % sizeof(__u64)); prog->cb_access = 1; off = si->off; off -= offsetof(struct __sk_buff, cb[0]); off += offsetof(struct sk_buff, cb); off += offsetof(struct qdisc_skb_cb, data); if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off); else *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, tc_classid): BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2); off = si->off; off -= offsetof(struct __sk_buff, tc_classid); off += offsetof(struct sk_buff, cb); off += offsetof(struct qdisc_skb_cb, tc_classid); *target_size = 2; if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_H, si, off); else *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), si->dst_reg, si->src_reg, offsetof(struct sk_buff, data)); break; case offsetof(struct __sk_buff, data_meta): off = si->off; off -= offsetof(struct __sk_buff, data_meta); off += offsetof(struct sk_buff, cb); off += offsetof(struct bpf_skb_data_end, data_meta); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, data_end): off = si->off; off -= offsetof(struct __sk_buff, data_end); off += offsetof(struct sk_buff, cb); off += offsetof(struct bpf_skb_data_end, data_end); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, tc_index): #ifdef CONFIG_NET_SCHED if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_H, si, bpf_target_off(struct sk_buff, tc_index, 2, target_size)); else *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, tc_index, 2, target_size)); #else *target_size = 2; if (type == BPF_WRITE) *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg); else *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, napi_id): #if defined(CONFIG_NET_RX_BUSY_POLL) *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, napi_id, 4, target_size)); *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1); *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); #else *target_size = 4; *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, family): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_family, 2, target_size)); break; case offsetof(struct __sk_buff, remote_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_daddr, 4, target_size)); break; case offsetof(struct __sk_buff, local_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_rcv_saddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_rcv_saddr, 4, target_size)); break; case offsetof(struct __sk_buff, remote_ip6[0]) ... offsetof(struct __sk_buff, remote_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_daddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct __sk_buff, remote_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_daddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, local_ip6[0]) ... offsetof(struct __sk_buff, local_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct __sk_buff, local_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, remote_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_dport, 2, target_size)); #ifndef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); #endif break; case offsetof(struct __sk_buff, local_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_num, 2, target_size)); break; case offsetof(struct __sk_buff, tstamp): BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8); if (type == BPF_WRITE) insn = bpf_convert_tstamp_write(prog, si, insn); else insn = bpf_convert_tstamp_read(prog, si, insn); break; case offsetof(struct __sk_buff, tstamp_type): insn = bpf_convert_tstamp_type_read(si, insn); break; case offsetof(struct __sk_buff, gso_segs): insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs), si->dst_reg, si->dst_reg, bpf_target_off(struct skb_shared_info, gso_segs, 2, target_size)); break; case offsetof(struct __sk_buff, gso_size): insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size), si->dst_reg, si->dst_reg, bpf_target_off(struct skb_shared_info, gso_size, 2, target_size)); break; case offsetof(struct __sk_buff, wire_len): BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4); off = si->off; off -= offsetof(struct __sk_buff, wire_len); off += offsetof(struct sk_buff, cb); off += offsetof(struct qdisc_skb_cb, pkt_len); *target_size = 4; *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, sk): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); break; case offsetof(struct __sk_buff, hwtstamp): BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8); BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0); insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn); *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, bpf_target_off(struct skb_shared_info, hwtstamps, 8, target_size)); break; } return insn - insn_buf; } u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct bpf_sock, bound_dev_if): BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4); if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_W, si, offsetof(struct sock, sk_bound_dev_if)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_bound_dev_if)); break; case offsetof(struct bpf_sock, mark): BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4); if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_W, si, offsetof(struct sock, sk_mark)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_mark)); break; case offsetof(struct bpf_sock, priority): BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4); if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_W, si, offsetof(struct sock, sk_priority)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_priority)); break; case offsetof(struct bpf_sock, family): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock_common, skc_family), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_family, sizeof_field(struct sock_common, skc_family), target_size)); break; case offsetof(struct bpf_sock, type): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock, sk_type), si->dst_reg, si->src_reg, bpf_target_off(struct sock, sk_type, sizeof_field(struct sock, sk_type), target_size)); break; case offsetof(struct bpf_sock, protocol): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock, sk_protocol), si->dst_reg, si->src_reg, bpf_target_off(struct sock, sk_protocol, sizeof_field(struct sock, sk_protocol), target_size)); break; case offsetof(struct bpf_sock, src_ip4): *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_rcv_saddr, sizeof_field(struct sock_common, skc_rcv_saddr), target_size)); break; case offsetof(struct bpf_sock, dst_ip4): *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_daddr, sizeof_field(struct sock_common, skc_daddr), target_size)); break; case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) off = si->off; off -= offsetof(struct bpf_sock, src_ip6[0]); *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off( struct sock_common, skc_v6_rcv_saddr.s6_addr32[0], sizeof_field(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]), target_size) + off); #else (void)off; *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) off = si->off; off -= offsetof(struct bpf_sock, dst_ip6[0]); *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_v6_daddr.s6_addr32[0], sizeof_field(struct sock_common, skc_v6_daddr.s6_addr32[0]), target_size) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); *target_size = 4; #endif break; case offsetof(struct bpf_sock, src_port): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock_common, skc_num), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_num, sizeof_field(struct sock_common, skc_num), target_size)); break; case offsetof(struct bpf_sock, dst_port): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock_common, skc_dport), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_dport, sizeof_field(struct sock_common, skc_dport), target_size)); break; case offsetof(struct bpf_sock, state): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock_common, skc_state), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_state, sizeof_field(struct sock_common, skc_state), target_size)); break; case offsetof(struct bpf_sock, rx_queue_mapping): #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping), si->dst_reg, si->src_reg, bpf_target_off(struct sock, sk_rx_queue_mapping, sizeof_field(struct sock, sk_rx_queue_mapping), target_size)); *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING, 1); *insn++ = BPF_MOV64_IMM(si->dst_reg, -1); #else *insn++ = BPF_MOV64_IMM(si->dst_reg, -1); *target_size = 2; #endif break; } return insn - insn_buf; } static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct __sk_buff, ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), si->dst_reg, si->src_reg, offsetof(struct sk_buff, dev)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct net_device, ifindex, 4, target_size)); break; default: return bpf_convert_ctx_access(type, si, insn_buf, prog, target_size); } return insn - insn_buf; } static u32 xdp_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct xdp_md, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, data)); break; case offsetof(struct xdp_md, data_meta): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, data_meta)); break; case offsetof(struct xdp_md, data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, data_end)); break; case offsetof(struct xdp_md, ingress_ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, rxq)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev), si->dst_reg, si->dst_reg, offsetof(struct xdp_rxq_info, dev)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct net_device, ifindex)); break; case offsetof(struct xdp_md, rx_queue_index): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, rxq)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct xdp_rxq_info, queue_index)); break; case offsetof(struct xdp_md, egress_ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, txq)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev), si->dst_reg, si->dst_reg, offsetof(struct xdp_txq_info, dev)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct net_device, ifindex)); break; } return insn - insn_buf; } /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of * context Structure, F is Field in context structure that contains a pointer * to Nested Structure of type NS that has the field NF. * * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make * sure that SIZE is not greater than actual size of S.F.NF. * * If offset OFF is provided, the load happens from that offset relative to * offset of NF. */ #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \ do { \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \ si->src_reg, offsetof(S, F)); \ *insn++ = BPF_LDX_MEM( \ SIZE, si->dst_reg, si->dst_reg, \ bpf_target_off(NS, NF, sizeof_field(NS, NF), \ target_size) \ + OFF); \ } while (0) #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \ SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \ BPF_FIELD_SIZEOF(NS, NF), 0) /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation. * * In addition it uses Temporary Field TF (member of struct S) as the 3rd * "register" since two registers available in convert_ctx_access are not * enough: we can't override neither SRC, since it contains value to store, nor * DST since it contains pointer to context that may be used by later * instructions. But we need a temporary place to save pointer to nested * structure whose field we want to store to. */ #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \ do { \ int tmp_reg = BPF_REG_9; \ if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ --tmp_reg; \ if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ --tmp_reg; \ *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \ offsetof(S, TF)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \ si->dst_reg, offsetof(S, F)); \ *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \ tmp_reg, si->src_reg, \ bpf_target_off(NS, NF, sizeof_field(NS, NF), \ target_size) \ + OFF, \ si->imm); \ *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \ offsetof(S, TF)); \ } while (0) #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \ TF) \ do { \ if (type == BPF_WRITE) { \ SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \ OFF, TF); \ } else { \ SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \ S, NS, F, NF, SIZE, OFF); \ } \ } while (0) #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \ SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \ S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF) static u32 sock_addr_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port); struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct bpf_sock_addr, user_family): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sockaddr, uaddr, sa_family); break; case offsetof(struct bpf_sock_addr, user_ip4): SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sockaddr_in, uaddr, sin_addr, BPF_SIZE(si->code), 0, tmp_reg); break; case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): off = si->off; off -= offsetof(struct bpf_sock_addr, user_ip6[0]); SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg); break; case offsetof(struct bpf_sock_addr, user_port): /* To get port we need to know sa_family first and then treat * sockaddr as either sockaddr_in or sockaddr_in6. * Though we can simplify since port field has same offset and * size in both structures. * Here we check this invariant and use just one of the * structures if it's true. */ BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) != offsetof(struct sockaddr_in6, sin6_port)); BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) != sizeof_field(struct sockaddr_in6, sin6_port)); /* Account for sin6_port being smaller than user_port. */ port_size = min(port_size, BPF_LDST_BYTES(si)); SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg); break; case offsetof(struct bpf_sock_addr, family): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sock, sk, sk_family); break; case offsetof(struct bpf_sock_addr, type): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sock, sk, sk_type); break; case offsetof(struct bpf_sock_addr, protocol): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sock, sk, sk_protocol); break; case offsetof(struct bpf_sock_addr, msg_src_ip4): /* Treat t_ctx as struct in_addr for msg_src_ip4. */ SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct in_addr, t_ctx, s_addr, BPF_SIZE(si->code), 0, tmp_reg); break; case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], msg_src_ip6[3]): off = si->off; off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]); /* Treat t_ctx as struct in6_addr for msg_src_ip6. */ SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct in6_addr, t_ctx, s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg); break; case offsetof(struct bpf_sock_addr, sk): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_addr_kern, sk)); break; } return insn - insn_buf; } static u32 sock_ops_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; /* Helper macro for adding read access to tcp_sock or sock fields. */ #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ do { \ int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \ BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \ sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == si->src_reg) { \ *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ fullsock_reg = reg; \ jmp += 2; \ } \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, \ is_fullsock), \ fullsock_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ is_fullsock)); \ *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \ if (si->dst_reg == si->src_reg) \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, sk),\ si->dst_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, sk));\ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \ OBJ_FIELD), \ si->dst_reg, si->dst_reg, \ offsetof(OBJ, OBJ_FIELD)); \ if (si->dst_reg == si->src_reg) { \ *insn++ = BPF_JMP_A(1); \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ } \ } while (0) #define SOCK_OPS_GET_SK() \ do { \ int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == si->src_reg) { \ *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ fullsock_reg = reg; \ jmp += 2; \ } \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, \ is_fullsock), \ fullsock_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ is_fullsock)); \ *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \ if (si->dst_reg == si->src_reg) \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, sk),\ si->dst_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, sk));\ if (si->dst_reg == si->src_reg) { \ *insn++ = BPF_JMP_A(1); \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ } \ } while (0) #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \ SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock) /* Helper macro for adding write access to tcp_sock or sock fields. * The macro is called with two registers, dst_reg which contains a pointer * to ctx (context) and src_reg which contains the value that should be * stored. However, we need an additional register since we cannot overwrite * dst_reg because it may be used later in the program. * Instead we "borrow" one of the other register. We first save its value * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore * it at the end of the macro. */ #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ do { \ int reg = BPF_REG_9; \ BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \ sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, \ is_fullsock), \ reg, si->dst_reg, \ offsetof(struct bpf_sock_ops_kern, \ is_fullsock)); \ *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, sk),\ reg, si->dst_reg, \ offsetof(struct bpf_sock_ops_kern, sk));\ *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \ BPF_MEM | BPF_CLASS(si->code), \ reg, si->src_reg, \ offsetof(OBJ, OBJ_FIELD), \ si->imm); \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ } while (0) #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \ do { \ if (TYPE == BPF_WRITE) \ SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ else \ SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ } while (0) switch (si->off) { case offsetof(struct bpf_sock_ops, op): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, op), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, op)); break; case offsetof(struct bpf_sock_ops, replylong[0]) ... offsetof(struct bpf_sock_ops, replylong[3]): BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) != sizeof_field(struct bpf_sock_ops_kern, reply)); BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) != sizeof_field(struct bpf_sock_ops_kern, replylong)); off = si->off; off -= offsetof(struct bpf_sock_ops, replylong[0]); off += offsetof(struct bpf_sock_ops_kern, replylong[0]); if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_W, si, off); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off); break; case offsetof(struct bpf_sock_ops, family): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_family)); break; case offsetof(struct bpf_sock_ops, remote_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_daddr)); break; case offsetof(struct bpf_sock_ops, local_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_rcv_saddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_rcv_saddr)); break; case offsetof(struct bpf_sock_ops, remote_ip6[0]) ... offsetof(struct bpf_sock_ops, remote_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_daddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct bpf_sock_ops, remote_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_daddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct bpf_sock_ops, local_ip6[0]) ... offsetof(struct bpf_sock_ops, local_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct bpf_sock_ops, local_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct bpf_sock_ops, remote_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_dport)); #ifndef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); #endif break; case offsetof(struct bpf_sock_ops, local_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_num)); break; case offsetof(struct bpf_sock_ops, is_fullsock): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, is_fullsock), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, is_fullsock)); break; case offsetof(struct bpf_sock_ops, state): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_state)); break; case offsetof(struct bpf_sock_ops, rtt_min): BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) != sizeof(struct minmax)); BUILD_BUG_ON(sizeof(struct minmax) < sizeof(struct minmax_sample)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct tcp_sock, rtt_min) + sizeof_field(struct minmax_sample, t)); break; case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags): SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, sk_txhash): SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash, struct sock, type); break; case offsetof(struct bpf_sock_ops, snd_cwnd): SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd); break; case offsetof(struct bpf_sock_ops, srtt_us): SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us); break; case offsetof(struct bpf_sock_ops, snd_ssthresh): SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh); break; case offsetof(struct bpf_sock_ops, rcv_nxt): SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt); break; case offsetof(struct bpf_sock_ops, snd_nxt): SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt); break; case offsetof(struct bpf_sock_ops, snd_una): SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una); break; case offsetof(struct bpf_sock_ops, mss_cache): SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache); break; case offsetof(struct bpf_sock_ops, ecn_flags): SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags); break; case offsetof(struct bpf_sock_ops, rate_delivered): SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered); break; case offsetof(struct bpf_sock_ops, rate_interval_us): SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us); break; case offsetof(struct bpf_sock_ops, packets_out): SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out); break; case offsetof(struct bpf_sock_ops, retrans_out): SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out); break; case offsetof(struct bpf_sock_ops, total_retrans): SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans); break; case offsetof(struct bpf_sock_ops, segs_in): SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in); break; case offsetof(struct bpf_sock_ops, data_segs_in): SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in); break; case offsetof(struct bpf_sock_ops, segs_out): SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out); break; case offsetof(struct bpf_sock_ops, data_segs_out): SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out); break; case offsetof(struct bpf_sock_ops, lost_out): SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out); break; case offsetof(struct bpf_sock_ops, sacked_out): SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out); break; case offsetof(struct bpf_sock_ops, bytes_received): SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received); break; case offsetof(struct bpf_sock_ops, bytes_acked): SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked); break; case offsetof(struct bpf_sock_ops, sk): SOCK_OPS_GET_SK(); break; case offsetof(struct bpf_sock_ops, skb_data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, skb_data_end), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, skb_data_end)); break; case offsetof(struct bpf_sock_ops, skb_data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, skb), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, skb)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), si->dst_reg, si->dst_reg, offsetof(struct sk_buff, data)); break; case offsetof(struct bpf_sock_ops, skb_len): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, skb), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, skb)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len), si->dst_reg, si->dst_reg, offsetof(struct sk_buff, len)); break; case offsetof(struct bpf_sock_ops, skb_tcp_flags): off = offsetof(struct sk_buff, cb); off += offsetof(struct tcp_skb_cb, tcp_flags); *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, skb), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, skb)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb, tcp_flags), si->dst_reg, si->dst_reg, off); break; case offsetof(struct bpf_sock_ops, skb_hwtstamp): { struct bpf_insn *jmp_on_null_skb; *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern, skb), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, skb)); /* Reserve one insn to test skb == NULL */ jmp_on_null_skb = insn++; insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn); *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg, bpf_target_off(struct skb_shared_info, hwtstamps, 8, target_size)); *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, insn - jmp_on_null_skb - 1); break; } } return insn - insn_buf; } /* data_end = skb->data + skb_headlen() */ static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si, struct bpf_insn *insn) { int reg; int temp_reg_off = offsetof(struct sk_buff, cb) + offsetof(struct sk_skb_cb, temp_reg); if (si->src_reg == si->dst_reg) { /* We need an extra register, choose and save a register. */ reg = BPF_REG_9; if (si->src_reg == reg || si->dst_reg == reg) reg--; if (si->src_reg == reg || si->dst_reg == reg) reg--; *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off); } else { reg = si->dst_reg; } /* reg = skb->data */ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), reg, si->src_reg, offsetof(struct sk_buff, data)); /* AX = skb->len */ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len), BPF_REG_AX, si->src_reg, offsetof(struct sk_buff, len)); /* reg = skb->data + skb->len */ *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX); /* AX = skb->data_len */ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len), BPF_REG_AX, si->src_reg, offsetof(struct sk_buff, data_len)); /* reg = skb->data + skb->len - skb->data_len */ *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX); if (si->src_reg == si->dst_reg) { /* Restore the saved register */ *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg); *insn++ = BPF_MOV64_REG(si->dst_reg, reg); *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off); } return insn; } static u32 sk_skb_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct __sk_buff, data_end): insn = bpf_convert_data_end_access(si, insn); break; case offsetof(struct __sk_buff, cb[0]) ... offsetofend(struct __sk_buff, cb[4]) - 1: BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20); BUILD_BUG_ON((offsetof(struct sk_buff, cb) + offsetof(struct sk_skb_cb, data)) % sizeof(__u64)); prog->cb_access = 1; off = si->off; off -= offsetof(struct __sk_buff, cb[0]); off += offsetof(struct sk_buff, cb); off += offsetof(struct sk_skb_cb, data); if (type == BPF_WRITE) *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off); else *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg, si->src_reg, off); break; default: return bpf_convert_ctx_access(type, si, insn_buf, prog, target_size); } return insn - insn_buf; } static u32 sk_msg_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; #if IS_ENABLED(CONFIG_IPV6) int off; #endif /* convert ctx uses the fact sg element is first in struct */ BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0); switch (si->off) { case offsetof(struct sk_msg_md, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data), si->dst_reg, si->src_reg, offsetof(struct sk_msg, data)); break; case offsetof(struct sk_msg_md, data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end), si->dst_reg, si->src_reg, offsetof(struct sk_msg, data_end)); break; case offsetof(struct sk_msg_md, family): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_family)); break; case offsetof(struct sk_msg_md, remote_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_daddr)); break; case offsetof(struct sk_msg_md, local_ip4): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_rcv_saddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_rcv_saddr)); break; case offsetof(struct sk_msg_md, remote_ip6[0]) ... offsetof(struct sk_msg_md, remote_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_daddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct sk_msg_md, remote_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_daddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct sk_msg_md, local_ip6[0]) ... offsetof(struct sk_msg_md, local_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(sizeof_field(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct sk_msg_md, local_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct sk_msg_md, remote_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_dport)); #ifndef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); #endif break; case offsetof(struct sk_msg_md, local_port): BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_num)); break; case offsetof(struct sk_msg_md, size): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size), si->dst_reg, si->src_reg, offsetof(struct sk_msg_sg, size)); break; case offsetof(struct sk_msg_md, sk): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg, sk)); break; } return insn - insn_buf; } const struct bpf_verifier_ops sk_filter_verifier_ops = { .get_func_proto = sk_filter_func_proto, .is_valid_access = sk_filter_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, .gen_ld_abs = bpf_gen_ld_abs, }; const struct bpf_prog_ops sk_filter_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops tc_cls_act_verifier_ops = { .get_func_proto = tc_cls_act_func_proto, .is_valid_access = tc_cls_act_is_valid_access, .convert_ctx_access = tc_cls_act_convert_ctx_access, .gen_prologue = tc_cls_act_prologue, .gen_ld_abs = bpf_gen_ld_abs, .btf_struct_access = tc_cls_act_btf_struct_access, }; const struct bpf_prog_ops tc_cls_act_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops xdp_verifier_ops = { .get_func_proto = xdp_func_proto, .is_valid_access = xdp_is_valid_access, .convert_ctx_access = xdp_convert_ctx_access, .gen_prologue = bpf_noop_prologue, .btf_struct_access = xdp_btf_struct_access, }; const struct bpf_prog_ops xdp_prog_ops = { .test_run = bpf_prog_test_run_xdp, }; const struct bpf_verifier_ops cg_skb_verifier_ops = { .get_func_proto = cg_skb_func_proto, .is_valid_access = cg_skb_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops cg_skb_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_in_verifier_ops = { .get_func_proto = lwt_in_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops lwt_in_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_out_verifier_ops = { .get_func_proto = lwt_out_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops lwt_out_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_xmit_verifier_ops = { .get_func_proto = lwt_xmit_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, .gen_prologue = tc_cls_act_prologue, }; const struct bpf_prog_ops lwt_xmit_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_seg6local_verifier_ops = { .get_func_proto = lwt_seg6local_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops lwt_seg6local_prog_ops = { }; const struct bpf_verifier_ops cg_sock_verifier_ops = { .get_func_proto = sock_filter_func_proto, .is_valid_access = sock_filter_is_valid_access, .convert_ctx_access = bpf_sock_convert_ctx_access, }; const struct bpf_prog_ops cg_sock_prog_ops = { }; const struct bpf_verifier_ops cg_sock_addr_verifier_ops = { .get_func_proto = sock_addr_func_proto, .is_valid_access = sock_addr_is_valid_access, .convert_ctx_access = sock_addr_convert_ctx_access, }; const struct bpf_prog_ops cg_sock_addr_prog_ops = { }; const struct bpf_verifier_ops sock_ops_verifier_ops = { .get_func_proto = sock_ops_func_proto, .is_valid_access = sock_ops_is_valid_access, .convert_ctx_access = sock_ops_convert_ctx_access, }; const struct bpf_prog_ops sock_ops_prog_ops = { }; const struct bpf_verifier_ops sk_skb_verifier_ops = { .get_func_proto = sk_skb_func_proto, .is_valid_access = sk_skb_is_valid_access, .convert_ctx_access = sk_skb_convert_ctx_access, .gen_prologue = sk_skb_prologue, }; const struct bpf_prog_ops sk_skb_prog_ops = { }; const struct bpf_verifier_ops sk_msg_verifier_ops = { .get_func_proto = sk_msg_func_proto, .is_valid_access = sk_msg_is_valid_access, .convert_ctx_access = sk_msg_convert_ctx_access, .gen_prologue = bpf_noop_prologue, }; const struct bpf_prog_ops sk_msg_prog_ops = { }; const struct bpf_verifier_ops flow_dissector_verifier_ops = { .get_func_proto = flow_dissector_func_proto, .is_valid_access = flow_dissector_is_valid_access, .convert_ctx_access = flow_dissector_convert_ctx_access, }; const struct bpf_prog_ops flow_dissector_prog_ops = { .test_run = bpf_prog_test_run_flow_dissector, }; int sk_detach_filter(struct sock *sk) { int ret = -ENOENT; struct sk_filter *filter; if (sock_flag(sk, SOCK_FILTER_LOCKED)) return -EPERM; filter = rcu_dereference_protected(sk->sk_filter, lockdep_sock_is_held(sk)); if (filter) { RCU_INIT_POINTER(sk->sk_filter, NULL); sk_filter_uncharge(sk, filter); ret = 0; } return ret; } EXPORT_SYMBOL_GPL(sk_detach_filter); int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len) { struct sock_fprog_kern *fprog; struct sk_filter *filter; int ret = 0; sockopt_lock_sock(sk); filter = rcu_dereference_protected(sk->sk_filter, lockdep_sock_is_held(sk)); if (!filter) goto out; /* We're copying the filter that has been originally attached, * so no conversion/decode needed anymore. eBPF programs that * have no original program cannot be dumped through this. */ ret = -EACCES; fprog = filter->prog->orig_prog; if (!fprog) goto out; ret = fprog->len; if (!len) /* User space only enquires number of filter blocks. */ goto out; ret = -EINVAL; if (len < fprog->len) goto out; ret = -EFAULT; if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog))) goto out; /* Instead of bytes, the API requests to return the number * of filter blocks. */ ret = fprog->len; out: sockopt_release_sock(sk); return ret; } #ifdef CONFIG_INET static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern, struct sock_reuseport *reuse, struct sock *sk, struct sk_buff *skb, struct sock *migrating_sk, u32 hash) { reuse_kern->skb = skb; reuse_kern->sk = sk; reuse_kern->selected_sk = NULL; reuse_kern->migrating_sk = migrating_sk; reuse_kern->data_end = skb->data + skb_headlen(skb); reuse_kern->hash = hash; reuse_kern->reuseport_id = reuse->reuseport_id; reuse_kern->bind_inany = reuse->bind_inany; } struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, struct bpf_prog *prog, struct sk_buff *skb, struct sock *migrating_sk, u32 hash) { struct sk_reuseport_kern reuse_kern; enum sk_action action; bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash); action = bpf_prog_run(prog, &reuse_kern); if (action == SK_PASS) return reuse_kern.selected_sk; else return ERR_PTR(-ECONNREFUSED); } BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern, struct bpf_map *, map, void *, key, u32, flags) { bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY; struct sock_reuseport *reuse; struct sock *selected_sk; selected_sk = map->ops->map_lookup_elem(map, key); if (!selected_sk) return -ENOENT; reuse = rcu_dereference(selected_sk->sk_reuseport_cb); if (!reuse) { /* Lookup in sock_map can return TCP ESTABLISHED sockets. */ if (sk_is_refcounted(selected_sk)) sock_put(selected_sk); /* reuseport_array has only sk with non NULL sk_reuseport_cb. * The only (!reuse) case here is - the sk has already been * unhashed (e.g. by close()), so treat it as -ENOENT. * * Other maps (e.g. sock_map) do not provide this guarantee and * the sk may never be in the reuseport group to begin with. */ return is_sockarray ? -ENOENT : -EINVAL; } if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) { struct sock *sk = reuse_kern->sk; if (sk->sk_protocol != selected_sk->sk_protocol) return -EPROTOTYPE; else if (sk->sk_family != selected_sk->sk_family) return -EAFNOSUPPORT; /* Catch all. Likely bound to a different sockaddr. */ return -EBADFD; } reuse_kern->selected_sk = selected_sk; return 0; } static const struct bpf_func_proto sk_select_reuseport_proto = { .func = sk_select_reuseport, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_PTR_TO_MAP_KEY, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(sk_reuseport_load_bytes, const struct sk_reuseport_kern *, reuse_kern, u32, offset, void *, to, u32, len) { return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len); } static const struct bpf_func_proto sk_reuseport_load_bytes_proto = { .func = sk_reuseport_load_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; BPF_CALL_5(sk_reuseport_load_bytes_relative, const struct sk_reuseport_kern *, reuse_kern, u32, offset, void *, to, u32, len, u32, start_header) { return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to, len, start_header); } static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = { .func = sk_reuseport_load_bytes_relative, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; static const struct bpf_func_proto * sk_reuseport_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_sk_select_reuseport: return &sk_select_reuseport_proto; case BPF_FUNC_skb_load_bytes: return &sk_reuseport_load_bytes_proto; case BPF_FUNC_skb_load_bytes_relative: return &sk_reuseport_load_bytes_relative_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_ptr_cookie_proto; case BPF_FUNC_ktime_get_coarse_ns: return &bpf_ktime_get_coarse_ns_proto; default: return bpf_base_func_proto(func_id, prog); } } static bool sk_reuseport_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const u32 size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct sk_reuseport_md) || off % size || type != BPF_READ) return false; switch (off) { case offsetof(struct sk_reuseport_md, data): info->reg_type = PTR_TO_PACKET; return size == sizeof(__u64); case offsetof(struct sk_reuseport_md, data_end): info->reg_type = PTR_TO_PACKET_END; return size == sizeof(__u64); case offsetof(struct sk_reuseport_md, hash): return size == size_default; case offsetof(struct sk_reuseport_md, sk): info->reg_type = PTR_TO_SOCKET; return size == sizeof(__u64); case offsetof(struct sk_reuseport_md, migrating_sk): info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL; return size == sizeof(__u64); /* Fields that allow narrowing */ case bpf_ctx_range(struct sk_reuseport_md, eth_protocol): if (size < sizeof_field(struct sk_buff, protocol)) return false; fallthrough; case bpf_ctx_range(struct sk_reuseport_md, ip_protocol): case bpf_ctx_range(struct sk_reuseport_md, bind_inany): case bpf_ctx_range(struct sk_reuseport_md, len): bpf_ctx_record_field_size(info, size_default); return bpf_ctx_narrow_access_ok(off, size, size_default); default: return false; } } #define SK_REUSEPORT_LOAD_FIELD(F) ({ \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \ si->dst_reg, si->src_reg, \ bpf_target_off(struct sk_reuseport_kern, F, \ sizeof_field(struct sk_reuseport_kern, F), \ target_size)); \ }) #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \ SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \ struct sk_buff, \ skb, \ SKB_FIELD) #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \ SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \ struct sock, \ sk, \ SK_FIELD) static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct sk_reuseport_md, data): SK_REUSEPORT_LOAD_SKB_FIELD(data); break; case offsetof(struct sk_reuseport_md, len): SK_REUSEPORT_LOAD_SKB_FIELD(len); break; case offsetof(struct sk_reuseport_md, eth_protocol): SK_REUSEPORT_LOAD_SKB_FIELD(protocol); break; case offsetof(struct sk_reuseport_md, ip_protocol): SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol); break; case offsetof(struct sk_reuseport_md, data_end): SK_REUSEPORT_LOAD_FIELD(data_end); break; case offsetof(struct sk_reuseport_md, hash): SK_REUSEPORT_LOAD_FIELD(hash); break; case offsetof(struct sk_reuseport_md, bind_inany): SK_REUSEPORT_LOAD_FIELD(bind_inany); break; case offsetof(struct sk_reuseport_md, sk): SK_REUSEPORT_LOAD_FIELD(sk); break; case offsetof(struct sk_reuseport_md, migrating_sk): SK_REUSEPORT_LOAD_FIELD(migrating_sk); break; } return insn - insn_buf; } const struct bpf_verifier_ops sk_reuseport_verifier_ops = { .get_func_proto = sk_reuseport_func_proto, .is_valid_access = sk_reuseport_is_valid_access, .convert_ctx_access = sk_reuseport_convert_ctx_access, }; const struct bpf_prog_ops sk_reuseport_prog_ops = { }; DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled); EXPORT_SYMBOL(bpf_sk_lookup_enabled); BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx, struct sock *, sk, u64, flags) { if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE | BPF_SK_LOOKUP_F_NO_REUSEPORT))) return -EINVAL; if (unlikely(sk && sk_is_refcounted(sk))) return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */ if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN)) return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */ if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE)) return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */ /* Check if socket is suitable for packet L3/L4 protocol */ if (sk && sk->sk_protocol != ctx->protocol) return -EPROTOTYPE; if (sk && sk->sk_family != ctx->family && (sk->sk_family == AF_INET || ipv6_only_sock(sk))) return -EAFNOSUPPORT; if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE)) return -EEXIST; /* Select socket as lookup result */ ctx->selected_sk = sk; ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT; return 0; } static const struct bpf_func_proto bpf_sk_lookup_assign_proto = { .func = bpf_sk_lookup_assign, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL, .arg3_type = ARG_ANYTHING, }; static const struct bpf_func_proto * sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_perf_event_output: return &bpf_event_output_data_proto; case BPF_FUNC_sk_assign: return &bpf_sk_lookup_assign_proto; case BPF_FUNC_sk_release: return &bpf_sk_release_proto; default: return bpf_sk_base_func_proto(func_id, prog); } } static bool sk_lookup_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (off < 0 || off >= sizeof(struct bpf_sk_lookup)) return false; if (off % size != 0) return false; if (type != BPF_READ) return false; switch (off) { case offsetof(struct bpf_sk_lookup, sk): info->reg_type = PTR_TO_SOCKET_OR_NULL; return size == sizeof(__u64); case bpf_ctx_range(struct bpf_sk_lookup, family): case bpf_ctx_range(struct bpf_sk_lookup, protocol): case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4): case bpf_ctx_range(struct bpf_sk_lookup, local_ip4): case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]): case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]): case bpf_ctx_range(struct bpf_sk_lookup, local_port): case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex): bpf_ctx_record_field_size(info, sizeof(__u32)); return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32)); case bpf_ctx_range(struct bpf_sk_lookup, remote_port): /* Allow 4-byte access to 2-byte field for backward compatibility */ if (size == sizeof(__u32)) return true; bpf_ctx_record_field_size(info, sizeof(__be16)); return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16)); case offsetofend(struct bpf_sk_lookup, remote_port) ... offsetof(struct bpf_sk_lookup, local_ip4) - 1: /* Allow access to zero padding for backward compatibility */ bpf_ctx_record_field_size(info, sizeof(__u16)); return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16)); default: return false; } } static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct bpf_sk_lookup, sk): *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, offsetof(struct bpf_sk_lookup_kern, selected_sk)); break; case offsetof(struct bpf_sk_lookup, family): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, family, 2, target_size)); break; case offsetof(struct bpf_sk_lookup, protocol): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, protocol, 2, target_size)); break; case offsetof(struct bpf_sk_lookup, remote_ip4): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, v4.saddr, 4, target_size)); break; case offsetof(struct bpf_sk_lookup, local_ip4): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, v4.daddr, 4, target_size)); break; case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]): { #if IS_ENABLED(CONFIG_IPV6) int off = si->off; off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]); off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, offsetof(struct bpf_sk_lookup_kern, v6.saddr)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; } case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]): { #if IS_ENABLED(CONFIG_IPV6) int off = si->off; off -= offsetof(struct bpf_sk_lookup, local_ip6[0]); off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, offsetof(struct bpf_sk_lookup_kern, v6.daddr)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; } case offsetof(struct bpf_sk_lookup, remote_port): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, sport, 2, target_size)); break; case offsetofend(struct bpf_sk_lookup, remote_port): *target_size = 2; *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); break; case offsetof(struct bpf_sk_lookup, local_port): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, dport, 2, target_size)); break; case offsetof(struct bpf_sk_lookup, ingress_ifindex): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct bpf_sk_lookup_kern, ingress_ifindex, 4, target_size)); break; } return insn - insn_buf; } const struct bpf_prog_ops sk_lookup_prog_ops = { .test_run = bpf_prog_test_run_sk_lookup, }; const struct bpf_verifier_ops sk_lookup_verifier_ops = { .get_func_proto = sk_lookup_func_proto, .is_valid_access = sk_lookup_is_valid_access, .convert_ctx_access = sk_lookup_convert_ctx_access, }; #endif /* CONFIG_INET */ DEFINE_BPF_DISPATCHER(xdp) void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog) { bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog); } BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE) #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type) BTF_SOCK_TYPE_xxx #undef BTF_SOCK_TYPE BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk) { /* tcp6_sock type is not generated in dwarf and hence btf, * trigger an explicit type generation here. */ BTF_TYPE_EMIT(struct tcp6_sock); if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP && sk->sk_family == AF_INET6) return (unsigned long)sk; return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = { .func = bpf_skc_to_tcp6_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6], }; BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk) { if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP) return (unsigned long)sk; return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = { .func = bpf_skc_to_tcp_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP], }; BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk) { /* BTF types for tcp_timewait_sock and inet_timewait_sock are not * generated if CONFIG_INET=n. Trigger an explicit generation here. */ BTF_TYPE_EMIT(struct inet_timewait_sock); BTF_TYPE_EMIT(struct tcp_timewait_sock); #ifdef CONFIG_INET if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT) return (unsigned long)sk; #endif #if IS_BUILTIN(CONFIG_IPV6) if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT) return (unsigned long)sk; #endif return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = { .func = bpf_skc_to_tcp_timewait_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW], }; BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk) { #ifdef CONFIG_INET if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV) return (unsigned long)sk; #endif #if IS_BUILTIN(CONFIG_IPV6) if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV) return (unsigned long)sk; #endif return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = { .func = bpf_skc_to_tcp_request_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ], }; BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk) { /* udp6_sock type is not generated in dwarf and hence btf, * trigger an explicit type generation here. */ BTF_TYPE_EMIT(struct udp6_sock); if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP && sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6) return (unsigned long)sk; return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = { .func = bpf_skc_to_udp6_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6], }; BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk) { /* unix_sock type is not generated in dwarf and hence btf, * trigger an explicit type generation here. */ BTF_TYPE_EMIT(struct unix_sock); if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX) return (unsigned long)sk; return (unsigned long)NULL; } const struct bpf_func_proto bpf_skc_to_unix_sock_proto = { .func = bpf_skc_to_unix_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX], }; BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk) { BTF_TYPE_EMIT(struct mptcp_sock); return (unsigned long)bpf_mptcp_sock_from_subflow(sk); } const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = { .func = bpf_skc_to_mptcp_sock, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .arg1_type = ARG_PTR_TO_SOCK_COMMON, .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP], }; BPF_CALL_1(bpf_sock_from_file, struct file *, file) { return (unsigned long)sock_from_file(file); } BTF_ID_LIST(bpf_sock_from_file_btf_ids) BTF_ID(struct, socket) BTF_ID(struct, file) const struct bpf_func_proto bpf_sock_from_file_proto = { .func = bpf_sock_from_file, .gpl_only = false, .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, .ret_btf_id = &bpf_sock_from_file_btf_ids[0], .arg1_type = ARG_PTR_TO_BTF_ID, .arg1_btf_id = &bpf_sock_from_file_btf_ids[1], }; static const struct bpf_func_proto * bpf_sk_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { const struct bpf_func_proto *func; switch (func_id) { case BPF_FUNC_skc_to_tcp6_sock: func = &bpf_skc_to_tcp6_sock_proto; break; case BPF_FUNC_skc_to_tcp_sock: func = &bpf_skc_to_tcp_sock_proto; break; case BPF_FUNC_skc_to_tcp_timewait_sock: func = &bpf_skc_to_tcp_timewait_sock_proto; break; case BPF_FUNC_skc_to_tcp_request_sock: func = &bpf_skc_to_tcp_request_sock_proto; break; case BPF_FUNC_skc_to_udp6_sock: func = &bpf_skc_to_udp6_sock_proto; break; case BPF_FUNC_skc_to_unix_sock: func = &bpf_skc_to_unix_sock_proto; break; case BPF_FUNC_skc_to_mptcp_sock: func = &bpf_skc_to_mptcp_sock_proto; break; case BPF_FUNC_ktime_get_coarse_ns: return &bpf_ktime_get_coarse_ns_proto; default: return bpf_base_func_proto(func_id, prog); } if (!bpf_token_capable(prog->aux->token, CAP_PERFMON)) return NULL; return func; } __bpf_kfunc_start_defs(); __bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags, struct bpf_dynptr *ptr__uninit) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; struct sk_buff *skb = (struct sk_buff *)s; if (flags) { bpf_dynptr_set_null(ptr); return -EINVAL; } bpf_dynptr_init(ptr, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len); return 0; } __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_md *x, u64 flags, struct bpf_dynptr *ptr__uninit) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; struct xdp_buff *xdp = (struct xdp_buff *)x; if (flags) { bpf_dynptr_set_null(ptr); return -EINVAL; } bpf_dynptr_init(ptr, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp)); return 0; } __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern, const u8 *sun_path, u32 sun_path__sz) { struct sockaddr_un *un; if (sa_kern->sk->sk_family != AF_UNIX) return -EINVAL; /* We do not allow changing the address to unnamed or larger than the * maximum allowed address size for a unix sockaddr. */ if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX) return -EINVAL; un = (struct sockaddr_un *)sa_kern->uaddr; memcpy(un->sun_path, sun_path, sun_path__sz); sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz; return 0; } __bpf_kfunc int bpf_sk_assign_tcp_reqsk(struct __sk_buff *s, struct sock *sk, struct bpf_tcp_req_attrs *attrs, int attrs__sz) { #if IS_ENABLED(CONFIG_SYN_COOKIES) struct sk_buff *skb = (struct sk_buff *)s; const struct request_sock_ops *ops; struct inet_request_sock *ireq; struct tcp_request_sock *treq; struct request_sock *req; struct net *net; __u16 min_mss; u32 tsoff = 0; if (attrs__sz != sizeof(*attrs) || attrs->reserved[0] || attrs->reserved[1] || attrs->reserved[2]) return -EINVAL; if (!skb_at_tc_ingress(skb)) return -EINVAL; net = dev_net(skb->dev); if (net != sock_net(sk)) return -ENETUNREACH; switch (skb->protocol) { case htons(ETH_P_IP): ops = &tcp_request_sock_ops; min_mss = 536; break; #if IS_BUILTIN(CONFIG_IPV6) case htons(ETH_P_IPV6): ops = &tcp6_request_sock_ops; min_mss = IPV6_MIN_MTU - 60; break; #endif default: return -EINVAL; } if (sk->sk_type != SOCK_STREAM || sk->sk_state != TCP_LISTEN || sk_is_mptcp(sk)) return -EINVAL; if (attrs->mss < min_mss) return -EINVAL; if (attrs->wscale_ok) { if (!READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) return -EINVAL; if (attrs->snd_wscale > TCP_MAX_WSCALE || attrs->rcv_wscale > TCP_MAX_WSCALE) return -EINVAL; } if (attrs->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack)) return -EINVAL; if (attrs->tstamp_ok) { if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps)) return -EINVAL; tsoff = attrs->rcv_tsecr - tcp_ns_to_ts(attrs->usec_ts_ok, tcp_clock_ns()); } req = inet_reqsk_alloc(ops, sk, false); if (!req) return -ENOMEM; ireq = inet_rsk(req); treq = tcp_rsk(req); req->rsk_listener = sk; req->syncookie = 1; req->mss = attrs->mss; req->ts_recent = attrs->rcv_tsval; ireq->snd_wscale = attrs->snd_wscale; ireq->rcv_wscale = attrs->rcv_wscale; ireq->tstamp_ok = !!attrs->tstamp_ok; ireq->sack_ok = !!attrs->sack_ok; ireq->wscale_ok = !!attrs->wscale_ok; ireq->ecn_ok = !!attrs->ecn_ok; treq->req_usec_ts = !!attrs->usec_ts_ok; treq->ts_off = tsoff; skb_orphan(skb); skb->sk = req_to_sk(req); skb->destructor = sock_pfree; return 0; #else return -EOPNOTSUPP; #endif } __bpf_kfunc_end_defs(); int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, struct bpf_dynptr *ptr__uninit) { struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)ptr__uninit; int err; err = bpf_dynptr_from_skb(skb, flags, ptr__uninit); if (err) return err; bpf_dynptr_set_rdonly(ptr); return 0; } BTF_KFUNCS_START(bpf_kfunc_check_set_skb) BTF_ID_FLAGS(func, bpf_dynptr_from_skb) BTF_KFUNCS_END(bpf_kfunc_check_set_skb) BTF_KFUNCS_START(bpf_kfunc_check_set_xdp) BTF_ID_FLAGS(func, bpf_dynptr_from_xdp) BTF_KFUNCS_END(bpf_kfunc_check_set_xdp) BTF_KFUNCS_START(bpf_kfunc_check_set_sock_addr) BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path) BTF_KFUNCS_END(bpf_kfunc_check_set_sock_addr) BTF_KFUNCS_START(bpf_kfunc_check_set_tcp_reqsk) BTF_ID_FLAGS(func, bpf_sk_assign_tcp_reqsk, KF_TRUSTED_ARGS) BTF_KFUNCS_END(bpf_kfunc_check_set_tcp_reqsk) static const struct btf_kfunc_id_set bpf_kfunc_set_skb = { .owner = THIS_MODULE, .set = &bpf_kfunc_check_set_skb, }; static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = { .owner = THIS_MODULE, .set = &bpf_kfunc_check_set_xdp, }; static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = { .owner = THIS_MODULE, .set = &bpf_kfunc_check_set_sock_addr, }; static const struct btf_kfunc_id_set bpf_kfunc_set_tcp_reqsk = { .owner = THIS_MODULE, .set = &bpf_kfunc_check_set_tcp_reqsk, }; static int __init bpf_kfunc_init(void) { int ret; ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp); ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR, &bpf_kfunc_set_sock_addr); return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_tcp_reqsk); } late_initcall(bpf_kfunc_init); __bpf_kfunc_start_defs(); /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code. * * The function expects a non-NULL pointer to a socket, and invokes the * protocol specific socket destroy handlers. * * The helper can only be called from BPF contexts that have acquired the socket * locks. * * Parameters: * @sock: Pointer to socket to be destroyed * * Return: * On error, may return EPROTONOSUPPORT, EINVAL. * EPROTONOSUPPORT if protocol specific destroy handler is not supported. * 0 otherwise */ __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock) { struct sock *sk = (struct sock *)sock; /* The locking semantics that allow for synchronous execution of the * destroy handlers are only supported for TCP and UDP. * Supporting protocols will need to acquire sock lock in the BPF context * prior to invoking this kfunc. */ if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP && sk->sk_protocol != IPPROTO_UDP)) return -EOPNOTSUPP; return sk->sk_prot->diag_destroy(sk, ECONNABORTED); } __bpf_kfunc_end_defs(); BTF_KFUNCS_START(bpf_sk_iter_kfunc_ids) BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS) BTF_KFUNCS_END(bpf_sk_iter_kfunc_ids) static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id) { if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) && prog->expected_attach_type != BPF_TRACE_ITER) return -EACCES; return 0; } static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = { .owner = THIS_MODULE, .set = &bpf_sk_iter_kfunc_ids, .filter = tracing_iter_filter, }; static int init_subsystem(void) { return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set); } late_initcall(init_subsystem);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1