Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Oltean | 4418 | 55.42% | 100 | 47.85% |
Vivien Didelot | 1334 | 16.73% | 42 | 20.10% |
Tobias Waldekranz | 482 | 6.05% | 6 | 2.87% |
Russell King | 392 | 4.92% | 16 | 7.66% |
Ioana Ciornei | 305 | 3.83% | 3 | 1.44% |
Florian Fainelli | 267 | 3.35% | 19 | 9.09% |
George McCollister | 161 | 2.02% | 1 | 0.48% |
Andrew Lunn | 138 | 1.73% | 6 | 2.87% |
Marek Behún | 137 | 1.72% | 1 | 0.48% |
Horatiu Vultur | 135 | 1.69% | 1 | 0.48% |
Arkadi Sharshevsky | 104 | 1.30% | 3 | 1.44% |
Sebastian Reichel | 53 | 0.66% | 1 | 0.48% |
Alvin Šipraga | 18 | 0.23% | 2 | 0.96% |
Lennert Buytenhek | 13 | 0.16% | 1 | 0.48% |
Hans Schultz | 4 | 0.05% | 1 | 0.48% |
Guenter Roeck | 3 | 0.04% | 1 | 0.48% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.48% |
David S. Miller | 2 | 0.03% | 1 | 0.48% |
Jiri Pirko | 2 | 0.03% | 1 | 0.48% |
Alexander Duyck | 1 | 0.01% | 1 | 0.48% |
Oleksij Rempel | 1 | 0.01% | 1 | 0.48% |
Total | 7972 | 209 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Handling of a single switch port * * Copyright (c) 2017 Savoir-faire Linux Inc. * Vivien Didelot <vivien.didelot@savoirfairelinux.com> */ #include <linux/if_bridge.h> #include <linux/netdevice.h> #include <linux/notifier.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include "dsa.h" #include "port.h" #include "switch.h" #include "tag_8021q.h" #include "user.h" /** * dsa_port_notify - Notify the switching fabric of changes to a port * @dp: port on which change occurred * @e: event, must be of type DSA_NOTIFIER_* * @v: event-specific value. * * Notify all switches in the DSA tree that this port's switch belongs to, * including this switch itself, of an event. Allows the other switches to * reconfigure themselves for cross-chip operations. Can also be used to * reconfigure ports without net_devices (CPU ports, DSA links) whenever * a user port's state changes. */ static int dsa_port_notify(const struct dsa_port *dp, unsigned long e, void *v) { return dsa_tree_notify(dp->ds->dst, e, v); } static void dsa_port_notify_bridge_fdb_flush(const struct dsa_port *dp, u16 vid) { struct net_device *brport_dev = dsa_port_to_bridge_port(dp); struct switchdev_notifier_fdb_info info = { .vid = vid, }; /* When the port becomes standalone it has already left the bridge. * Don't notify the bridge in that case. */ if (!brport_dev) return; call_switchdev_notifiers(SWITCHDEV_FDB_FLUSH_TO_BRIDGE, brport_dev, &info.info, NULL); } static void dsa_port_fast_age(const struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; if (!ds->ops->port_fast_age) return; ds->ops->port_fast_age(ds, dp->index); /* flush all VLANs */ dsa_port_notify_bridge_fdb_flush(dp, 0); } static int dsa_port_vlan_fast_age(const struct dsa_port *dp, u16 vid) { struct dsa_switch *ds = dp->ds; int err; if (!ds->ops->port_vlan_fast_age) return -EOPNOTSUPP; err = ds->ops->port_vlan_fast_age(ds, dp->index, vid); if (!err) dsa_port_notify_bridge_fdb_flush(dp, vid); return err; } static int dsa_port_msti_fast_age(const struct dsa_port *dp, u16 msti) { DECLARE_BITMAP(vids, VLAN_N_VID) = { 0 }; int err, vid; err = br_mst_get_info(dsa_port_bridge_dev_get(dp), msti, vids); if (err) return err; for_each_set_bit(vid, vids, VLAN_N_VID) { err = dsa_port_vlan_fast_age(dp, vid); if (err) return err; } return 0; } static bool dsa_port_can_configure_learning(struct dsa_port *dp) { struct switchdev_brport_flags flags = { .mask = BR_LEARNING, }; struct dsa_switch *ds = dp->ds; int err; if (!ds->ops->port_bridge_flags || !ds->ops->port_pre_bridge_flags) return false; err = ds->ops->port_pre_bridge_flags(ds, dp->index, flags, NULL); return !err; } bool dsa_port_supports_hwtstamp(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; struct ifreq ifr = {}; int err; if (!ds->ops->port_hwtstamp_get || !ds->ops->port_hwtstamp_set) return false; /* "See through" shim implementations of the "get" method. * Since we can't cook up a complete ioctl request structure, this will * fail in copy_to_user() with -EFAULT, which hopefully is enough to * detect a valid implementation. */ err = ds->ops->port_hwtstamp_get(ds, dp->index, &ifr); return err != -EOPNOTSUPP; } int dsa_port_set_state(struct dsa_port *dp, u8 state, bool do_fast_age) { struct dsa_switch *ds = dp->ds; int port = dp->index; if (!ds->ops->port_stp_state_set) return -EOPNOTSUPP; ds->ops->port_stp_state_set(ds, port, state); if (!dsa_port_can_configure_learning(dp) || (do_fast_age && dp->learning)) { /* Fast age FDB entries or flush appropriate forwarding database * for the given port, if we are moving it from Learning or * Forwarding state, to Disabled or Blocking or Listening state. * Ports that were standalone before the STP state change don't * need to fast age the FDB, since address learning is off in * standalone mode. */ if ((dp->stp_state == BR_STATE_LEARNING || dp->stp_state == BR_STATE_FORWARDING) && (state == BR_STATE_DISABLED || state == BR_STATE_BLOCKING || state == BR_STATE_LISTENING)) dsa_port_fast_age(dp); } dp->stp_state = state; return 0; } static void dsa_port_set_state_now(struct dsa_port *dp, u8 state, bool do_fast_age) { struct dsa_switch *ds = dp->ds; int err; err = dsa_port_set_state(dp, state, do_fast_age); if (err && err != -EOPNOTSUPP) { dev_err(ds->dev, "port %d failed to set STP state %u: %pe\n", dp->index, state, ERR_PTR(err)); } } int dsa_port_set_mst_state(struct dsa_port *dp, const struct switchdev_mst_state *state, struct netlink_ext_ack *extack) { struct dsa_switch *ds = dp->ds; u8 prev_state; int err; if (!ds->ops->port_mst_state_set) return -EOPNOTSUPP; err = br_mst_get_state(dsa_port_to_bridge_port(dp), state->msti, &prev_state); if (err) return err; err = ds->ops->port_mst_state_set(ds, dp->index, state); if (err) return err; if (!(dp->learning && (prev_state == BR_STATE_LEARNING || prev_state == BR_STATE_FORWARDING) && (state->state == BR_STATE_DISABLED || state->state == BR_STATE_BLOCKING || state->state == BR_STATE_LISTENING))) return 0; err = dsa_port_msti_fast_age(dp, state->msti); if (err) NL_SET_ERR_MSG_MOD(extack, "Unable to flush associated VLANs"); return 0; } int dsa_port_enable_rt(struct dsa_port *dp, struct phy_device *phy) { struct dsa_switch *ds = dp->ds; int port = dp->index; int err; if (ds->ops->port_enable) { err = ds->ops->port_enable(ds, port, phy); if (err) return err; } if (!dp->bridge) dsa_port_set_state_now(dp, BR_STATE_FORWARDING, false); if (dp->pl) phylink_start(dp->pl); return 0; } int dsa_port_enable(struct dsa_port *dp, struct phy_device *phy) { int err; rtnl_lock(); err = dsa_port_enable_rt(dp, phy); rtnl_unlock(); return err; } void dsa_port_disable_rt(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; int port = dp->index; if (dp->pl) phylink_stop(dp->pl); if (!dp->bridge) dsa_port_set_state_now(dp, BR_STATE_DISABLED, false); if (ds->ops->port_disable) ds->ops->port_disable(ds, port); } void dsa_port_disable(struct dsa_port *dp) { rtnl_lock(); dsa_port_disable_rt(dp); rtnl_unlock(); } static void dsa_port_reset_vlan_filtering(struct dsa_port *dp, struct dsa_bridge bridge) { struct netlink_ext_ack extack = {0}; bool change_vlan_filtering = false; struct dsa_switch *ds = dp->ds; struct dsa_port *other_dp; bool vlan_filtering; int err; if (ds->needs_standalone_vlan_filtering && !br_vlan_enabled(bridge.dev)) { change_vlan_filtering = true; vlan_filtering = true; } else if (!ds->needs_standalone_vlan_filtering && br_vlan_enabled(bridge.dev)) { change_vlan_filtering = true; vlan_filtering = false; } /* If the bridge was vlan_filtering, the bridge core doesn't trigger an * event for changing vlan_filtering setting upon user ports leaving * it. That is a good thing, because that lets us handle it and also * handle the case where the switch's vlan_filtering setting is global * (not per port). When that happens, the correct moment to trigger the * vlan_filtering callback is only when the last port leaves the last * VLAN-aware bridge. */ if (change_vlan_filtering && ds->vlan_filtering_is_global) { dsa_switch_for_each_port(other_dp, ds) { struct net_device *br = dsa_port_bridge_dev_get(other_dp); if (br && br_vlan_enabled(br)) { change_vlan_filtering = false; break; } } } if (!change_vlan_filtering) return; err = dsa_port_vlan_filtering(dp, vlan_filtering, &extack); if (extack._msg) { dev_err(ds->dev, "port %d: %s\n", dp->index, extack._msg); } if (err && err != -EOPNOTSUPP) { dev_err(ds->dev, "port %d failed to reset VLAN filtering to %d: %pe\n", dp->index, vlan_filtering, ERR_PTR(err)); } } static int dsa_port_inherit_brport_flags(struct dsa_port *dp, struct netlink_ext_ack *extack) { const unsigned long mask = BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD | BR_PORT_LOCKED; struct net_device *brport_dev = dsa_port_to_bridge_port(dp); int flag, err; for_each_set_bit(flag, &mask, 32) { struct switchdev_brport_flags flags = {0}; flags.mask = BIT(flag); if (br_port_flag_is_set(brport_dev, BIT(flag))) flags.val = BIT(flag); err = dsa_port_bridge_flags(dp, flags, extack); if (err && err != -EOPNOTSUPP) return err; } return 0; } static void dsa_port_clear_brport_flags(struct dsa_port *dp) { const unsigned long val = BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD; const unsigned long mask = BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | BR_BCAST_FLOOD | BR_PORT_LOCKED; int flag, err; for_each_set_bit(flag, &mask, 32) { struct switchdev_brport_flags flags = {0}; flags.mask = BIT(flag); flags.val = val & BIT(flag); err = dsa_port_bridge_flags(dp, flags, NULL); if (err && err != -EOPNOTSUPP) dev_err(dp->ds->dev, "failed to clear bridge port flag %lu: %pe\n", flags.val, ERR_PTR(err)); } } static int dsa_port_switchdev_sync_attrs(struct dsa_port *dp, struct netlink_ext_ack *extack) { struct net_device *brport_dev = dsa_port_to_bridge_port(dp); struct net_device *br = dsa_port_bridge_dev_get(dp); int err; err = dsa_port_inherit_brport_flags(dp, extack); if (err) return err; err = dsa_port_set_state(dp, br_port_get_stp_state(brport_dev), false); if (err && err != -EOPNOTSUPP) return err; err = dsa_port_vlan_filtering(dp, br_vlan_enabled(br), extack); if (err && err != -EOPNOTSUPP) return err; err = dsa_port_ageing_time(dp, br_get_ageing_time(br)); if (err && err != -EOPNOTSUPP) return err; return 0; } static void dsa_port_switchdev_unsync_attrs(struct dsa_port *dp, struct dsa_bridge bridge) { /* Configure the port for standalone mode (no address learning, * flood everything). * The bridge only emits SWITCHDEV_ATTR_ID_PORT_BRIDGE_FLAGS events * when the user requests it through netlink or sysfs, but not * automatically at port join or leave, so we need to handle resetting * the brport flags ourselves. But we even prefer it that way, because * otherwise, some setups might never get the notification they need, * for example, when a port leaves a LAG that offloads the bridge, * it becomes standalone, but as far as the bridge is concerned, no * port ever left. */ dsa_port_clear_brport_flags(dp); /* Port left the bridge, put in BR_STATE_DISABLED by the bridge layer, * so allow it to be in BR_STATE_FORWARDING to be kept functional */ dsa_port_set_state_now(dp, BR_STATE_FORWARDING, true); dsa_port_reset_vlan_filtering(dp, bridge); /* Ageing time may be global to the switch chip, so don't change it * here because we have no good reason (or value) to change it to. */ } static int dsa_port_bridge_create(struct dsa_port *dp, struct net_device *br, struct netlink_ext_ack *extack) { struct dsa_switch *ds = dp->ds; struct dsa_bridge *bridge; bridge = dsa_tree_bridge_find(ds->dst, br); if (bridge) { refcount_inc(&bridge->refcount); dp->bridge = bridge; return 0; } bridge = kzalloc(sizeof(*bridge), GFP_KERNEL); if (!bridge) return -ENOMEM; refcount_set(&bridge->refcount, 1); bridge->dev = br; bridge->num = dsa_bridge_num_get(br, ds->max_num_bridges); if (ds->max_num_bridges && !bridge->num) { NL_SET_ERR_MSG_MOD(extack, "Range of offloadable bridges exceeded"); kfree(bridge); return -EOPNOTSUPP; } dp->bridge = bridge; return 0; } static void dsa_port_bridge_destroy(struct dsa_port *dp, const struct net_device *br) { struct dsa_bridge *bridge = dp->bridge; dp->bridge = NULL; if (!refcount_dec_and_test(&bridge->refcount)) return; if (bridge->num) dsa_bridge_num_put(br, bridge->num); kfree(bridge); } static bool dsa_port_supports_mst(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; return ds->ops->vlan_msti_set && ds->ops->port_mst_state_set && ds->ops->port_vlan_fast_age && dsa_port_can_configure_learning(dp); } int dsa_port_bridge_join(struct dsa_port *dp, struct net_device *br, struct netlink_ext_ack *extack) { struct dsa_notifier_bridge_info info = { .dp = dp, .extack = extack, }; struct net_device *dev = dp->user; struct net_device *brport_dev; int err; if (br_mst_enabled(br) && !dsa_port_supports_mst(dp)) return -EOPNOTSUPP; /* Here the interface is already bridged. Reflect the current * configuration so that drivers can program their chips accordingly. */ err = dsa_port_bridge_create(dp, br, extack); if (err) return err; brport_dev = dsa_port_to_bridge_port(dp); info.bridge = *dp->bridge; err = dsa_broadcast(DSA_NOTIFIER_BRIDGE_JOIN, &info); if (err) goto out_rollback; /* Drivers which support bridge TX forwarding should set this */ dp->bridge->tx_fwd_offload = info.tx_fwd_offload; err = switchdev_bridge_port_offload(brport_dev, dev, dp, &dsa_user_switchdev_notifier, &dsa_user_switchdev_blocking_notifier, dp->bridge->tx_fwd_offload, extack); if (err) goto out_rollback_unbridge; err = dsa_port_switchdev_sync_attrs(dp, extack); if (err) goto out_rollback_unoffload; return 0; out_rollback_unoffload: switchdev_bridge_port_unoffload(brport_dev, dp, &dsa_user_switchdev_notifier, &dsa_user_switchdev_blocking_notifier); dsa_flush_workqueue(); out_rollback_unbridge: dsa_broadcast(DSA_NOTIFIER_BRIDGE_LEAVE, &info); out_rollback: dsa_port_bridge_destroy(dp, br); return err; } void dsa_port_pre_bridge_leave(struct dsa_port *dp, struct net_device *br) { struct net_device *brport_dev = dsa_port_to_bridge_port(dp); /* Don't try to unoffload something that is not offloaded */ if (!brport_dev) return; switchdev_bridge_port_unoffload(brport_dev, dp, &dsa_user_switchdev_notifier, &dsa_user_switchdev_blocking_notifier); dsa_flush_workqueue(); } void dsa_port_bridge_leave(struct dsa_port *dp, struct net_device *br) { struct dsa_notifier_bridge_info info = { .dp = dp, }; int err; /* If the port could not be offloaded to begin with, then * there is nothing to do. */ if (!dp->bridge) return; info.bridge = *dp->bridge; /* Here the port is already unbridged. Reflect the current configuration * so that drivers can program their chips accordingly. */ dsa_port_bridge_destroy(dp, br); err = dsa_broadcast(DSA_NOTIFIER_BRIDGE_LEAVE, &info); if (err) dev_err(dp->ds->dev, "port %d failed to notify DSA_NOTIFIER_BRIDGE_LEAVE: %pe\n", dp->index, ERR_PTR(err)); dsa_port_switchdev_unsync_attrs(dp, info.bridge); } int dsa_port_lag_change(struct dsa_port *dp, struct netdev_lag_lower_state_info *linfo) { struct dsa_notifier_lag_info info = { .dp = dp, }; bool tx_enabled; if (!dp->lag) return 0; /* On statically configured aggregates (e.g. loadbalance * without LACP) ports will always be tx_enabled, even if the * link is down. Thus we require both link_up and tx_enabled * in order to include it in the tx set. */ tx_enabled = linfo->link_up && linfo->tx_enabled; if (tx_enabled == dp->lag_tx_enabled) return 0; dp->lag_tx_enabled = tx_enabled; return dsa_port_notify(dp, DSA_NOTIFIER_LAG_CHANGE, &info); } static int dsa_port_lag_create(struct dsa_port *dp, struct net_device *lag_dev) { struct dsa_switch *ds = dp->ds; struct dsa_lag *lag; lag = dsa_tree_lag_find(ds->dst, lag_dev); if (lag) { refcount_inc(&lag->refcount); dp->lag = lag; return 0; } lag = kzalloc(sizeof(*lag), GFP_KERNEL); if (!lag) return -ENOMEM; refcount_set(&lag->refcount, 1); mutex_init(&lag->fdb_lock); INIT_LIST_HEAD(&lag->fdbs); lag->dev = lag_dev; dsa_lag_map(ds->dst, lag); dp->lag = lag; return 0; } static void dsa_port_lag_destroy(struct dsa_port *dp) { struct dsa_lag *lag = dp->lag; dp->lag = NULL; dp->lag_tx_enabled = false; if (!refcount_dec_and_test(&lag->refcount)) return; WARN_ON(!list_empty(&lag->fdbs)); dsa_lag_unmap(dp->ds->dst, lag); kfree(lag); } int dsa_port_lag_join(struct dsa_port *dp, struct net_device *lag_dev, struct netdev_lag_upper_info *uinfo, struct netlink_ext_ack *extack) { struct dsa_notifier_lag_info info = { .dp = dp, .info = uinfo, .extack = extack, }; struct net_device *bridge_dev; int err; err = dsa_port_lag_create(dp, lag_dev); if (err) goto err_lag_create; info.lag = *dp->lag; err = dsa_port_notify(dp, DSA_NOTIFIER_LAG_JOIN, &info); if (err) goto err_lag_join; bridge_dev = netdev_master_upper_dev_get(lag_dev); if (!bridge_dev || !netif_is_bridge_master(bridge_dev)) return 0; err = dsa_port_bridge_join(dp, bridge_dev, extack); if (err) goto err_bridge_join; return 0; err_bridge_join: dsa_port_notify(dp, DSA_NOTIFIER_LAG_LEAVE, &info); err_lag_join: dsa_port_lag_destroy(dp); err_lag_create: return err; } void dsa_port_pre_lag_leave(struct dsa_port *dp, struct net_device *lag_dev) { struct net_device *br = dsa_port_bridge_dev_get(dp); if (br) dsa_port_pre_bridge_leave(dp, br); } void dsa_port_lag_leave(struct dsa_port *dp, struct net_device *lag_dev) { struct net_device *br = dsa_port_bridge_dev_get(dp); struct dsa_notifier_lag_info info = { .dp = dp, }; int err; if (!dp->lag) return; /* Port might have been part of a LAG that in turn was * attached to a bridge. */ if (br) dsa_port_bridge_leave(dp, br); info.lag = *dp->lag; dsa_port_lag_destroy(dp); err = dsa_port_notify(dp, DSA_NOTIFIER_LAG_LEAVE, &info); if (err) dev_err(dp->ds->dev, "port %d failed to notify DSA_NOTIFIER_LAG_LEAVE: %pe\n", dp->index, ERR_PTR(err)); } /* Must be called under rcu_read_lock() */ static bool dsa_port_can_apply_vlan_filtering(struct dsa_port *dp, bool vlan_filtering, struct netlink_ext_ack *extack) { struct dsa_switch *ds = dp->ds; struct dsa_port *other_dp; int err; /* VLAN awareness was off, so the question is "can we turn it on". * We may have had 8021q uppers, those need to go. Make sure we don't * enter an inconsistent state: deny changing the VLAN awareness state * as long as we have 8021q uppers. */ if (vlan_filtering && dsa_port_is_user(dp)) { struct net_device *br = dsa_port_bridge_dev_get(dp); struct net_device *upper_dev, *user = dp->user; struct list_head *iter; netdev_for_each_upper_dev_rcu(user, upper_dev, iter) { struct bridge_vlan_info br_info; u16 vid; if (!is_vlan_dev(upper_dev)) continue; vid = vlan_dev_vlan_id(upper_dev); /* br_vlan_get_info() returns -EINVAL or -ENOENT if the * device, respectively the VID is not found, returning * 0 means success, which is a failure for us here. */ err = br_vlan_get_info(br, vid, &br_info); if (err == 0) { NL_SET_ERR_MSG_MOD(extack, "Must first remove VLAN uppers having VIDs also present in bridge"); return false; } } } if (!ds->vlan_filtering_is_global) return true; /* For cases where enabling/disabling VLAN awareness is global to the * switch, we need to handle the case where multiple bridges span * different ports of the same switch device and one of them has a * different setting than what is being requested. */ dsa_switch_for_each_port(other_dp, ds) { struct net_device *other_br = dsa_port_bridge_dev_get(other_dp); /* If it's the same bridge, it also has same * vlan_filtering setting => no need to check */ if (!other_br || other_br == dsa_port_bridge_dev_get(dp)) continue; if (br_vlan_enabled(other_br) != vlan_filtering) { NL_SET_ERR_MSG_MOD(extack, "VLAN filtering is a global setting"); return false; } } return true; } int dsa_port_vlan_filtering(struct dsa_port *dp, bool vlan_filtering, struct netlink_ext_ack *extack) { bool old_vlan_filtering = dsa_port_is_vlan_filtering(dp); struct dsa_switch *ds = dp->ds; bool apply; int err; if (!ds->ops->port_vlan_filtering) return -EOPNOTSUPP; /* We are called from dsa_user_switchdev_blocking_event(), * which is not under rcu_read_lock(), unlike * dsa_user_switchdev_event(). */ rcu_read_lock(); apply = dsa_port_can_apply_vlan_filtering(dp, vlan_filtering, extack); rcu_read_unlock(); if (!apply) return -EINVAL; if (dsa_port_is_vlan_filtering(dp) == vlan_filtering) return 0; err = ds->ops->port_vlan_filtering(ds, dp->index, vlan_filtering, extack); if (err) return err; if (ds->vlan_filtering_is_global) { struct dsa_port *other_dp; ds->vlan_filtering = vlan_filtering; dsa_switch_for_each_user_port(other_dp, ds) { struct net_device *user = other_dp->user; /* We might be called in the unbind path, so not * all user devices might still be registered. */ if (!user) continue; err = dsa_user_manage_vlan_filtering(user, vlan_filtering); if (err) goto restore; } } else { dp->vlan_filtering = vlan_filtering; err = dsa_user_manage_vlan_filtering(dp->user, vlan_filtering); if (err) goto restore; } return 0; restore: ds->ops->port_vlan_filtering(ds, dp->index, old_vlan_filtering, NULL); if (ds->vlan_filtering_is_global) ds->vlan_filtering = old_vlan_filtering; else dp->vlan_filtering = old_vlan_filtering; return err; } /* This enforces legacy behavior for switch drivers which assume they can't * receive VLAN configuration when joining a bridge with vlan_filtering=0 */ bool dsa_port_skip_vlan_configuration(struct dsa_port *dp) { struct net_device *br = dsa_port_bridge_dev_get(dp); struct dsa_switch *ds = dp->ds; if (!br) return false; return !ds->configure_vlan_while_not_filtering && !br_vlan_enabled(br); } int dsa_port_ageing_time(struct dsa_port *dp, clock_t ageing_clock) { unsigned long ageing_jiffies = clock_t_to_jiffies(ageing_clock); unsigned int ageing_time = jiffies_to_msecs(ageing_jiffies); struct dsa_notifier_ageing_time_info info; int err; info.ageing_time = ageing_time; err = dsa_port_notify(dp, DSA_NOTIFIER_AGEING_TIME, &info); if (err) return err; dp->ageing_time = ageing_time; return 0; } int dsa_port_mst_enable(struct dsa_port *dp, bool on, struct netlink_ext_ack *extack) { if (on && !dsa_port_supports_mst(dp)) { NL_SET_ERR_MSG_MOD(extack, "Hardware does not support MST"); return -EINVAL; } return 0; } int dsa_port_pre_bridge_flags(const struct dsa_port *dp, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct dsa_switch *ds = dp->ds; if (!ds->ops->port_pre_bridge_flags) return -EINVAL; return ds->ops->port_pre_bridge_flags(ds, dp->index, flags, extack); } int dsa_port_bridge_flags(struct dsa_port *dp, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct dsa_switch *ds = dp->ds; int err; if (!ds->ops->port_bridge_flags) return -EOPNOTSUPP; err = ds->ops->port_bridge_flags(ds, dp->index, flags, extack); if (err) return err; if (flags.mask & BR_LEARNING) { bool learning = flags.val & BR_LEARNING; if (learning == dp->learning) return 0; if ((dp->learning && !learning) && (dp->stp_state == BR_STATE_LEARNING || dp->stp_state == BR_STATE_FORWARDING)) dsa_port_fast_age(dp); dp->learning = learning; } return 0; } void dsa_port_set_host_flood(struct dsa_port *dp, bool uc, bool mc) { struct dsa_switch *ds = dp->ds; if (ds->ops->port_set_host_flood) ds->ops->port_set_host_flood(ds, dp->index, uc, mc); } int dsa_port_vlan_msti(struct dsa_port *dp, const struct switchdev_vlan_msti *msti) { struct dsa_switch *ds = dp->ds; if (!ds->ops->vlan_msti_set) return -EOPNOTSUPP; return ds->ops->vlan_msti_set(ds, *dp->bridge, msti); } int dsa_port_mtu_change(struct dsa_port *dp, int new_mtu) { struct dsa_notifier_mtu_info info = { .dp = dp, .mtu = new_mtu, }; return dsa_port_notify(dp, DSA_NOTIFIER_MTU, &info); } int dsa_port_fdb_add(struct dsa_port *dp, const unsigned char *addr, u16 vid) { struct dsa_notifier_fdb_info info = { .dp = dp, .addr = addr, .vid = vid, .db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }, }; /* Refcounting takes bridge.num as a key, and should be global for all * bridges in the absence of FDB isolation, and per bridge otherwise. * Force the bridge.num to zero here in the absence of FDB isolation. */ if (!dp->ds->fdb_isolation) info.db.bridge.num = 0; return dsa_port_notify(dp, DSA_NOTIFIER_FDB_ADD, &info); } int dsa_port_fdb_del(struct dsa_port *dp, const unsigned char *addr, u16 vid) { struct dsa_notifier_fdb_info info = { .dp = dp, .addr = addr, .vid = vid, .db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }, }; if (!dp->ds->fdb_isolation) info.db.bridge.num = 0; return dsa_port_notify(dp, DSA_NOTIFIER_FDB_DEL, &info); } static int dsa_port_host_fdb_add(struct dsa_port *dp, const unsigned char *addr, u16 vid, struct dsa_db db) { struct dsa_notifier_fdb_info info = { .dp = dp, .addr = addr, .vid = vid, .db = db, }; return dsa_port_notify(dp, DSA_NOTIFIER_HOST_FDB_ADD, &info); } int dsa_port_standalone_host_fdb_add(struct dsa_port *dp, const unsigned char *addr, u16 vid) { struct dsa_db db = { .type = DSA_DB_PORT, .dp = dp, }; return dsa_port_host_fdb_add(dp, addr, vid, db); } int dsa_port_bridge_host_fdb_add(struct dsa_port *dp, const unsigned char *addr, u16 vid) { struct net_device *conduit = dsa_port_to_conduit(dp); struct dsa_db db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }; int err; if (!dp->ds->fdb_isolation) db.bridge.num = 0; /* Avoid a call to __dev_set_promiscuity() on the conduit, which * requires rtnl_lock(), since we can't guarantee that is held here, * and we can't take it either. */ if (conduit->priv_flags & IFF_UNICAST_FLT) { err = dev_uc_add(conduit, addr); if (err) return err; } return dsa_port_host_fdb_add(dp, addr, vid, db); } static int dsa_port_host_fdb_del(struct dsa_port *dp, const unsigned char *addr, u16 vid, struct dsa_db db) { struct dsa_notifier_fdb_info info = { .dp = dp, .addr = addr, .vid = vid, .db = db, }; return dsa_port_notify(dp, DSA_NOTIFIER_HOST_FDB_DEL, &info); } int dsa_port_standalone_host_fdb_del(struct dsa_port *dp, const unsigned char *addr, u16 vid) { struct dsa_db db = { .type = DSA_DB_PORT, .dp = dp, }; return dsa_port_host_fdb_del(dp, addr, vid, db); } int dsa_port_bridge_host_fdb_del(struct dsa_port *dp, const unsigned char *addr, u16 vid) { struct net_device *conduit = dsa_port_to_conduit(dp); struct dsa_db db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }; int err; if (!dp->ds->fdb_isolation) db.bridge.num = 0; if (conduit->priv_flags & IFF_UNICAST_FLT) { err = dev_uc_del(conduit, addr); if (err) return err; } return dsa_port_host_fdb_del(dp, addr, vid, db); } int dsa_port_lag_fdb_add(struct dsa_port *dp, const unsigned char *addr, u16 vid) { struct dsa_notifier_lag_fdb_info info = { .lag = dp->lag, .addr = addr, .vid = vid, .db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }, }; if (!dp->ds->fdb_isolation) info.db.bridge.num = 0; return dsa_port_notify(dp, DSA_NOTIFIER_LAG_FDB_ADD, &info); } int dsa_port_lag_fdb_del(struct dsa_port *dp, const unsigned char *addr, u16 vid) { struct dsa_notifier_lag_fdb_info info = { .lag = dp->lag, .addr = addr, .vid = vid, .db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }, }; if (!dp->ds->fdb_isolation) info.db.bridge.num = 0; return dsa_port_notify(dp, DSA_NOTIFIER_LAG_FDB_DEL, &info); } int dsa_port_fdb_dump(struct dsa_port *dp, dsa_fdb_dump_cb_t *cb, void *data) { struct dsa_switch *ds = dp->ds; int port = dp->index; if (!ds->ops->port_fdb_dump) return -EOPNOTSUPP; return ds->ops->port_fdb_dump(ds, port, cb, data); } int dsa_port_mdb_add(const struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb) { struct dsa_notifier_mdb_info info = { .dp = dp, .mdb = mdb, .db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }, }; if (!dp->ds->fdb_isolation) info.db.bridge.num = 0; return dsa_port_notify(dp, DSA_NOTIFIER_MDB_ADD, &info); } int dsa_port_mdb_del(const struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb) { struct dsa_notifier_mdb_info info = { .dp = dp, .mdb = mdb, .db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }, }; if (!dp->ds->fdb_isolation) info.db.bridge.num = 0; return dsa_port_notify(dp, DSA_NOTIFIER_MDB_DEL, &info); } static int dsa_port_host_mdb_add(const struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct dsa_notifier_mdb_info info = { .dp = dp, .mdb = mdb, .db = db, }; return dsa_port_notify(dp, DSA_NOTIFIER_HOST_MDB_ADD, &info); } int dsa_port_standalone_host_mdb_add(const struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb) { struct dsa_db db = { .type = DSA_DB_PORT, .dp = dp, }; return dsa_port_host_mdb_add(dp, mdb, db); } int dsa_port_bridge_host_mdb_add(const struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb) { struct net_device *conduit = dsa_port_to_conduit(dp); struct dsa_db db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }; int err; if (!dp->ds->fdb_isolation) db.bridge.num = 0; err = dev_mc_add(conduit, mdb->addr); if (err) return err; return dsa_port_host_mdb_add(dp, mdb, db); } static int dsa_port_host_mdb_del(const struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct dsa_notifier_mdb_info info = { .dp = dp, .mdb = mdb, .db = db, }; return dsa_port_notify(dp, DSA_NOTIFIER_HOST_MDB_DEL, &info); } int dsa_port_standalone_host_mdb_del(const struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb) { struct dsa_db db = { .type = DSA_DB_PORT, .dp = dp, }; return dsa_port_host_mdb_del(dp, mdb, db); } int dsa_port_bridge_host_mdb_del(const struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb) { struct net_device *conduit = dsa_port_to_conduit(dp); struct dsa_db db = { .type = DSA_DB_BRIDGE, .bridge = *dp->bridge, }; int err; if (!dp->ds->fdb_isolation) db.bridge.num = 0; err = dev_mc_del(conduit, mdb->addr); if (err) return err; return dsa_port_host_mdb_del(dp, mdb, db); } int dsa_port_vlan_add(struct dsa_port *dp, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { struct dsa_notifier_vlan_info info = { .dp = dp, .vlan = vlan, .extack = extack, }; return dsa_port_notify(dp, DSA_NOTIFIER_VLAN_ADD, &info); } int dsa_port_vlan_del(struct dsa_port *dp, const struct switchdev_obj_port_vlan *vlan) { struct dsa_notifier_vlan_info info = { .dp = dp, .vlan = vlan, }; return dsa_port_notify(dp, DSA_NOTIFIER_VLAN_DEL, &info); } int dsa_port_host_vlan_add(struct dsa_port *dp, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { struct net_device *conduit = dsa_port_to_conduit(dp); struct dsa_notifier_vlan_info info = { .dp = dp, .vlan = vlan, .extack = extack, }; int err; err = dsa_port_notify(dp, DSA_NOTIFIER_HOST_VLAN_ADD, &info); if (err && err != -EOPNOTSUPP) return err; vlan_vid_add(conduit, htons(ETH_P_8021Q), vlan->vid); return err; } int dsa_port_host_vlan_del(struct dsa_port *dp, const struct switchdev_obj_port_vlan *vlan) { struct net_device *conduit = dsa_port_to_conduit(dp); struct dsa_notifier_vlan_info info = { .dp = dp, .vlan = vlan, }; int err; err = dsa_port_notify(dp, DSA_NOTIFIER_HOST_VLAN_DEL, &info); if (err && err != -EOPNOTSUPP) return err; vlan_vid_del(conduit, htons(ETH_P_8021Q), vlan->vid); return err; } int dsa_port_mrp_add(const struct dsa_port *dp, const struct switchdev_obj_mrp *mrp) { struct dsa_switch *ds = dp->ds; if (!ds->ops->port_mrp_add) return -EOPNOTSUPP; return ds->ops->port_mrp_add(ds, dp->index, mrp); } int dsa_port_mrp_del(const struct dsa_port *dp, const struct switchdev_obj_mrp *mrp) { struct dsa_switch *ds = dp->ds; if (!ds->ops->port_mrp_del) return -EOPNOTSUPP; return ds->ops->port_mrp_del(ds, dp->index, mrp); } int dsa_port_mrp_add_ring_role(const struct dsa_port *dp, const struct switchdev_obj_ring_role_mrp *mrp) { struct dsa_switch *ds = dp->ds; if (!ds->ops->port_mrp_add_ring_role) return -EOPNOTSUPP; return ds->ops->port_mrp_add_ring_role(ds, dp->index, mrp); } int dsa_port_mrp_del_ring_role(const struct dsa_port *dp, const struct switchdev_obj_ring_role_mrp *mrp) { struct dsa_switch *ds = dp->ds; if (!ds->ops->port_mrp_del_ring_role) return -EOPNOTSUPP; return ds->ops->port_mrp_del_ring_role(ds, dp->index, mrp); } static int dsa_port_assign_conduit(struct dsa_port *dp, struct net_device *conduit, struct netlink_ext_ack *extack, bool fail_on_err) { struct dsa_switch *ds = dp->ds; int port = dp->index, err; err = ds->ops->port_change_conduit(ds, port, conduit, extack); if (err && !fail_on_err) dev_err(ds->dev, "port %d failed to assign conduit %s: %pe\n", port, conduit->name, ERR_PTR(err)); if (err && fail_on_err) return err; dp->cpu_dp = conduit->dsa_ptr; dp->cpu_port_in_lag = netif_is_lag_master(conduit); return 0; } /* Change the dp->cpu_dp affinity for a user port. Note that both cross-chip * notifiers and drivers have implicit assumptions about user-to-CPU-port * mappings, so we unfortunately cannot delay the deletion of the objects * (switchdev, standalone addresses, standalone VLANs) on the old CPU port * until the new CPU port has been set up. So we need to completely tear down * the old CPU port before changing it, and restore it on errors during the * bringup of the new one. */ int dsa_port_change_conduit(struct dsa_port *dp, struct net_device *conduit, struct netlink_ext_ack *extack) { struct net_device *bridge_dev = dsa_port_bridge_dev_get(dp); struct net_device *old_conduit = dsa_port_to_conduit(dp); struct net_device *dev = dp->user; struct dsa_switch *ds = dp->ds; bool vlan_filtering; int err, tmp; /* Bridges may hold host FDB, MDB and VLAN objects. These need to be * migrated, so dynamically unoffload and later reoffload the bridge * port. */ if (bridge_dev) { dsa_port_pre_bridge_leave(dp, bridge_dev); dsa_port_bridge_leave(dp, bridge_dev); } /* The port might still be VLAN filtering even if it's no longer * under a bridge, either due to ds->vlan_filtering_is_global or * ds->needs_standalone_vlan_filtering. In turn this means VLANs * on the CPU port. */ vlan_filtering = dsa_port_is_vlan_filtering(dp); if (vlan_filtering) { err = dsa_user_manage_vlan_filtering(dev, false); if (err) { NL_SET_ERR_MSG_MOD(extack, "Failed to remove standalone VLANs"); goto rewind_old_bridge; } } /* Standalone addresses, and addresses of upper interfaces like * VLAN, LAG, HSR need to be migrated. */ dsa_user_unsync_ha(dev); /* If live-changing, we also need to uninstall the user device address * from the port FDB and the conduit interface. */ if (dev->flags & IFF_UP) dsa_user_host_uc_uninstall(dev); err = dsa_port_assign_conduit(dp, conduit, extack, true); if (err) goto rewind_old_addrs; /* If the port doesn't have its own MAC address and relies on the DSA * conduit's one, inherit it again from the new DSA conduit. */ if (is_zero_ether_addr(dp->mac)) eth_hw_addr_inherit(dev, conduit); /* If live-changing, we need to install the user device address to the * port FDB and the conduit interface. */ if (dev->flags & IFF_UP) { err = dsa_user_host_uc_install(dev, dev->dev_addr); if (err) { NL_SET_ERR_MSG_MOD(extack, "Failed to install host UC address"); goto rewind_addr_inherit; } } dsa_user_sync_ha(dev); if (vlan_filtering) { err = dsa_user_manage_vlan_filtering(dev, true); if (err) { NL_SET_ERR_MSG_MOD(extack, "Failed to restore standalone VLANs"); goto rewind_new_addrs; } } if (bridge_dev) { err = dsa_port_bridge_join(dp, bridge_dev, extack); if (err && err == -EOPNOTSUPP) { NL_SET_ERR_MSG_MOD(extack, "Failed to reoffload bridge"); goto rewind_new_vlan; } } return 0; rewind_new_vlan: if (vlan_filtering) dsa_user_manage_vlan_filtering(dev, false); rewind_new_addrs: dsa_user_unsync_ha(dev); if (dev->flags & IFF_UP) dsa_user_host_uc_uninstall(dev); rewind_addr_inherit: if (is_zero_ether_addr(dp->mac)) eth_hw_addr_inherit(dev, old_conduit); dsa_port_assign_conduit(dp, old_conduit, NULL, false); /* Restore the objects on the old CPU port */ rewind_old_addrs: if (dev->flags & IFF_UP) { tmp = dsa_user_host_uc_install(dev, dev->dev_addr); if (tmp) { dev_err(ds->dev, "port %d failed to restore host UC address: %pe\n", dp->index, ERR_PTR(tmp)); } } dsa_user_sync_ha(dev); if (vlan_filtering) { tmp = dsa_user_manage_vlan_filtering(dev, true); if (tmp) { dev_err(ds->dev, "port %d failed to restore standalone VLANs: %pe\n", dp->index, ERR_PTR(tmp)); } } rewind_old_bridge: if (bridge_dev) { tmp = dsa_port_bridge_join(dp, bridge_dev, extack); if (tmp) { dev_err(ds->dev, "port %d failed to rejoin bridge %s: %pe\n", dp->index, bridge_dev->name, ERR_PTR(tmp)); } } return err; } void dsa_port_set_tag_protocol(struct dsa_port *cpu_dp, const struct dsa_device_ops *tag_ops) { cpu_dp->rcv = tag_ops->rcv; cpu_dp->tag_ops = tag_ops; } static struct phylink_pcs * dsa_port_phylink_mac_select_pcs(struct phylink_config *config, phy_interface_t interface) { struct dsa_port *dp = dsa_phylink_to_port(config); struct phylink_pcs *pcs = ERR_PTR(-EOPNOTSUPP); struct dsa_switch *ds = dp->ds; if (ds->ops->phylink_mac_select_pcs) pcs = ds->ops->phylink_mac_select_pcs(ds, dp->index, interface); return pcs; } static void dsa_port_phylink_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { struct dsa_port *dp = dsa_phylink_to_port(config); struct dsa_switch *ds = dp->ds; if (!ds->ops->phylink_mac_config) return; ds->ops->phylink_mac_config(ds, dp->index, mode, state); } static void dsa_port_phylink_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct dsa_port *dp = dsa_phylink_to_port(config); struct dsa_switch *ds = dp->ds; if (!ds->ops->phylink_mac_link_down) return; ds->ops->phylink_mac_link_down(ds, dp->index, mode, interface); } static void dsa_port_phylink_mac_link_up(struct phylink_config *config, struct phy_device *phydev, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct dsa_port *dp = dsa_phylink_to_port(config); struct dsa_switch *ds = dp->ds; if (!ds->ops->phylink_mac_link_up) return; ds->ops->phylink_mac_link_up(ds, dp->index, mode, interface, phydev, speed, duplex, tx_pause, rx_pause); } static const struct phylink_mac_ops dsa_port_phylink_mac_ops = { .mac_select_pcs = dsa_port_phylink_mac_select_pcs, .mac_config = dsa_port_phylink_mac_config, .mac_link_down = dsa_port_phylink_mac_link_down, .mac_link_up = dsa_port_phylink_mac_link_up, }; int dsa_port_phylink_create(struct dsa_port *dp) { const struct phylink_mac_ops *mac_ops; struct dsa_switch *ds = dp->ds; phy_interface_t mode; struct phylink *pl; int err; err = of_get_phy_mode(dp->dn, &mode); if (err) mode = PHY_INTERFACE_MODE_NA; if (ds->ops->phylink_get_caps) { ds->ops->phylink_get_caps(ds, dp->index, &dp->pl_config); } else { /* For legacy drivers */ if (mode != PHY_INTERFACE_MODE_NA) { __set_bit(mode, dp->pl_config.supported_interfaces); } else { __set_bit(PHY_INTERFACE_MODE_INTERNAL, dp->pl_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_GMII, dp->pl_config.supported_interfaces); } } mac_ops = &dsa_port_phylink_mac_ops; if (ds->phylink_mac_ops) mac_ops = ds->phylink_mac_ops; pl = phylink_create(&dp->pl_config, of_fwnode_handle(dp->dn), mode, mac_ops); if (IS_ERR(pl)) { pr_err("error creating PHYLINK: %ld\n", PTR_ERR(pl)); return PTR_ERR(pl); } dp->pl = pl; return 0; } void dsa_port_phylink_destroy(struct dsa_port *dp) { phylink_destroy(dp->pl); dp->pl = NULL; } static int dsa_shared_port_phylink_register(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; struct device_node *port_dn = dp->dn; int err; dp->pl_config.dev = ds->dev; dp->pl_config.type = PHYLINK_DEV; err = dsa_port_phylink_create(dp); if (err) return err; err = phylink_of_phy_connect(dp->pl, port_dn, 0); if (err && err != -ENODEV) { pr_err("could not attach to PHY: %d\n", err); goto err_phy_connect; } return 0; err_phy_connect: dsa_port_phylink_destroy(dp); return err; } /* During the initial DSA driver migration to OF, port nodes were sometimes * added to device trees with no indication of how they should operate from a * link management perspective (phy-handle, fixed-link, etc). Additionally, the * phy-mode may be absent. The interpretation of these port OF nodes depends on * their type. * * User ports with no phy-handle or fixed-link are expected to connect to an * internal PHY located on the ds->user_mii_bus at an MDIO address equal to * the port number. This description is still actively supported. * * Shared (CPU and DSA) ports with no phy-handle or fixed-link are expected to * operate at the maximum speed that their phy-mode is capable of. If the * phy-mode is absent, they are expected to operate using the phy-mode * supported by the port that gives the highest link speed. It is unspecified * if the port should use flow control or not, half duplex or full duplex, or * if the phy-mode is a SERDES link, whether in-band autoneg is expected to be * enabled or not. * * In the latter case of shared ports, omitting the link management description * from the firmware node is deprecated and strongly discouraged. DSA uses * phylink, which rejects the firmware nodes of these ports for lacking * required properties. * * For switches in this table, DSA will skip enforcing validation and will * later omit registering a phylink instance for the shared ports, if they lack * a fixed-link, a phy-handle, or a managed = "in-band-status" property. * It becomes the responsibility of the driver to ensure that these ports * operate at the maximum speed (whatever this means) and will interoperate * with the DSA conduit or other cascade port, since phylink methods will not be * invoked for them. * * If you are considering expanding this table for newly introduced switches, * think again. It is OK to remove switches from this table if there aren't DT * blobs in circulation which rely on defaulting the shared ports. */ static const char * const dsa_switches_apply_workarounds[] = { #if IS_ENABLED(CONFIG_NET_DSA_XRS700X) "arrow,xrs7003e", "arrow,xrs7003f", "arrow,xrs7004e", "arrow,xrs7004f", #endif #if IS_ENABLED(CONFIG_B53) "brcm,bcm5325", "brcm,bcm53115", "brcm,bcm53125", "brcm,bcm53128", "brcm,bcm5365", "brcm,bcm5389", "brcm,bcm5395", "brcm,bcm5397", "brcm,bcm5398", "brcm,bcm53010-srab", "brcm,bcm53011-srab", "brcm,bcm53012-srab", "brcm,bcm53018-srab", "brcm,bcm53019-srab", "brcm,bcm5301x-srab", "brcm,bcm11360-srab", "brcm,bcm58522-srab", "brcm,bcm58525-srab", "brcm,bcm58535-srab", "brcm,bcm58622-srab", "brcm,bcm58623-srab", "brcm,bcm58625-srab", "brcm,bcm88312-srab", "brcm,cygnus-srab", "brcm,nsp-srab", "brcm,omega-srab", "brcm,bcm3384-switch", "brcm,bcm6328-switch", "brcm,bcm6368-switch", "brcm,bcm63xx-switch", #endif #if IS_ENABLED(CONFIG_NET_DSA_BCM_SF2) "brcm,bcm7445-switch-v4.0", "brcm,bcm7278-switch-v4.0", "brcm,bcm7278-switch-v4.8", #endif #if IS_ENABLED(CONFIG_NET_DSA_LANTIQ_GSWIP) "lantiq,xrx200-gswip", "lantiq,xrx300-gswip", "lantiq,xrx330-gswip", #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6060) "marvell,mv88e6060", #endif #if IS_ENABLED(CONFIG_NET_DSA_MV88E6XXX) "marvell,mv88e6085", "marvell,mv88e6190", "marvell,mv88e6250", #endif #if IS_ENABLED(CONFIG_NET_DSA_MICROCHIP_KSZ_COMMON) "microchip,ksz8765", "microchip,ksz8794", "microchip,ksz8795", "microchip,ksz8863", "microchip,ksz8873", "microchip,ksz9477", "microchip,ksz9897", "microchip,ksz9893", "microchip,ksz9563", "microchip,ksz8563", "microchip,ksz9567", #endif #if IS_ENABLED(CONFIG_NET_DSA_SMSC_LAN9303_MDIO) "smsc,lan9303-mdio", #endif #if IS_ENABLED(CONFIG_NET_DSA_SMSC_LAN9303_I2C) "smsc,lan9303-i2c", #endif NULL, }; static void dsa_shared_port_validate_of(struct dsa_port *dp, bool *missing_phy_mode, bool *missing_link_description) { struct device_node *dn = dp->dn, *phy_np; struct dsa_switch *ds = dp->ds; phy_interface_t mode; *missing_phy_mode = false; *missing_link_description = false; if (of_get_phy_mode(dn, &mode)) { *missing_phy_mode = true; dev_err(ds->dev, "OF node %pOF of %s port %d lacks the required \"phy-mode\" property\n", dn, dsa_port_is_cpu(dp) ? "CPU" : "DSA", dp->index); } /* Note: of_phy_is_fixed_link() also returns true for * managed = "in-band-status" */ if (of_phy_is_fixed_link(dn)) return; phy_np = of_parse_phandle(dn, "phy-handle", 0); if (phy_np) { of_node_put(phy_np); return; } *missing_link_description = true; dev_err(ds->dev, "OF node %pOF of %s port %d lacks the required \"phy-handle\", \"fixed-link\" or \"managed\" properties\n", dn, dsa_port_is_cpu(dp) ? "CPU" : "DSA", dp->index); } static void dsa_shared_port_link_down(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; if (ds->phylink_mac_ops && ds->phylink_mac_ops->mac_link_down) ds->phylink_mac_ops->mac_link_down(&dp->pl_config, MLO_AN_FIXED, PHY_INTERFACE_MODE_NA); else if (ds->ops->phylink_mac_link_down) ds->ops->phylink_mac_link_down(ds, dp->index, MLO_AN_FIXED, PHY_INTERFACE_MODE_NA); } int dsa_shared_port_link_register_of(struct dsa_port *dp) { struct dsa_switch *ds = dp->ds; bool missing_link_description; bool missing_phy_mode; dsa_shared_port_validate_of(dp, &missing_phy_mode, &missing_link_description); if ((missing_phy_mode || missing_link_description) && !of_device_compatible_match(ds->dev->of_node, dsa_switches_apply_workarounds)) return -EINVAL; if (missing_link_description) { dev_warn(ds->dev, "Skipping phylink registration for %s port %d\n", dsa_port_is_cpu(dp) ? "CPU" : "DSA", dp->index); } else { dsa_shared_port_link_down(dp); return dsa_shared_port_phylink_register(dp); } return 0; } void dsa_shared_port_link_unregister_of(struct dsa_port *dp) { if (dp->pl) { rtnl_lock(); phylink_disconnect_phy(dp->pl); rtnl_unlock(); dsa_port_phylink_destroy(dp); return; } } int dsa_port_hsr_join(struct dsa_port *dp, struct net_device *hsr, struct netlink_ext_ack *extack) { struct dsa_switch *ds = dp->ds; int err; if (!ds->ops->port_hsr_join) return -EOPNOTSUPP; dp->hsr_dev = hsr; err = ds->ops->port_hsr_join(ds, dp->index, hsr, extack); if (err) dp->hsr_dev = NULL; return err; } void dsa_port_hsr_leave(struct dsa_port *dp, struct net_device *hsr) { struct dsa_switch *ds = dp->ds; int err; dp->hsr_dev = NULL; if (ds->ops->port_hsr_leave) { err = ds->ops->port_hsr_leave(ds, dp->index, hsr); if (err) dev_err(dp->ds->dev, "port %d failed to leave HSR %s: %pe\n", dp->index, hsr->name, ERR_PTR(err)); } } int dsa_port_tag_8021q_vlan_add(struct dsa_port *dp, u16 vid, bool broadcast) { struct dsa_notifier_tag_8021q_vlan_info info = { .dp = dp, .vid = vid, }; if (broadcast) return dsa_broadcast(DSA_NOTIFIER_TAG_8021Q_VLAN_ADD, &info); return dsa_port_notify(dp, DSA_NOTIFIER_TAG_8021Q_VLAN_ADD, &info); } void dsa_port_tag_8021q_vlan_del(struct dsa_port *dp, u16 vid, bool broadcast) { struct dsa_notifier_tag_8021q_vlan_info info = { .dp = dp, .vid = vid, }; int err; if (broadcast) err = dsa_broadcast(DSA_NOTIFIER_TAG_8021Q_VLAN_DEL, &info); else err = dsa_port_notify(dp, DSA_NOTIFIER_TAG_8021Q_VLAN_DEL, &info); if (err) dev_err(dp->ds->dev, "port %d failed to notify tag_8021q VLAN %d deletion: %pe\n", dp->index, vid, ERR_PTR(err)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1