Contributors: 37
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Steffen Klassert |
1311 |
63.86% |
18 |
20.22% |
Xin Long |
137 |
6.67% |
4 |
4.49% |
Herbert Xu |
134 |
6.53% |
14 |
15.73% |
Florian Westphal |
89 |
4.34% |
4 |
4.49% |
Mike Yu |
49 |
2.39% |
1 |
1.12% |
Alexey Kuznetsov |
44 |
2.14% |
3 |
3.37% |
Boris Pismenny |
37 |
1.80% |
1 |
1.12% |
Antony Antony |
29 |
1.41% |
1 |
1.12% |
Sabrina Dubroca |
22 |
1.07% |
1 |
1.12% |
Sridhar Samudrala |
18 |
0.88% |
2 |
2.25% |
Christian Langrock |
17 |
0.83% |
1 |
1.12% |
Sebastian Andrzej Siewior |
16 |
0.78% |
1 |
1.12% |
Ulrich Weber |
13 |
0.63% |
1 |
1.12% |
Patrick McHardy |
13 |
0.63% |
2 |
2.25% |
Hideaki Yoshifuji / 吉藤英明 |
12 |
0.58% |
2 |
2.25% |
Linus Torvalds (pre-git) |
11 |
0.54% |
6 |
6.74% |
Shannon Nelson |
10 |
0.49% |
1 |
1.12% |
Ilan Tayari |
10 |
0.49% |
2 |
2.25% |
Masahide Nakamura |
8 |
0.39% |
2 |
2.25% |
Kazunori Miyazawa |
7 |
0.34% |
1 |
1.12% |
Alexey Dobriyan |
6 |
0.29% |
1 |
1.12% |
Eric Dumazet |
6 |
0.29% |
2 |
2.25% |
Jamal Hadi Salim |
6 |
0.29% |
1 |
1.12% |
Huy Nguyen |
6 |
0.29% |
1 |
1.12% |
Willem de Bruijn |
5 |
0.24% |
1 |
1.12% |
Rusty Russell |
5 |
0.24% |
1 |
1.12% |
Rob Gill |
5 |
0.24% |
1 |
1.12% |
Myungho Jung |
5 |
0.24% |
1 |
1.12% |
Alexander Duyck |
3 |
0.15% |
1 |
1.12% |
James Chapman |
3 |
0.15% |
1 |
1.12% |
David S. Miller |
3 |
0.15% |
2 |
2.25% |
Linus Torvalds |
3 |
0.15% |
2 |
2.25% |
Arnaldo Carvalho de Melo |
3 |
0.15% |
2 |
2.25% |
Mathias Krause |
3 |
0.15% |
1 |
1.12% |
Thomas Gleixner |
2 |
0.10% |
1 |
1.12% |
Eric W. Biedermann |
1 |
0.05% |
1 |
1.12% |
Joe Perches |
1 |
0.05% |
1 |
1.12% |
Total |
2053 |
|
89 |
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* IPV4 GSO/GRO offload support
* Linux INET implementation
*
* Copyright (C) 2016 secunet Security Networks AG
* Author: Steffen Klassert <steffen.klassert@secunet.com>
*
* ESP GRO support
*/
#include <linux/skbuff.h>
#include <linux/init.h>
#include <net/protocol.h>
#include <crypto/aead.h>
#include <crypto/authenc.h>
#include <linux/err.h>
#include <linux/module.h>
#include <net/gro.h>
#include <net/gso.h>
#include <net/ip.h>
#include <net/xfrm.h>
#include <net/esp.h>
#include <linux/scatterlist.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <net/udp.h>
static struct sk_buff *esp4_gro_receive(struct list_head *head,
struct sk_buff *skb)
{
int offset = skb_gro_offset(skb);
struct xfrm_offload *xo;
struct xfrm_state *x;
int encap_type = 0;
__be32 seq;
__be32 spi;
if (!pskb_pull(skb, offset))
return NULL;
if (xfrm_parse_spi(skb, IPPROTO_ESP, &spi, &seq) != 0)
goto out;
xo = xfrm_offload(skb);
if (!xo || !(xo->flags & CRYPTO_DONE)) {
struct sec_path *sp = secpath_set(skb);
if (!sp)
goto out;
if (sp->len == XFRM_MAX_DEPTH)
goto out_reset;
x = xfrm_state_lookup(dev_net(skb->dev), skb->mark,
(xfrm_address_t *)&ip_hdr(skb)->daddr,
spi, IPPROTO_ESP, AF_INET);
if (unlikely(x && x->dir && x->dir != XFRM_SA_DIR_IN)) {
/* non-offload path will record the error and audit log */
xfrm_state_put(x);
x = NULL;
}
if (!x)
goto out_reset;
skb->mark = xfrm_smark_get(skb->mark, x);
sp->xvec[sp->len++] = x;
sp->olen++;
xo = xfrm_offload(skb);
if (!xo)
goto out_reset;
}
xo->flags |= XFRM_GRO;
if (NAPI_GRO_CB(skb)->proto == IPPROTO_UDP)
encap_type = UDP_ENCAP_ESPINUDP;
XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4 = NULL;
XFRM_SPI_SKB_CB(skb)->family = AF_INET;
XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct iphdr, daddr);
XFRM_SPI_SKB_CB(skb)->seq = seq;
/* We don't need to handle errors from xfrm_input, it does all
* the error handling and frees the resources on error. */
xfrm_input(skb, IPPROTO_ESP, spi, encap_type);
return ERR_PTR(-EINPROGRESS);
out_reset:
secpath_reset(skb);
out:
skb_push(skb, offset);
NAPI_GRO_CB(skb)->same_flow = 0;
NAPI_GRO_CB(skb)->flush = 1;
return NULL;
}
static void esp4_gso_encap(struct xfrm_state *x, struct sk_buff *skb)
{
struct ip_esp_hdr *esph;
struct iphdr *iph = ip_hdr(skb);
struct xfrm_offload *xo = xfrm_offload(skb);
int proto = iph->protocol;
skb_push(skb, -skb_network_offset(skb));
esph = ip_esp_hdr(skb);
*skb_mac_header(skb) = IPPROTO_ESP;
esph->spi = x->id.spi;
esph->seq_no = htonl(XFRM_SKB_CB(skb)->seq.output.low);
xo->proto = proto;
}
static struct sk_buff *xfrm4_tunnel_gso_segment(struct xfrm_state *x,
struct sk_buff *skb,
netdev_features_t features)
{
__be16 type = x->inner_mode.family == AF_INET6 ? htons(ETH_P_IPV6)
: htons(ETH_P_IP);
return skb_eth_gso_segment(skb, features, type);
}
static struct sk_buff *xfrm4_transport_gso_segment(struct xfrm_state *x,
struct sk_buff *skb,
netdev_features_t features)
{
const struct net_offload *ops;
struct sk_buff *segs = ERR_PTR(-EINVAL);
struct xfrm_offload *xo = xfrm_offload(skb);
skb->transport_header += x->props.header_len;
ops = rcu_dereference(inet_offloads[xo->proto]);
if (likely(ops && ops->callbacks.gso_segment))
segs = ops->callbacks.gso_segment(skb, features);
return segs;
}
static struct sk_buff *xfrm4_beet_gso_segment(struct xfrm_state *x,
struct sk_buff *skb,
netdev_features_t features)
{
struct xfrm_offload *xo = xfrm_offload(skb);
struct sk_buff *segs = ERR_PTR(-EINVAL);
const struct net_offload *ops;
u8 proto = xo->proto;
skb->transport_header += x->props.header_len;
if (x->sel.family != AF_INET6) {
if (proto == IPPROTO_BEETPH) {
struct ip_beet_phdr *ph =
(struct ip_beet_phdr *)skb->data;
skb->transport_header += ph->hdrlen * 8;
proto = ph->nexthdr;
} else {
skb->transport_header -= IPV4_BEET_PHMAXLEN;
}
} else {
__be16 frag;
skb->transport_header +=
ipv6_skip_exthdr(skb, 0, &proto, &frag);
if (proto == IPPROTO_TCP)
skb_shinfo(skb)->gso_type |= SKB_GSO_TCPV4;
}
if (proto == IPPROTO_IPV6)
skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4;
__skb_pull(skb, skb_transport_offset(skb));
ops = rcu_dereference(inet_offloads[proto]);
if (likely(ops && ops->callbacks.gso_segment))
segs = ops->callbacks.gso_segment(skb, features);
return segs;
}
static struct sk_buff *xfrm4_outer_mode_gso_segment(struct xfrm_state *x,
struct sk_buff *skb,
netdev_features_t features)
{
switch (x->outer_mode.encap) {
case XFRM_MODE_TUNNEL:
return xfrm4_tunnel_gso_segment(x, skb, features);
case XFRM_MODE_TRANSPORT:
return xfrm4_transport_gso_segment(x, skb, features);
case XFRM_MODE_BEET:
return xfrm4_beet_gso_segment(x, skb, features);
}
return ERR_PTR(-EOPNOTSUPP);
}
static struct sk_buff *esp4_gso_segment(struct sk_buff *skb,
netdev_features_t features)
{
struct xfrm_state *x;
struct ip_esp_hdr *esph;
struct crypto_aead *aead;
netdev_features_t esp_features = features;
struct xfrm_offload *xo = xfrm_offload(skb);
struct sec_path *sp;
if (!xo)
return ERR_PTR(-EINVAL);
if (!(skb_shinfo(skb)->gso_type & SKB_GSO_ESP))
return ERR_PTR(-EINVAL);
sp = skb_sec_path(skb);
x = sp->xvec[sp->len - 1];
aead = x->data;
esph = ip_esp_hdr(skb);
if (esph->spi != x->id.spi)
return ERR_PTR(-EINVAL);
if (!pskb_may_pull(skb, sizeof(*esph) + crypto_aead_ivsize(aead)))
return ERR_PTR(-EINVAL);
__skb_pull(skb, sizeof(*esph) + crypto_aead_ivsize(aead));
skb->encap_hdr_csum = 1;
if ((!(skb->dev->gso_partial_features & NETIF_F_HW_ESP) &&
!(features & NETIF_F_HW_ESP)) || x->xso.dev != skb->dev)
esp_features = features & ~(NETIF_F_SG | NETIF_F_CSUM_MASK |
NETIF_F_SCTP_CRC);
else if (!(features & NETIF_F_HW_ESP_TX_CSUM) &&
!(skb->dev->gso_partial_features & NETIF_F_HW_ESP_TX_CSUM))
esp_features = features & ~(NETIF_F_CSUM_MASK |
NETIF_F_SCTP_CRC);
xo->flags |= XFRM_GSO_SEGMENT;
return xfrm4_outer_mode_gso_segment(x, skb, esp_features);
}
static int esp_input_tail(struct xfrm_state *x, struct sk_buff *skb)
{
struct crypto_aead *aead = x->data;
struct xfrm_offload *xo = xfrm_offload(skb);
if (!pskb_may_pull(skb, sizeof(struct ip_esp_hdr) + crypto_aead_ivsize(aead)))
return -EINVAL;
if (!(xo->flags & CRYPTO_DONE))
skb->ip_summed = CHECKSUM_NONE;
return esp_input_done2(skb, 0);
}
static int esp_xmit(struct xfrm_state *x, struct sk_buff *skb, netdev_features_t features)
{
int err;
int alen;
int blksize;
struct xfrm_offload *xo;
struct ip_esp_hdr *esph;
struct crypto_aead *aead;
struct esp_info esp;
bool hw_offload = true;
__u32 seq;
int encap_type = 0;
esp.inplace = true;
xo = xfrm_offload(skb);
if (!xo)
return -EINVAL;
if ((!(features & NETIF_F_HW_ESP) &&
!(skb->dev->gso_partial_features & NETIF_F_HW_ESP)) ||
x->xso.dev != skb->dev) {
xo->flags |= CRYPTO_FALLBACK;
hw_offload = false;
}
esp.proto = xo->proto;
/* skb is pure payload to encrypt */
aead = x->data;
alen = crypto_aead_authsize(aead);
esp.tfclen = 0;
/* XXX: Add support for tfc padding here. */
blksize = ALIGN(crypto_aead_blocksize(aead), 4);
esp.clen = ALIGN(skb->len + 2 + esp.tfclen, blksize);
esp.plen = esp.clen - skb->len - esp.tfclen;
esp.tailen = esp.tfclen + esp.plen + alen;
esp.esph = ip_esp_hdr(skb);
if (x->encap)
encap_type = x->encap->encap_type;
if (!hw_offload || !skb_is_gso(skb) || (hw_offload && encap_type == UDP_ENCAP_ESPINUDP)) {
esp.nfrags = esp_output_head(x, skb, &esp);
if (esp.nfrags < 0)
return esp.nfrags;
}
seq = xo->seq.low;
esph = esp.esph;
esph->spi = x->id.spi;
skb_push(skb, -skb_network_offset(skb));
if (xo->flags & XFRM_GSO_SEGMENT) {
esph->seq_no = htonl(seq);
if (!skb_is_gso(skb))
xo->seq.low++;
else
xo->seq.low += skb_shinfo(skb)->gso_segs;
}
if (xo->seq.low < seq)
xo->seq.hi++;
esp.seqno = cpu_to_be64(seq + ((u64)xo->seq.hi << 32));
if (hw_offload && encap_type == UDP_ENCAP_ESPINUDP) {
/* In the XFRM stack, the encapsulation protocol is set to iphdr->protocol by
* setting *skb_mac_header(skb) (see esp_output_udp_encap()) where skb->mac_header
* points to iphdr->protocol (see xfrm4_tunnel_encap_add()).
* However, in esp_xmit(), skb->mac_header doesn't point to iphdr->protocol.
* Therefore, the protocol field needs to be corrected.
*/
ip_hdr(skb)->protocol = IPPROTO_UDP;
esph->seq_no = htonl(seq);
}
ip_hdr(skb)->tot_len = htons(skb->len);
ip_send_check(ip_hdr(skb));
if (hw_offload) {
if (!skb_ext_add(skb, SKB_EXT_SEC_PATH))
return -ENOMEM;
xo = xfrm_offload(skb);
if (!xo)
return -EINVAL;
xo->flags |= XFRM_XMIT;
return 0;
}
err = esp_output_tail(x, skb, &esp);
if (err)
return err;
secpath_reset(skb);
if (skb_needs_linearize(skb, skb->dev->features) &&
__skb_linearize(skb))
return -ENOMEM;
return 0;
}
static const struct net_offload esp4_offload = {
.callbacks = {
.gro_receive = esp4_gro_receive,
.gso_segment = esp4_gso_segment,
},
};
static const struct xfrm_type_offload esp_type_offload = {
.owner = THIS_MODULE,
.proto = IPPROTO_ESP,
.input_tail = esp_input_tail,
.xmit = esp_xmit,
.encap = esp4_gso_encap,
};
static int __init esp4_offload_init(void)
{
if (xfrm_register_type_offload(&esp_type_offload, AF_INET) < 0) {
pr_info("%s: can't add xfrm type offload\n", __func__);
return -EAGAIN;
}
return inet_add_offload(&esp4_offload, IPPROTO_ESP);
}
static void __exit esp4_offload_exit(void)
{
xfrm_unregister_type_offload(&esp_type_offload, AF_INET);
inet_del_offload(&esp4_offload, IPPROTO_ESP);
}
module_init(esp4_offload_init);
module_exit(esp4_offload_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steffen Klassert <steffen.klassert@secunet.com>");
MODULE_ALIAS_XFRM_OFFLOAD_TYPE(AF_INET, XFRM_PROTO_ESP);
MODULE_DESCRIPTION("IPV4 GSO/GRO offload support");