Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmitry Safonov | 11635 | 91.71% | 31 | 20.53% |
Linus Torvalds (pre-git) | 317 | 2.50% | 20 | 13.25% |
Eric Dumazet | 116 | 0.91% | 18 | 11.92% |
Arnaldo Carvalho de Melo | 95 | 0.75% | 11 | 7.28% |
Hideaki Yoshifuji / 吉藤英明 | 83 | 0.65% | 4 | 2.65% |
Kuniyuki Iwashima | 63 | 0.50% | 4 | 2.65% |
Octavian Purdila | 29 | 0.23% | 3 | 1.99% |
Glenn Griffin | 29 | 0.23% | 1 | 0.66% |
Martin KaFai Lau | 26 | 0.20% | 3 | 1.99% |
Jerry Chu | 25 | 0.20% | 1 | 0.66% |
Yonghong Song | 20 | 0.16% | 1 | 0.66% |
David S. Miller | 19 | 0.15% | 5 | 3.31% |
Christoph Paasch | 16 | 0.13% | 1 | 0.66% |
Ivan Delalande | 12 | 0.09% | 1 | 0.66% |
Andrey Ignatov | 12 | 0.09% | 1 | 0.66% |
Florian Westphal | 11 | 0.09% | 2 | 1.32% |
Adam Langley | 9 | 0.07% | 1 | 0.66% |
William Allen Simpson | 9 | 0.07% | 2 | 1.32% |
Hyunwoo Kim | 8 | 0.06% | 1 | 0.66% |
Daniel Lezcano | 8 | 0.06% | 1 | 0.66% |
Alexey Kuznetsov | 8 | 0.06% | 1 | 0.66% |
David Ahern | 8 | 0.06% | 2 | 1.32% |
Andrey Vagin | 8 | 0.06% | 1 | 0.66% |
Joe Perches | 7 | 0.06% | 1 | 0.66% |
Frank Pavlic | 7 | 0.06% | 1 | 0.66% |
Hannes Frederic Sowa | 7 | 0.06% | 2 | 1.32% |
Ilpo Järvinen | 6 | 0.05% | 3 | 1.99% |
Daniel Borkmann | 6 | 0.05% | 1 | 0.66% |
Linus Torvalds | 6 | 0.05% | 2 | 1.32% |
James Chapman | 6 | 0.05% | 1 | 0.66% |
Andrew Morton | 6 | 0.05% | 1 | 0.66% |
Pavel Emelyanov | 6 | 0.05% | 1 | 0.66% |
Christoph Hellwig | 5 | 0.04% | 1 | 0.66% |
Daniel Mack | 5 | 0.04% | 1 | 0.66% |
Willem de Bruijn | 5 | 0.04% | 1 | 0.66% |
Colin Ian King | 5 | 0.04% | 1 | 0.66% |
Maciej Żenczykowski | 4 | 0.03% | 1 | 0.66% |
Gui Jianfeng | 4 | 0.03% | 1 | 0.66% |
Lawrence Brakmo | 4 | 0.03% | 2 | 1.32% |
Arnd Bergmann | 4 | 0.03% | 1 | 0.66% |
Herbert Xu | 4 | 0.03% | 2 | 1.32% |
John Fastabend | 4 | 0.03% | 1 | 0.66% |
Denis V. Lunev | 3 | 0.02% | 1 | 0.66% |
Américo Wang | 3 | 0.02% | 1 | 0.66% |
Wei Dong | 3 | 0.02% | 1 | 0.66% |
Krishna Kumar | 3 | 0.02% | 1 | 0.66% |
Paul Gortmaker | 2 | 0.02% | 1 | 0.66% |
David Woodhouse | 2 | 0.02% | 1 | 0.66% |
Mat Martineau | 1 | 0.01% | 1 | 0.66% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.66% |
Jakub Sitnicki | 1 | 0.01% | 1 | 0.66% |
Stanislav Fomichev | 1 | 0.01% | 1 | 0.66% |
Total | 12687 | 151 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * INET An implementation of the TCP Authentication Option (TCP-AO). * See RFC5925. * * Authors: Dmitry Safonov <dima@arista.com> * Francesco Ruggeri <fruggeri@arista.com> * Salam Noureddine <noureddine@arista.com> */ #define pr_fmt(fmt) "TCP: " fmt #include <crypto/hash.h> #include <linux/inetdevice.h> #include <linux/tcp.h> #include <net/tcp.h> #include <net/ipv6.h> #include <net/icmp.h> #include <trace/events/tcp.h> DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ); int tcp_ao_calc_traffic_key(struct tcp_ao_key *mkt, u8 *key, void *ctx, unsigned int len, struct tcp_sigpool *hp) { struct scatterlist sg; int ret; if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp->req), mkt->key, mkt->keylen)) goto clear_hash; ret = crypto_ahash_init(hp->req); if (ret) goto clear_hash; sg_init_one(&sg, ctx, len); ahash_request_set_crypt(hp->req, &sg, key, len); crypto_ahash_update(hp->req); ret = crypto_ahash_final(hp->req); if (ret) goto clear_hash; return 0; clear_hash: memset(key, 0, tcp_ao_digest_size(mkt)); return 1; } bool tcp_ao_ignore_icmp(const struct sock *sk, int family, int type, int code) { bool ignore_icmp = false; struct tcp_ao_info *ao; if (!static_branch_unlikely(&tcp_ao_needed.key)) return false; /* RFC5925, 7.8: * >> A TCP-AO implementation MUST default to ignore incoming ICMPv4 * messages of Type 3 (destination unreachable), Codes 2-4 (protocol * unreachable, port unreachable, and fragmentation needed -- ’hard * errors’), and ICMPv6 Type 1 (destination unreachable), Code 1 * (administratively prohibited) and Code 4 (port unreachable) intended * for connections in synchronized states (ESTABLISHED, FIN-WAIT-1, FIN- * WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT) that match MKTs. */ if (family == AF_INET) { if (type != ICMP_DEST_UNREACH) return false; if (code < ICMP_PROT_UNREACH || code > ICMP_FRAG_NEEDED) return false; } else { if (type != ICMPV6_DEST_UNREACH) return false; if (code != ICMPV6_ADM_PROHIBITED && code != ICMPV6_PORT_UNREACH) return false; } rcu_read_lock(); switch (sk->sk_state) { case TCP_TIME_WAIT: ao = rcu_dereference(tcp_twsk(sk)->ao_info); break; case TCP_SYN_SENT: case TCP_SYN_RECV: case TCP_LISTEN: case TCP_NEW_SYN_RECV: /* RFC5925 specifies to ignore ICMPs *only* on connections * in synchronized states. */ rcu_read_unlock(); return false; default: ao = rcu_dereference(tcp_sk(sk)->ao_info); } if (ao && !ao->accept_icmps) { ignore_icmp = true; __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAODROPPEDICMPS); atomic64_inc(&ao->counters.dropped_icmp); } rcu_read_unlock(); return ignore_icmp; } /* Optimized version of tcp_ao_do_lookup(): only for sockets for which * it's known that the keys in ao_info are matching peer's * family/address/VRF/etc. */ struct tcp_ao_key *tcp_ao_established_key(struct tcp_ao_info *ao, int sndid, int rcvid) { struct tcp_ao_key *key; hlist_for_each_entry_rcu(key, &ao->head, node) { if ((sndid >= 0 && key->sndid != sndid) || (rcvid >= 0 && key->rcvid != rcvid)) continue; return key; } return NULL; } static int ipv4_prefix_cmp(const struct in_addr *addr1, const struct in_addr *addr2, unsigned int prefixlen) { __be32 mask = inet_make_mask(prefixlen); __be32 a1 = addr1->s_addr & mask; __be32 a2 = addr2->s_addr & mask; if (a1 == a2) return 0; return memcmp(&a1, &a2, sizeof(a1)); } static int __tcp_ao_key_cmp(const struct tcp_ao_key *key, int l3index, const union tcp_ao_addr *addr, u8 prefixlen, int family, int sndid, int rcvid) { if (sndid >= 0 && key->sndid != sndid) return (key->sndid > sndid) ? 1 : -1; if (rcvid >= 0 && key->rcvid != rcvid) return (key->rcvid > rcvid) ? 1 : -1; if (l3index >= 0 && (key->keyflags & TCP_AO_KEYF_IFINDEX)) { if (key->l3index != l3index) return (key->l3index > l3index) ? 1 : -1; } if (family == AF_UNSPEC) return 0; if (key->family != family) return (key->family > family) ? 1 : -1; if (family == AF_INET) { if (ntohl(key->addr.a4.s_addr) == INADDR_ANY) return 0; if (ntohl(addr->a4.s_addr) == INADDR_ANY) return 0; return ipv4_prefix_cmp(&key->addr.a4, &addr->a4, prefixlen); #if IS_ENABLED(CONFIG_IPV6) } else { if (ipv6_addr_any(&key->addr.a6) || ipv6_addr_any(&addr->a6)) return 0; if (ipv6_prefix_equal(&key->addr.a6, &addr->a6, prefixlen)) return 0; return memcmp(&key->addr.a6, &addr->a6, sizeof(addr->a6)); #endif } return -1; } static int tcp_ao_key_cmp(const struct tcp_ao_key *key, int l3index, const union tcp_ao_addr *addr, u8 prefixlen, int family, int sndid, int rcvid) { #if IS_ENABLED(CONFIG_IPV6) if (family == AF_INET6 && ipv6_addr_v4mapped(&addr->a6)) { __be32 addr4 = addr->a6.s6_addr32[3]; return __tcp_ao_key_cmp(key, l3index, (union tcp_ao_addr *)&addr4, prefixlen, AF_INET, sndid, rcvid); } #endif return __tcp_ao_key_cmp(key, l3index, addr, prefixlen, family, sndid, rcvid); } static struct tcp_ao_key *__tcp_ao_do_lookup(const struct sock *sk, int l3index, const union tcp_ao_addr *addr, int family, u8 prefix, int sndid, int rcvid) { struct tcp_ao_key *key; struct tcp_ao_info *ao; if (!static_branch_unlikely(&tcp_ao_needed.key)) return NULL; ao = rcu_dereference_check(tcp_sk(sk)->ao_info, lockdep_sock_is_held(sk)); if (!ao) return NULL; hlist_for_each_entry_rcu(key, &ao->head, node) { u8 prefixlen = min(prefix, key->prefixlen); if (!tcp_ao_key_cmp(key, l3index, addr, prefixlen, family, sndid, rcvid)) return key; } return NULL; } struct tcp_ao_key *tcp_ao_do_lookup(const struct sock *sk, int l3index, const union tcp_ao_addr *addr, int family, int sndid, int rcvid) { return __tcp_ao_do_lookup(sk, l3index, addr, family, U8_MAX, sndid, rcvid); } static struct tcp_ao_info *tcp_ao_alloc_info(gfp_t flags) { struct tcp_ao_info *ao; ao = kzalloc(sizeof(*ao), flags); if (!ao) return NULL; INIT_HLIST_HEAD(&ao->head); refcount_set(&ao->refcnt, 1); return ao; } static void tcp_ao_link_mkt(struct tcp_ao_info *ao, struct tcp_ao_key *mkt) { hlist_add_head_rcu(&mkt->node, &ao->head); } static struct tcp_ao_key *tcp_ao_copy_key(struct sock *sk, struct tcp_ao_key *key) { struct tcp_ao_key *new_key; new_key = sock_kmalloc(sk, tcp_ao_sizeof_key(key), GFP_ATOMIC); if (!new_key) return NULL; *new_key = *key; INIT_HLIST_NODE(&new_key->node); tcp_sigpool_get(new_key->tcp_sigpool_id); atomic64_set(&new_key->pkt_good, 0); atomic64_set(&new_key->pkt_bad, 0); return new_key; } static void tcp_ao_key_free_rcu(struct rcu_head *head) { struct tcp_ao_key *key = container_of(head, struct tcp_ao_key, rcu); tcp_sigpool_release(key->tcp_sigpool_id); kfree_sensitive(key); } static void tcp_ao_info_free_rcu(struct rcu_head *head) { struct tcp_ao_info *ao = container_of(head, struct tcp_ao_info, rcu); struct tcp_ao_key *key; struct hlist_node *n; hlist_for_each_entry_safe(key, n, &ao->head, node) { hlist_del(&key->node); tcp_sigpool_release(key->tcp_sigpool_id); kfree_sensitive(key); } kfree(ao); static_branch_slow_dec_deferred(&tcp_ao_needed); } static void tcp_ao_sk_omem_free(struct sock *sk, struct tcp_ao_info *ao) { size_t total_ao_sk_mem = 0; struct tcp_ao_key *key; hlist_for_each_entry(key, &ao->head, node) total_ao_sk_mem += tcp_ao_sizeof_key(key); atomic_sub(total_ao_sk_mem, &sk->sk_omem_alloc); } void tcp_ao_destroy_sock(struct sock *sk, bool twsk) { struct tcp_ao_info *ao; if (twsk) { ao = rcu_dereference_protected(tcp_twsk(sk)->ao_info, 1); rcu_assign_pointer(tcp_twsk(sk)->ao_info, NULL); } else { ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, 1); rcu_assign_pointer(tcp_sk(sk)->ao_info, NULL); } if (!ao || !refcount_dec_and_test(&ao->refcnt)) return; if (!twsk) tcp_ao_sk_omem_free(sk, ao); call_rcu(&ao->rcu, tcp_ao_info_free_rcu); } void tcp_ao_time_wait(struct tcp_timewait_sock *tcptw, struct tcp_sock *tp) { struct tcp_ao_info *ao_info = rcu_dereference_protected(tp->ao_info, 1); if (ao_info) { struct tcp_ao_key *key; struct hlist_node *n; int omem = 0; hlist_for_each_entry_safe(key, n, &ao_info->head, node) { omem += tcp_ao_sizeof_key(key); } refcount_inc(&ao_info->refcnt); atomic_sub(omem, &(((struct sock *)tp)->sk_omem_alloc)); rcu_assign_pointer(tcptw->ao_info, ao_info); } else { tcptw->ao_info = NULL; } } /* 4 tuple and ISNs are expected in NBO */ static int tcp_v4_ao_calc_key(struct tcp_ao_key *mkt, u8 *key, __be32 saddr, __be32 daddr, __be16 sport, __be16 dport, __be32 sisn, __be32 disn) { /* See RFC5926 3.1.1 */ struct kdf_input_block { u8 counter; u8 label[6]; struct tcp4_ao_context ctx; __be16 outlen; } __packed * tmp; struct tcp_sigpool hp; int err; err = tcp_sigpool_start(mkt->tcp_sigpool_id, &hp); if (err) return err; tmp = hp.scratch; tmp->counter = 1; memcpy(tmp->label, "TCP-AO", 6); tmp->ctx.saddr = saddr; tmp->ctx.daddr = daddr; tmp->ctx.sport = sport; tmp->ctx.dport = dport; tmp->ctx.sisn = sisn; tmp->ctx.disn = disn; tmp->outlen = htons(tcp_ao_digest_size(mkt) * 8); /* in bits */ err = tcp_ao_calc_traffic_key(mkt, key, tmp, sizeof(*tmp), &hp); tcp_sigpool_end(&hp); return err; } int tcp_v4_ao_calc_key_sk(struct tcp_ao_key *mkt, u8 *key, const struct sock *sk, __be32 sisn, __be32 disn, bool send) { if (send) return tcp_v4_ao_calc_key(mkt, key, sk->sk_rcv_saddr, sk->sk_daddr, htons(sk->sk_num), sk->sk_dport, sisn, disn); else return tcp_v4_ao_calc_key(mkt, key, sk->sk_daddr, sk->sk_rcv_saddr, sk->sk_dport, htons(sk->sk_num), disn, sisn); } static int tcp_ao_calc_key_sk(struct tcp_ao_key *mkt, u8 *key, const struct sock *sk, __be32 sisn, __be32 disn, bool send) { if (mkt->family == AF_INET) return tcp_v4_ao_calc_key_sk(mkt, key, sk, sisn, disn, send); #if IS_ENABLED(CONFIG_IPV6) else if (mkt->family == AF_INET6) return tcp_v6_ao_calc_key_sk(mkt, key, sk, sisn, disn, send); #endif else return -EOPNOTSUPP; } int tcp_v4_ao_calc_key_rsk(struct tcp_ao_key *mkt, u8 *key, struct request_sock *req) { struct inet_request_sock *ireq = inet_rsk(req); return tcp_v4_ao_calc_key(mkt, key, ireq->ir_loc_addr, ireq->ir_rmt_addr, htons(ireq->ir_num), ireq->ir_rmt_port, htonl(tcp_rsk(req)->snt_isn), htonl(tcp_rsk(req)->rcv_isn)); } static int tcp_v4_ao_calc_key_skb(struct tcp_ao_key *mkt, u8 *key, const struct sk_buff *skb, __be32 sisn, __be32 disn) { const struct iphdr *iph = ip_hdr(skb); const struct tcphdr *th = tcp_hdr(skb); return tcp_v4_ao_calc_key(mkt, key, iph->saddr, iph->daddr, th->source, th->dest, sisn, disn); } static int tcp_ao_calc_key_skb(struct tcp_ao_key *mkt, u8 *key, const struct sk_buff *skb, __be32 sisn, __be32 disn, int family) { if (family == AF_INET) return tcp_v4_ao_calc_key_skb(mkt, key, skb, sisn, disn); #if IS_ENABLED(CONFIG_IPV6) else if (family == AF_INET6) return tcp_v6_ao_calc_key_skb(mkt, key, skb, sisn, disn); #endif return -EAFNOSUPPORT; } static int tcp_v4_ao_hash_pseudoheader(struct tcp_sigpool *hp, __be32 daddr, __be32 saddr, int nbytes) { struct tcp4_pseudohdr *bp; struct scatterlist sg; bp = hp->scratch; bp->saddr = saddr; bp->daddr = daddr; bp->pad = 0; bp->protocol = IPPROTO_TCP; bp->len = cpu_to_be16(nbytes); sg_init_one(&sg, bp, sizeof(*bp)); ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp)); return crypto_ahash_update(hp->req); } static int tcp_ao_hash_pseudoheader(unsigned short int family, const struct sock *sk, const struct sk_buff *skb, struct tcp_sigpool *hp, int nbytes) { const struct tcphdr *th = tcp_hdr(skb); /* TODO: Can we rely on checksum being zero to mean outbound pkt? */ if (!th->check) { if (family == AF_INET) return tcp_v4_ao_hash_pseudoheader(hp, sk->sk_daddr, sk->sk_rcv_saddr, skb->len); #if IS_ENABLED(CONFIG_IPV6) else if (family == AF_INET6) return tcp_v6_ao_hash_pseudoheader(hp, &sk->sk_v6_daddr, &sk->sk_v6_rcv_saddr, skb->len); #endif else return -EAFNOSUPPORT; } if (family == AF_INET) { const struct iphdr *iph = ip_hdr(skb); return tcp_v4_ao_hash_pseudoheader(hp, iph->daddr, iph->saddr, skb->len); #if IS_ENABLED(CONFIG_IPV6) } else if (family == AF_INET6) { const struct ipv6hdr *iph = ipv6_hdr(skb); return tcp_v6_ao_hash_pseudoheader(hp, &iph->daddr, &iph->saddr, skb->len); #endif } return -EAFNOSUPPORT; } u32 tcp_ao_compute_sne(u32 next_sne, u32 next_seq, u32 seq) { u32 sne = next_sne; if (before(seq, next_seq)) { if (seq > next_seq) sne--; } else { if (seq < next_seq) sne++; } return sne; } /* tcp_ao_hash_sne(struct tcp_sigpool *hp) * @hp - used for hashing * @sne - sne value */ static int tcp_ao_hash_sne(struct tcp_sigpool *hp, u32 sne) { struct scatterlist sg; __be32 *bp; bp = (__be32 *)hp->scratch; *bp = htonl(sne); sg_init_one(&sg, bp, sizeof(*bp)); ahash_request_set_crypt(hp->req, &sg, NULL, sizeof(*bp)); return crypto_ahash_update(hp->req); } static int tcp_ao_hash_header(struct tcp_sigpool *hp, const struct tcphdr *th, bool exclude_options, u8 *hash, int hash_offset, int hash_len) { struct scatterlist sg; u8 *hdr = hp->scratch; int err, len; /* We are not allowed to change tcphdr, make a local copy */ if (exclude_options) { len = sizeof(*th) + sizeof(struct tcp_ao_hdr) + hash_len; memcpy(hdr, th, sizeof(*th)); memcpy(hdr + sizeof(*th), (u8 *)th + hash_offset - sizeof(struct tcp_ao_hdr), sizeof(struct tcp_ao_hdr)); memset(hdr + sizeof(*th) + sizeof(struct tcp_ao_hdr), 0, hash_len); ((struct tcphdr *)hdr)->check = 0; } else { len = th->doff << 2; memcpy(hdr, th, len); /* zero out tcp-ao hash */ ((struct tcphdr *)hdr)->check = 0; memset(hdr + hash_offset, 0, hash_len); } sg_init_one(&sg, hdr, len); ahash_request_set_crypt(hp->req, &sg, NULL, len); err = crypto_ahash_update(hp->req); WARN_ON_ONCE(err != 0); return err; } int tcp_ao_hash_hdr(unsigned short int family, char *ao_hash, struct tcp_ao_key *key, const u8 *tkey, const union tcp_ao_addr *daddr, const union tcp_ao_addr *saddr, const struct tcphdr *th, u32 sne) { int tkey_len = tcp_ao_digest_size(key); int hash_offset = ao_hash - (char *)th; struct tcp_sigpool hp; void *hash_buf = NULL; hash_buf = kmalloc(tkey_len, GFP_ATOMIC); if (!hash_buf) goto clear_hash_noput; if (tcp_sigpool_start(key->tcp_sigpool_id, &hp)) goto clear_hash_noput; if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp.req), tkey, tkey_len)) goto clear_hash; if (crypto_ahash_init(hp.req)) goto clear_hash; if (tcp_ao_hash_sne(&hp, sne)) goto clear_hash; if (family == AF_INET) { if (tcp_v4_ao_hash_pseudoheader(&hp, daddr->a4.s_addr, saddr->a4.s_addr, th->doff * 4)) goto clear_hash; #if IS_ENABLED(CONFIG_IPV6) } else if (family == AF_INET6) { if (tcp_v6_ao_hash_pseudoheader(&hp, &daddr->a6, &saddr->a6, th->doff * 4)) goto clear_hash; #endif } else { WARN_ON_ONCE(1); goto clear_hash; } if (tcp_ao_hash_header(&hp, th, !!(key->keyflags & TCP_AO_KEYF_EXCLUDE_OPT), ao_hash, hash_offset, tcp_ao_maclen(key))) goto clear_hash; ahash_request_set_crypt(hp.req, NULL, hash_buf, 0); if (crypto_ahash_final(hp.req)) goto clear_hash; memcpy(ao_hash, hash_buf, tcp_ao_maclen(key)); tcp_sigpool_end(&hp); kfree(hash_buf); return 0; clear_hash: tcp_sigpool_end(&hp); clear_hash_noput: memset(ao_hash, 0, tcp_ao_maclen(key)); kfree(hash_buf); return 1; } int tcp_ao_hash_skb(unsigned short int family, char *ao_hash, struct tcp_ao_key *key, const struct sock *sk, const struct sk_buff *skb, const u8 *tkey, int hash_offset, u32 sne) { const struct tcphdr *th = tcp_hdr(skb); int tkey_len = tcp_ao_digest_size(key); struct tcp_sigpool hp; void *hash_buf = NULL; hash_buf = kmalloc(tkey_len, GFP_ATOMIC); if (!hash_buf) goto clear_hash_noput; if (tcp_sigpool_start(key->tcp_sigpool_id, &hp)) goto clear_hash_noput; if (crypto_ahash_setkey(crypto_ahash_reqtfm(hp.req), tkey, tkey_len)) goto clear_hash; /* For now use sha1 by default. Depends on alg in tcp_ao_key */ if (crypto_ahash_init(hp.req)) goto clear_hash; if (tcp_ao_hash_sne(&hp, sne)) goto clear_hash; if (tcp_ao_hash_pseudoheader(family, sk, skb, &hp, skb->len)) goto clear_hash; if (tcp_ao_hash_header(&hp, th, !!(key->keyflags & TCP_AO_KEYF_EXCLUDE_OPT), ao_hash, hash_offset, tcp_ao_maclen(key))) goto clear_hash; if (tcp_sigpool_hash_skb_data(&hp, skb, th->doff << 2)) goto clear_hash; ahash_request_set_crypt(hp.req, NULL, hash_buf, 0); if (crypto_ahash_final(hp.req)) goto clear_hash; memcpy(ao_hash, hash_buf, tcp_ao_maclen(key)); tcp_sigpool_end(&hp); kfree(hash_buf); return 0; clear_hash: tcp_sigpool_end(&hp); clear_hash_noput: memset(ao_hash, 0, tcp_ao_maclen(key)); kfree(hash_buf); return 1; } int tcp_v4_ao_hash_skb(char *ao_hash, struct tcp_ao_key *key, const struct sock *sk, const struct sk_buff *skb, const u8 *tkey, int hash_offset, u32 sne) { return tcp_ao_hash_skb(AF_INET, ao_hash, key, sk, skb, tkey, hash_offset, sne); } int tcp_v4_ao_synack_hash(char *ao_hash, struct tcp_ao_key *ao_key, struct request_sock *req, const struct sk_buff *skb, int hash_offset, u32 sne) { void *hash_buf = NULL; int err; hash_buf = kmalloc(tcp_ao_digest_size(ao_key), GFP_ATOMIC); if (!hash_buf) return -ENOMEM; err = tcp_v4_ao_calc_key_rsk(ao_key, hash_buf, req); if (err) goto out; err = tcp_ao_hash_skb(AF_INET, ao_hash, ao_key, req_to_sk(req), skb, hash_buf, hash_offset, sne); out: kfree(hash_buf); return err; } struct tcp_ao_key *tcp_v4_ao_lookup_rsk(const struct sock *sk, struct request_sock *req, int sndid, int rcvid) { struct inet_request_sock *ireq = inet_rsk(req); union tcp_ao_addr *addr = (union tcp_ao_addr *)&ireq->ir_rmt_addr; int l3index; l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); return tcp_ao_do_lookup(sk, l3index, addr, AF_INET, sndid, rcvid); } struct tcp_ao_key *tcp_v4_ao_lookup(const struct sock *sk, struct sock *addr_sk, int sndid, int rcvid) { int l3index = l3mdev_master_ifindex_by_index(sock_net(sk), addr_sk->sk_bound_dev_if); union tcp_ao_addr *addr = (union tcp_ao_addr *)&addr_sk->sk_daddr; return tcp_ao_do_lookup(sk, l3index, addr, AF_INET, sndid, rcvid); } int tcp_ao_prepare_reset(const struct sock *sk, struct sk_buff *skb, const struct tcp_ao_hdr *aoh, int l3index, u32 seq, struct tcp_ao_key **key, char **traffic_key, bool *allocated_traffic_key, u8 *keyid, u32 *sne) { const struct tcphdr *th = tcp_hdr(skb); struct tcp_ao_info *ao_info; *allocated_traffic_key = false; /* If there's no socket - than initial sisn/disn are unknown. * Drop the segment. RFC5925 (7.7) advises to require graceful * restart [RFC4724]. Alternatively, the RFC5925 advises to * save/restore traffic keys before/after reboot. * Linux TCP-AO support provides TCP_AO_ADD_KEY and TCP_AO_REPAIR * options to restore a socket post-reboot. */ if (!sk) return -ENOTCONN; if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV)) { unsigned int family = READ_ONCE(sk->sk_family); union tcp_ao_addr *addr; __be32 disn, sisn; if (sk->sk_state == TCP_NEW_SYN_RECV) { struct request_sock *req = inet_reqsk(sk); sisn = htonl(tcp_rsk(req)->rcv_isn); disn = htonl(tcp_rsk(req)->snt_isn); *sne = tcp_ao_compute_sne(0, tcp_rsk(req)->snt_isn, seq); } else { sisn = th->seq; disn = 0; } if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) addr = (union tcp_md5_addr *)&ipv6_hdr(skb)->saddr; else addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; #if IS_ENABLED(CONFIG_IPV6) if (family == AF_INET6 && ipv6_addr_v4mapped(&sk->sk_v6_daddr)) family = AF_INET; #endif sk = sk_const_to_full_sk(sk); ao_info = rcu_dereference(tcp_sk(sk)->ao_info); if (!ao_info) return -ENOENT; *key = tcp_ao_do_lookup(sk, l3index, addr, family, -1, aoh->rnext_keyid); if (!*key) return -ENOENT; *traffic_key = kmalloc(tcp_ao_digest_size(*key), GFP_ATOMIC); if (!*traffic_key) return -ENOMEM; *allocated_traffic_key = true; if (tcp_ao_calc_key_skb(*key, *traffic_key, skb, sisn, disn, family)) return -1; *keyid = (*key)->rcvid; } else { struct tcp_ao_key *rnext_key; u32 snd_basis; if (sk->sk_state == TCP_TIME_WAIT) { ao_info = rcu_dereference(tcp_twsk(sk)->ao_info); snd_basis = tcp_twsk(sk)->tw_snd_nxt; } else { ao_info = rcu_dereference(tcp_sk(sk)->ao_info); snd_basis = tcp_sk(sk)->snd_una; } if (!ao_info) return -ENOENT; *key = tcp_ao_established_key(ao_info, aoh->rnext_keyid, -1); if (!*key) return -ENOENT; *traffic_key = snd_other_key(*key); rnext_key = READ_ONCE(ao_info->rnext_key); *keyid = rnext_key->rcvid; *sne = tcp_ao_compute_sne(READ_ONCE(ao_info->snd_sne), snd_basis, seq); } return 0; } int tcp_ao_transmit_skb(struct sock *sk, struct sk_buff *skb, struct tcp_ao_key *key, struct tcphdr *th, __u8 *hash_location) { struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); struct tcp_sock *tp = tcp_sk(sk); struct tcp_ao_info *ao; void *tkey_buf = NULL; u8 *traffic_key; u32 sne; ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, lockdep_sock_is_held(sk)); traffic_key = snd_other_key(key); if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { __be32 disn; if (!(tcb->tcp_flags & TCPHDR_ACK)) { disn = 0; tkey_buf = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC); if (!tkey_buf) return -ENOMEM; traffic_key = tkey_buf; } else { disn = ao->risn; } tp->af_specific->ao_calc_key_sk(key, traffic_key, sk, ao->lisn, disn, true); } sne = tcp_ao_compute_sne(READ_ONCE(ao->snd_sne), READ_ONCE(tp->snd_una), ntohl(th->seq)); tp->af_specific->calc_ao_hash(hash_location, key, sk, skb, traffic_key, hash_location - (u8 *)th, sne); kfree(tkey_buf); return 0; } static struct tcp_ao_key *tcp_ao_inbound_lookup(unsigned short int family, const struct sock *sk, const struct sk_buff *skb, int sndid, int rcvid, int l3index) { if (family == AF_INET) { const struct iphdr *iph = ip_hdr(skb); return tcp_ao_do_lookup(sk, l3index, (union tcp_ao_addr *)&iph->saddr, AF_INET, sndid, rcvid); } else { const struct ipv6hdr *iph = ipv6_hdr(skb); return tcp_ao_do_lookup(sk, l3index, (union tcp_ao_addr *)&iph->saddr, AF_INET6, sndid, rcvid); } } void tcp_ao_syncookie(struct sock *sk, const struct sk_buff *skb, struct request_sock *req, unsigned short int family) { struct tcp_request_sock *treq = tcp_rsk(req); const struct tcphdr *th = tcp_hdr(skb); const struct tcp_ao_hdr *aoh; struct tcp_ao_key *key; int l3index; /* treq->af_specific is used to perform TCP_AO lookup * in tcp_create_openreq_child(). */ #if IS_ENABLED(CONFIG_IPV6) if (family == AF_INET6) treq->af_specific = &tcp_request_sock_ipv6_ops; else #endif treq->af_specific = &tcp_request_sock_ipv4_ops; treq->used_tcp_ao = false; if (tcp_parse_auth_options(th, NULL, &aoh) || !aoh) return; l3index = l3mdev_master_ifindex_by_index(sock_net(sk), inet_rsk(req)->ir_iif); key = tcp_ao_inbound_lookup(family, sk, skb, -1, aoh->keyid, l3index); if (!key) /* Key not found, continue without TCP-AO */ return; treq->ao_rcv_next = aoh->keyid; treq->ao_keyid = aoh->rnext_keyid; treq->used_tcp_ao = true; } static enum skb_drop_reason tcp_ao_verify_hash(const struct sock *sk, const struct sk_buff *skb, unsigned short int family, struct tcp_ao_info *info, const struct tcp_ao_hdr *aoh, struct tcp_ao_key *key, u8 *traffic_key, u8 *phash, u32 sne, int l3index) { const struct tcphdr *th = tcp_hdr(skb); u8 maclen = tcp_ao_hdr_maclen(aoh); void *hash_buf = NULL; if (maclen != tcp_ao_maclen(key)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); atomic64_inc(&info->counters.pkt_bad); atomic64_inc(&key->pkt_bad); trace_tcp_ao_wrong_maclen(sk, skb, aoh->keyid, aoh->rnext_keyid, maclen); return SKB_DROP_REASON_TCP_AOFAILURE; } hash_buf = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC); if (!hash_buf) return SKB_DROP_REASON_NOT_SPECIFIED; /* XXX: make it per-AF callback? */ tcp_ao_hash_skb(family, hash_buf, key, sk, skb, traffic_key, (phash - (u8 *)th), sne); if (memcmp(phash, hash_buf, maclen)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); atomic64_inc(&info->counters.pkt_bad); atomic64_inc(&key->pkt_bad); trace_tcp_ao_mismatch(sk, skb, aoh->keyid, aoh->rnext_keyid, maclen); kfree(hash_buf); return SKB_DROP_REASON_TCP_AOFAILURE; } NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOGOOD); atomic64_inc(&info->counters.pkt_good); atomic64_inc(&key->pkt_good); kfree(hash_buf); return SKB_NOT_DROPPED_YET; } enum skb_drop_reason tcp_inbound_ao_hash(struct sock *sk, const struct sk_buff *skb, unsigned short int family, const struct request_sock *req, int l3index, const struct tcp_ao_hdr *aoh) { const struct tcphdr *th = tcp_hdr(skb); u8 maclen = tcp_ao_hdr_maclen(aoh); u8 *phash = (u8 *)(aoh + 1); /* hash goes just after the header */ struct tcp_ao_info *info; enum skb_drop_reason ret; struct tcp_ao_key *key; __be32 sisn, disn; u8 *traffic_key; int state; u32 sne = 0; info = rcu_dereference(tcp_sk(sk)->ao_info); if (!info) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOKEYNOTFOUND); trace_tcp_ao_key_not_found(sk, skb, aoh->keyid, aoh->rnext_keyid, maclen); return SKB_DROP_REASON_TCP_AOUNEXPECTED; } if (unlikely(th->syn)) { sisn = th->seq; disn = 0; } state = READ_ONCE(sk->sk_state); /* Fast-path */ if (likely((1 << state) & TCP_AO_ESTABLISHED)) { enum skb_drop_reason err; struct tcp_ao_key *current_key; /* Check if this socket's rnext_key matches the keyid in the * packet. If not we lookup the key based on the keyid * matching the rcvid in the mkt. */ key = READ_ONCE(info->rnext_key); if (key->rcvid != aoh->keyid) { key = tcp_ao_established_key(info, -1, aoh->keyid); if (!key) goto key_not_found; } /* Delayed retransmitted SYN */ if (unlikely(th->syn && !th->ack)) goto verify_hash; sne = tcp_ao_compute_sne(info->rcv_sne, tcp_sk(sk)->rcv_nxt, ntohl(th->seq)); /* Established socket, traffic key are cached */ traffic_key = rcv_other_key(key); err = tcp_ao_verify_hash(sk, skb, family, info, aoh, key, traffic_key, phash, sne, l3index); if (err) return err; current_key = READ_ONCE(info->current_key); /* Key rotation: the peer asks us to use new key (RNext) */ if (unlikely(aoh->rnext_keyid != current_key->sndid)) { trace_tcp_ao_rnext_request(sk, skb, current_key->sndid, aoh->rnext_keyid, tcp_ao_hdr_maclen(aoh)); /* If the key is not found we do nothing. */ key = tcp_ao_established_key(info, aoh->rnext_keyid, -1); if (key) /* pairs with tcp_ao_del_cmd */ WRITE_ONCE(info->current_key, key); } return SKB_NOT_DROPPED_YET; } if (unlikely(state == TCP_CLOSE)) return SKB_DROP_REASON_TCP_CLOSE; /* Lookup key based on peer address and keyid. * current_key and rnext_key must not be used on tcp listen * sockets as otherwise: * - request sockets would race on those key pointers * - tcp_ao_del_cmd() allows async key removal */ key = tcp_ao_inbound_lookup(family, sk, skb, -1, aoh->keyid, l3index); if (!key) goto key_not_found; if (th->syn && !th->ack) goto verify_hash; if ((1 << state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV)) { /* Make the initial syn the likely case here */ if (unlikely(req)) { sne = tcp_ao_compute_sne(0, tcp_rsk(req)->rcv_isn, ntohl(th->seq)); sisn = htonl(tcp_rsk(req)->rcv_isn); disn = htonl(tcp_rsk(req)->snt_isn); } else if (unlikely(th->ack && !th->syn)) { /* Possible syncookie packet */ sisn = htonl(ntohl(th->seq) - 1); disn = htonl(ntohl(th->ack_seq) - 1); sne = tcp_ao_compute_sne(0, ntohl(sisn), ntohl(th->seq)); } else if (unlikely(!th->syn)) { /* no way to figure out initial sisn/disn - drop */ return SKB_DROP_REASON_TCP_FLAGS; } } else if ((1 << state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { disn = info->lisn; if (th->syn || th->rst) sisn = th->seq; else sisn = info->risn; } else { WARN_ONCE(1, "TCP-AO: Unexpected sk_state %d", state); return SKB_DROP_REASON_TCP_AOFAILURE; } verify_hash: traffic_key = kmalloc(tcp_ao_digest_size(key), GFP_ATOMIC); if (!traffic_key) return SKB_DROP_REASON_NOT_SPECIFIED; tcp_ao_calc_key_skb(key, traffic_key, skb, sisn, disn, family); ret = tcp_ao_verify_hash(sk, skb, family, info, aoh, key, traffic_key, phash, sne, l3index); kfree(traffic_key); return ret; key_not_found: NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOKEYNOTFOUND); atomic64_inc(&info->counters.key_not_found); trace_tcp_ao_key_not_found(sk, skb, aoh->keyid, aoh->rnext_keyid, maclen); return SKB_DROP_REASON_TCP_AOKEYNOTFOUND; } static int tcp_ao_cache_traffic_keys(const struct sock *sk, struct tcp_ao_info *ao, struct tcp_ao_key *ao_key) { u8 *traffic_key = snd_other_key(ao_key); int ret; ret = tcp_ao_calc_key_sk(ao_key, traffic_key, sk, ao->lisn, ao->risn, true); if (ret) return ret; traffic_key = rcv_other_key(ao_key); ret = tcp_ao_calc_key_sk(ao_key, traffic_key, sk, ao->lisn, ao->risn, false); return ret; } void tcp_ao_connect_init(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_ao_info *ao_info; struct hlist_node *next; union tcp_ao_addr *addr; struct tcp_ao_key *key; int family, l3index; ao_info = rcu_dereference_protected(tp->ao_info, lockdep_sock_is_held(sk)); if (!ao_info) return; /* Remove all keys that don't match the peer */ family = sk->sk_family; if (family == AF_INET) addr = (union tcp_ao_addr *)&sk->sk_daddr; #if IS_ENABLED(CONFIG_IPV6) else if (family == AF_INET6) addr = (union tcp_ao_addr *)&sk->sk_v6_daddr; #endif else return; l3index = l3mdev_master_ifindex_by_index(sock_net(sk), sk->sk_bound_dev_if); hlist_for_each_entry_safe(key, next, &ao_info->head, node) { if (!tcp_ao_key_cmp(key, l3index, addr, key->prefixlen, family, -1, -1)) continue; if (key == ao_info->current_key) ao_info->current_key = NULL; if (key == ao_info->rnext_key) ao_info->rnext_key = NULL; hlist_del_rcu(&key->node); atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); call_rcu(&key->rcu, tcp_ao_key_free_rcu); } key = tp->af_specific->ao_lookup(sk, sk, -1, -1); if (key) { /* if current_key or rnext_key were not provided, * use the first key matching the peer */ if (!ao_info->current_key) ao_info->current_key = key; if (!ao_info->rnext_key) ao_info->rnext_key = key; tp->tcp_header_len += tcp_ao_len_aligned(key); ao_info->lisn = htonl(tp->write_seq); ao_info->snd_sne = 0; } else { /* Can't happen: tcp_connect() verifies that there's * at least one tcp-ao key that matches the remote peer. */ WARN_ON_ONCE(1); rcu_assign_pointer(tp->ao_info, NULL); kfree(ao_info); } } void tcp_ao_established(struct sock *sk) { struct tcp_ao_info *ao; struct tcp_ao_key *key; ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, lockdep_sock_is_held(sk)); if (!ao) return; hlist_for_each_entry_rcu(key, &ao->head, node) tcp_ao_cache_traffic_keys(sk, ao, key); } void tcp_ao_finish_connect(struct sock *sk, struct sk_buff *skb) { struct tcp_ao_info *ao; struct tcp_ao_key *key; ao = rcu_dereference_protected(tcp_sk(sk)->ao_info, lockdep_sock_is_held(sk)); if (!ao) return; WRITE_ONCE(ao->risn, tcp_hdr(skb)->seq); ao->rcv_sne = 0; hlist_for_each_entry_rcu(key, &ao->head, node) tcp_ao_cache_traffic_keys(sk, ao, key); } int tcp_ao_copy_all_matching(const struct sock *sk, struct sock *newsk, struct request_sock *req, struct sk_buff *skb, int family) { struct tcp_ao_key *key, *new_key, *first_key; struct tcp_ao_info *new_ao, *ao; struct hlist_node *key_head; int l3index, ret = -ENOMEM; union tcp_ao_addr *addr; bool match = false; ao = rcu_dereference(tcp_sk(sk)->ao_info); if (!ao) return 0; /* New socket without TCP-AO on it */ if (!tcp_rsk_used_ao(req)) return 0; new_ao = tcp_ao_alloc_info(GFP_ATOMIC); if (!new_ao) return -ENOMEM; new_ao->lisn = htonl(tcp_rsk(req)->snt_isn); new_ao->risn = htonl(tcp_rsk(req)->rcv_isn); new_ao->ao_required = ao->ao_required; new_ao->accept_icmps = ao->accept_icmps; if (family == AF_INET) { addr = (union tcp_ao_addr *)&newsk->sk_daddr; #if IS_ENABLED(CONFIG_IPV6) } else if (family == AF_INET6) { addr = (union tcp_ao_addr *)&newsk->sk_v6_daddr; #endif } else { ret = -EAFNOSUPPORT; goto free_ao; } l3index = l3mdev_master_ifindex_by_index(sock_net(newsk), newsk->sk_bound_dev_if); hlist_for_each_entry_rcu(key, &ao->head, node) { if (tcp_ao_key_cmp(key, l3index, addr, key->prefixlen, family, -1, -1)) continue; new_key = tcp_ao_copy_key(newsk, key); if (!new_key) goto free_and_exit; tcp_ao_cache_traffic_keys(newsk, new_ao, new_key); tcp_ao_link_mkt(new_ao, new_key); match = true; } if (!match) { /* RFC5925 (7.4.1) specifies that the TCP-AO status * of a connection is determined on the initial SYN. * At this point the connection was TCP-AO enabled, so * it can't switch to being unsigned if peer's key * disappears on the listening socket. */ ret = -EKEYREJECTED; goto free_and_exit; } if (!static_key_fast_inc_not_disabled(&tcp_ao_needed.key.key)) { ret = -EUSERS; goto free_and_exit; } key_head = rcu_dereference(hlist_first_rcu(&new_ao->head)); first_key = hlist_entry_safe(key_head, struct tcp_ao_key, node); key = tcp_ao_established_key(new_ao, tcp_rsk(req)->ao_keyid, -1); if (key) new_ao->current_key = key; else new_ao->current_key = first_key; /* set rnext_key */ key = tcp_ao_established_key(new_ao, -1, tcp_rsk(req)->ao_rcv_next); if (key) new_ao->rnext_key = key; else new_ao->rnext_key = first_key; sk_gso_disable(newsk); rcu_assign_pointer(tcp_sk(newsk)->ao_info, new_ao); return 0; free_and_exit: hlist_for_each_entry_safe(key, key_head, &new_ao->head, node) { hlist_del(&key->node); tcp_sigpool_release(key->tcp_sigpool_id); atomic_sub(tcp_ao_sizeof_key(key), &newsk->sk_omem_alloc); kfree_sensitive(key); } free_ao: kfree(new_ao); return ret; } static bool tcp_ao_can_set_current_rnext(struct sock *sk) { /* There aren't current/rnext keys on TCP_LISTEN sockets */ if (sk->sk_state == TCP_LISTEN) return false; return true; } static int tcp_ao_verify_ipv4(struct sock *sk, struct tcp_ao_add *cmd, union tcp_ao_addr **addr) { struct sockaddr_in *sin = (struct sockaddr_in *)&cmd->addr; struct inet_sock *inet = inet_sk(sk); if (sin->sin_family != AF_INET) return -EINVAL; /* Currently matching is not performed on port (or port ranges) */ if (sin->sin_port != 0) return -EINVAL; /* Check prefix and trailing 0's in addr */ if (cmd->prefix != 0) { __be32 mask; if (ntohl(sin->sin_addr.s_addr) == INADDR_ANY) return -EINVAL; if (cmd->prefix > 32) return -EINVAL; mask = inet_make_mask(cmd->prefix); if (sin->sin_addr.s_addr & ~mask) return -EINVAL; /* Check that MKT address is consistent with socket */ if (ntohl(inet->inet_daddr) != INADDR_ANY && (inet->inet_daddr & mask) != sin->sin_addr.s_addr) return -EINVAL; } else { if (ntohl(sin->sin_addr.s_addr) != INADDR_ANY) return -EINVAL; } *addr = (union tcp_ao_addr *)&sin->sin_addr; return 0; } static int tcp_ao_parse_crypto(struct tcp_ao_add *cmd, struct tcp_ao_key *key) { unsigned int syn_tcp_option_space; bool is_kdf_aes_128_cmac = false; struct crypto_ahash *tfm; struct tcp_sigpool hp; void *tmp_key = NULL; int err; /* RFC5926, 3.1.1.2. KDF_AES_128_CMAC */ if (!strcmp("cmac(aes128)", cmd->alg_name)) { strscpy(cmd->alg_name, "cmac(aes)", sizeof(cmd->alg_name)); is_kdf_aes_128_cmac = (cmd->keylen != 16); tmp_key = kmalloc(cmd->keylen, GFP_KERNEL); if (!tmp_key) return -ENOMEM; } key->maclen = cmd->maclen ?: 12; /* 12 is the default in RFC5925 */ /* Check: maclen + tcp-ao header <= (MAX_TCP_OPTION_SPACE - mss * - tstamp (including sackperm) * - wscale), * see tcp_syn_options(), tcp_synack_options(), commit 33ad798c924b. * * In order to allow D-SACK with TCP-AO, the header size should be: * (MAX_TCP_OPTION_SPACE - TCPOLEN_TSTAMP_ALIGNED * - TCPOLEN_SACK_BASE_ALIGNED * - 2 * TCPOLEN_SACK_PERBLOCK) = 8 (maclen = 4), * see tcp_established_options(). * * RFC5925, 2.2: * Typical MACs are 96-128 bits (12-16 bytes), but any length * that fits in the header of the segment being authenticated * is allowed. * * RFC5925, 7.6: * TCP-AO continues to consume 16 bytes in non-SYN segments, * leaving a total of 24 bytes for other options, of which * the timestamp consumes 10. This leaves 14 bytes, of which 10 * are used for a single SACK block. When two SACK blocks are used, * such as to handle D-SACK, a smaller TCP-AO MAC would be required * to make room for the additional SACK block (i.e., to leave 18 * bytes for the D-SACK variant of the SACK option) [RFC2883]. * Note that D-SACK is not supportable in TCP MD5 in the presence * of timestamps, because TCP MD5’s MAC length is fixed and too * large to leave sufficient option space. */ syn_tcp_option_space = MAX_TCP_OPTION_SPACE; syn_tcp_option_space -= TCPOLEN_MSS_ALIGNED; syn_tcp_option_space -= TCPOLEN_TSTAMP_ALIGNED; syn_tcp_option_space -= TCPOLEN_WSCALE_ALIGNED; if (tcp_ao_len_aligned(key) > syn_tcp_option_space) { err = -EMSGSIZE; goto err_kfree; } key->keylen = cmd->keylen; memcpy(key->key, cmd->key, cmd->keylen); err = tcp_sigpool_start(key->tcp_sigpool_id, &hp); if (err) goto err_kfree; tfm = crypto_ahash_reqtfm(hp.req); if (is_kdf_aes_128_cmac) { void *scratch = hp.scratch; struct scatterlist sg; memcpy(tmp_key, cmd->key, cmd->keylen); sg_init_one(&sg, tmp_key, cmd->keylen); /* Using zero-key of 16 bytes as described in RFC5926 */ memset(scratch, 0, 16); err = crypto_ahash_setkey(tfm, scratch, 16); if (err) goto err_pool_end; err = crypto_ahash_init(hp.req); if (err) goto err_pool_end; ahash_request_set_crypt(hp.req, &sg, key->key, cmd->keylen); err = crypto_ahash_update(hp.req); if (err) goto err_pool_end; err |= crypto_ahash_final(hp.req); if (err) goto err_pool_end; key->keylen = 16; } err = crypto_ahash_setkey(tfm, key->key, key->keylen); if (err) goto err_pool_end; tcp_sigpool_end(&hp); kfree_sensitive(tmp_key); if (tcp_ao_maclen(key) > key->digest_size) return -EINVAL; return 0; err_pool_end: tcp_sigpool_end(&hp); err_kfree: kfree_sensitive(tmp_key); return err; } #if IS_ENABLED(CONFIG_IPV6) static int tcp_ao_verify_ipv6(struct sock *sk, struct tcp_ao_add *cmd, union tcp_ao_addr **paddr, unsigned short int *family) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd->addr; struct in6_addr *addr = &sin6->sin6_addr; u8 prefix = cmd->prefix; if (sin6->sin6_family != AF_INET6) return -EINVAL; /* Currently matching is not performed on port (or port ranges) */ if (sin6->sin6_port != 0) return -EINVAL; /* Check prefix and trailing 0's in addr */ if (cmd->prefix != 0 && ipv6_addr_v4mapped(addr)) { __be32 addr4 = addr->s6_addr32[3]; __be32 mask; if (prefix > 32 || ntohl(addr4) == INADDR_ANY) return -EINVAL; mask = inet_make_mask(prefix); if (addr4 & ~mask) return -EINVAL; /* Check that MKT address is consistent with socket */ if (!ipv6_addr_any(&sk->sk_v6_daddr)) { __be32 daddr4 = sk->sk_v6_daddr.s6_addr32[3]; if (!ipv6_addr_v4mapped(&sk->sk_v6_daddr)) return -EINVAL; if ((daddr4 & mask) != addr4) return -EINVAL; } *paddr = (union tcp_ao_addr *)&addr->s6_addr32[3]; *family = AF_INET; return 0; } else if (cmd->prefix != 0) { struct in6_addr pfx; if (ipv6_addr_any(addr) || prefix > 128) return -EINVAL; ipv6_addr_prefix(&pfx, addr, prefix); if (ipv6_addr_cmp(&pfx, addr)) return -EINVAL; /* Check that MKT address is consistent with socket */ if (!ipv6_addr_any(&sk->sk_v6_daddr) && !ipv6_prefix_equal(&sk->sk_v6_daddr, addr, prefix)) return -EINVAL; } else { if (!ipv6_addr_any(addr)) return -EINVAL; } *paddr = (union tcp_ao_addr *)addr; return 0; } #else static int tcp_ao_verify_ipv6(struct sock *sk, struct tcp_ao_add *cmd, union tcp_ao_addr **paddr, unsigned short int *family) { return -EOPNOTSUPP; } #endif static struct tcp_ao_info *setsockopt_ao_info(struct sock *sk) { if (sk_fullsock(sk)) { return rcu_dereference_protected(tcp_sk(sk)->ao_info, lockdep_sock_is_held(sk)); } else if (sk->sk_state == TCP_TIME_WAIT) { return rcu_dereference_protected(tcp_twsk(sk)->ao_info, lockdep_sock_is_held(sk)); } return ERR_PTR(-ESOCKTNOSUPPORT); } static struct tcp_ao_info *getsockopt_ao_info(struct sock *sk) { if (sk_fullsock(sk)) return rcu_dereference(tcp_sk(sk)->ao_info); else if (sk->sk_state == TCP_TIME_WAIT) return rcu_dereference(tcp_twsk(sk)->ao_info); return ERR_PTR(-ESOCKTNOSUPPORT); } #define TCP_AO_KEYF_ALL (TCP_AO_KEYF_IFINDEX | TCP_AO_KEYF_EXCLUDE_OPT) #define TCP_AO_GET_KEYF_VALID (TCP_AO_KEYF_IFINDEX) static struct tcp_ao_key *tcp_ao_key_alloc(struct sock *sk, struct tcp_ao_add *cmd) { const char *algo = cmd->alg_name; unsigned int digest_size; struct crypto_ahash *tfm; struct tcp_ao_key *key; struct tcp_sigpool hp; int err, pool_id; size_t size; /* Force null-termination of alg_name */ cmd->alg_name[ARRAY_SIZE(cmd->alg_name) - 1] = '\0'; /* RFC5926, 3.1.1.2. KDF_AES_128_CMAC */ if (!strcmp("cmac(aes128)", algo)) algo = "cmac(aes)"; /* Full TCP header (th->doff << 2) should fit into scratch area, * see tcp_ao_hash_header(). */ pool_id = tcp_sigpool_alloc_ahash(algo, 60); if (pool_id < 0) return ERR_PTR(pool_id); err = tcp_sigpool_start(pool_id, &hp); if (err) goto err_free_pool; tfm = crypto_ahash_reqtfm(hp.req); digest_size = crypto_ahash_digestsize(tfm); tcp_sigpool_end(&hp); size = sizeof(struct tcp_ao_key) + (digest_size << 1); key = sock_kmalloc(sk, size, GFP_KERNEL); if (!key) { err = -ENOMEM; goto err_free_pool; } key->tcp_sigpool_id = pool_id; key->digest_size = digest_size; return key; err_free_pool: tcp_sigpool_release(pool_id); return ERR_PTR(err); } static int tcp_ao_add_cmd(struct sock *sk, unsigned short int family, sockptr_t optval, int optlen) { struct tcp_ao_info *ao_info; union tcp_ao_addr *addr; struct tcp_ao_key *key; struct tcp_ao_add cmd; int ret, l3index = 0; bool first = false; if (optlen < sizeof(cmd)) return -EINVAL; ret = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); if (ret) return ret; if (cmd.keylen > TCP_AO_MAXKEYLEN) return -EINVAL; if (cmd.reserved != 0 || cmd.reserved2 != 0) return -EINVAL; if (family == AF_INET) ret = tcp_ao_verify_ipv4(sk, &cmd, &addr); else ret = tcp_ao_verify_ipv6(sk, &cmd, &addr, &family); if (ret) return ret; if (cmd.keyflags & ~TCP_AO_KEYF_ALL) return -EINVAL; if (cmd.set_current || cmd.set_rnext) { if (!tcp_ao_can_set_current_rnext(sk)) return -EINVAL; } if (cmd.ifindex && !(cmd.keyflags & TCP_AO_KEYF_IFINDEX)) return -EINVAL; /* For cmd.tcp_ifindex = 0 the key will apply to the default VRF */ if (cmd.keyflags & TCP_AO_KEYF_IFINDEX && cmd.ifindex) { int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if); struct net_device *dev; rcu_read_lock(); dev = dev_get_by_index_rcu(sock_net(sk), cmd.ifindex); if (dev && netif_is_l3_master(dev)) l3index = dev->ifindex; rcu_read_unlock(); if (!dev || !l3index) return -EINVAL; if (!bound_dev_if || bound_dev_if != cmd.ifindex) { /* tcp_ao_established_key() doesn't expect having * non peer-matching key on an established TCP-AO * connection. */ if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) return -EINVAL; } /* It's still possible to bind after adding keys or even * re-bind to a different dev (with CAP_NET_RAW). * So, no reason to return error here, rather try to be * nice and warn the user. */ if (bound_dev_if && bound_dev_if != cmd.ifindex) net_warn_ratelimited("AO key ifindex %d != sk bound ifindex %d\n", cmd.ifindex, bound_dev_if); } /* Don't allow keys for peers that have a matching TCP-MD5 key */ if (cmd.keyflags & TCP_AO_KEYF_IFINDEX) { /* Non-_exact version of tcp_md5_do_lookup() will * as well match keys that aren't bound to a specific VRF * (that will make them match AO key with * sysctl_tcp_l3dev_accept = 1 */ if (tcp_md5_do_lookup(sk, l3index, addr, family)) return -EKEYREJECTED; } else { if (tcp_md5_do_lookup_any_l3index(sk, addr, family)) return -EKEYREJECTED; } ao_info = setsockopt_ao_info(sk); if (IS_ERR(ao_info)) return PTR_ERR(ao_info); if (!ao_info) { ao_info = tcp_ao_alloc_info(GFP_KERNEL); if (!ao_info) return -ENOMEM; first = true; } else { /* Check that neither RecvID nor SendID match any * existing key for the peer, RFC5925 3.1: * > The IDs of MKTs MUST NOT overlap where their * > TCP connection identifiers overlap. */ if (__tcp_ao_do_lookup(sk, l3index, addr, family, cmd.prefix, -1, cmd.rcvid)) return -EEXIST; if (__tcp_ao_do_lookup(sk, l3index, addr, family, cmd.prefix, cmd.sndid, -1)) return -EEXIST; } key = tcp_ao_key_alloc(sk, &cmd); if (IS_ERR(key)) { ret = PTR_ERR(key); goto err_free_ao; } INIT_HLIST_NODE(&key->node); memcpy(&key->addr, addr, (family == AF_INET) ? sizeof(struct in_addr) : sizeof(struct in6_addr)); key->prefixlen = cmd.prefix; key->family = family; key->keyflags = cmd.keyflags; key->sndid = cmd.sndid; key->rcvid = cmd.rcvid; key->l3index = l3index; atomic64_set(&key->pkt_good, 0); atomic64_set(&key->pkt_bad, 0); ret = tcp_ao_parse_crypto(&cmd, key); if (ret < 0) goto err_free_sock; if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) { tcp_ao_cache_traffic_keys(sk, ao_info, key); if (first) { ao_info->current_key = key; ao_info->rnext_key = key; } } tcp_ao_link_mkt(ao_info, key); if (first) { if (!static_branch_inc(&tcp_ao_needed.key)) { ret = -EUSERS; goto err_free_sock; } sk_gso_disable(sk); rcu_assign_pointer(tcp_sk(sk)->ao_info, ao_info); } if (cmd.set_current) WRITE_ONCE(ao_info->current_key, key); if (cmd.set_rnext) WRITE_ONCE(ao_info->rnext_key, key); return 0; err_free_sock: atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); tcp_sigpool_release(key->tcp_sigpool_id); kfree_sensitive(key); err_free_ao: if (first) kfree(ao_info); return ret; } static int tcp_ao_delete_key(struct sock *sk, struct tcp_ao_info *ao_info, bool del_async, struct tcp_ao_key *key, struct tcp_ao_key *new_current, struct tcp_ao_key *new_rnext) { int err; hlist_del_rcu(&key->node); /* Support for async delete on listening sockets: as they don't * need current_key/rnext_key maintaining, we don't need to check * them and we can just free all resources in RCU fashion. */ if (del_async) { atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); call_rcu(&key->rcu, tcp_ao_key_free_rcu); return 0; } /* At this moment another CPU could have looked this key up * while it was unlinked from the list. Wait for RCU grace period, * after which the key is off-list and can't be looked up again; * the rx path [just before RCU came] might have used it and set it * as current_key (very unlikely). * Free the key with next RCU grace period (in case it was * current_key before tcp_ao_current_rnext() might have * changed it in forced-delete). */ synchronize_rcu(); if (new_current) WRITE_ONCE(ao_info->current_key, new_current); if (new_rnext) WRITE_ONCE(ao_info->rnext_key, new_rnext); if (unlikely(READ_ONCE(ao_info->current_key) == key || READ_ONCE(ao_info->rnext_key) == key)) { err = -EBUSY; goto add_key; } atomic_sub(tcp_ao_sizeof_key(key), &sk->sk_omem_alloc); call_rcu(&key->rcu, tcp_ao_key_free_rcu); return 0; add_key: hlist_add_head_rcu(&key->node, &ao_info->head); return err; } #define TCP_AO_DEL_KEYF_ALL (TCP_AO_KEYF_IFINDEX) static int tcp_ao_del_cmd(struct sock *sk, unsigned short int family, sockptr_t optval, int optlen) { struct tcp_ao_key *key, *new_current = NULL, *new_rnext = NULL; int err, addr_len, l3index = 0; struct tcp_ao_info *ao_info; union tcp_ao_addr *addr; struct tcp_ao_del cmd; __u8 prefix; u16 port; if (optlen < sizeof(cmd)) return -EINVAL; err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); if (err) return err; if (cmd.reserved != 0 || cmd.reserved2 != 0) return -EINVAL; if (cmd.set_current || cmd.set_rnext) { if (!tcp_ao_can_set_current_rnext(sk)) return -EINVAL; } if (cmd.keyflags & ~TCP_AO_DEL_KEYF_ALL) return -EINVAL; /* No sanity check for TCP_AO_KEYF_IFINDEX as if a VRF * was destroyed, there still should be a way to delete keys, * that were bound to that l3intf. So, fail late at lookup stage * if there is no key for that ifindex. */ if (cmd.ifindex && !(cmd.keyflags & TCP_AO_KEYF_IFINDEX)) return -EINVAL; ao_info = setsockopt_ao_info(sk); if (IS_ERR(ao_info)) return PTR_ERR(ao_info); if (!ao_info) return -ENOENT; /* For sockets in TCP_CLOSED it's possible set keys that aren't * matching the future peer (address/VRF/etc), * tcp_ao_connect_init() will choose a correct matching MKT * if there's any. */ if (cmd.set_current) { new_current = tcp_ao_established_key(ao_info, cmd.current_key, -1); if (!new_current) return -ENOENT; } if (cmd.set_rnext) { new_rnext = tcp_ao_established_key(ao_info, -1, cmd.rnext); if (!new_rnext) return -ENOENT; } if (cmd.del_async && sk->sk_state != TCP_LISTEN) return -EINVAL; if (family == AF_INET) { struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.addr; addr = (union tcp_ao_addr *)&sin->sin_addr; addr_len = sizeof(struct in_addr); port = ntohs(sin->sin_port); } else { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&cmd.addr; struct in6_addr *addr6 = &sin6->sin6_addr; if (ipv6_addr_v4mapped(addr6)) { addr = (union tcp_ao_addr *)&addr6->s6_addr32[3]; addr_len = sizeof(struct in_addr); family = AF_INET; } else { addr = (union tcp_ao_addr *)addr6; addr_len = sizeof(struct in6_addr); } port = ntohs(sin6->sin6_port); } prefix = cmd.prefix; /* Currently matching is not performed on port (or port ranges) */ if (port != 0) return -EINVAL; /* We could choose random present key here for current/rnext * but that's less predictable. Let's be strict and don't * allow removing a key that's in use. RFC5925 doesn't * specify how-to coordinate key removal, but says: * "It is presumed that an MKT affecting a particular * connection cannot be destroyed during an active connection" */ hlist_for_each_entry_rcu(key, &ao_info->head, node) { if (cmd.sndid != key->sndid || cmd.rcvid != key->rcvid) continue; if (family != key->family || prefix != key->prefixlen || memcmp(addr, &key->addr, addr_len)) continue; if ((cmd.keyflags & TCP_AO_KEYF_IFINDEX) != (key->keyflags & TCP_AO_KEYF_IFINDEX)) continue; if (key->l3index != l3index) continue; if (key == new_current || key == new_rnext) continue; return tcp_ao_delete_key(sk, ao_info, cmd.del_async, key, new_current, new_rnext); } return -ENOENT; } /* cmd.ao_required makes a socket TCP-AO only. * Don't allow any md5 keys for any l3intf on the socket together with it. * Restricting it early in setsockopt() removes a check for * ao_info->ao_required on inbound tcp segment fast-path. */ static int tcp_ao_required_verify(struct sock *sk) { #ifdef CONFIG_TCP_MD5SIG const struct tcp_md5sig_info *md5sig; if (!static_branch_unlikely(&tcp_md5_needed.key)) return 0; md5sig = rcu_dereference_check(tcp_sk(sk)->md5sig_info, lockdep_sock_is_held(sk)); if (!md5sig) return 0; if (rcu_dereference_check(hlist_first_rcu(&md5sig->head), lockdep_sock_is_held(sk))) return 1; #endif return 0; } static int tcp_ao_info_cmd(struct sock *sk, unsigned short int family, sockptr_t optval, int optlen) { struct tcp_ao_key *new_current = NULL, *new_rnext = NULL; struct tcp_ao_info *ao_info; struct tcp_ao_info_opt cmd; bool first = false; int err; if (optlen < sizeof(cmd)) return -EINVAL; err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); if (err) return err; if (cmd.set_current || cmd.set_rnext) { if (!tcp_ao_can_set_current_rnext(sk)) return -EINVAL; } if (cmd.reserved != 0 || cmd.reserved2 != 0) return -EINVAL; ao_info = setsockopt_ao_info(sk); if (IS_ERR(ao_info)) return PTR_ERR(ao_info); if (!ao_info) { if (!((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))) return -EINVAL; ao_info = tcp_ao_alloc_info(GFP_KERNEL); if (!ao_info) return -ENOMEM; first = true; } if (cmd.ao_required && tcp_ao_required_verify(sk)) { err = -EKEYREJECTED; goto out; } /* For sockets in TCP_CLOSED it's possible set keys that aren't * matching the future peer (address/port/VRF/etc), * tcp_ao_connect_init() will choose a correct matching MKT * if there's any. */ if (cmd.set_current) { new_current = tcp_ao_established_key(ao_info, cmd.current_key, -1); if (!new_current) { err = -ENOENT; goto out; } } if (cmd.set_rnext) { new_rnext = tcp_ao_established_key(ao_info, -1, cmd.rnext); if (!new_rnext) { err = -ENOENT; goto out; } } if (cmd.set_counters) { atomic64_set(&ao_info->counters.pkt_good, cmd.pkt_good); atomic64_set(&ao_info->counters.pkt_bad, cmd.pkt_bad); atomic64_set(&ao_info->counters.key_not_found, cmd.pkt_key_not_found); atomic64_set(&ao_info->counters.ao_required, cmd.pkt_ao_required); atomic64_set(&ao_info->counters.dropped_icmp, cmd.pkt_dropped_icmp); } ao_info->ao_required = cmd.ao_required; ao_info->accept_icmps = cmd.accept_icmps; if (new_current) WRITE_ONCE(ao_info->current_key, new_current); if (new_rnext) WRITE_ONCE(ao_info->rnext_key, new_rnext); if (first) { if (!static_branch_inc(&tcp_ao_needed.key)) { err = -EUSERS; goto out; } sk_gso_disable(sk); rcu_assign_pointer(tcp_sk(sk)->ao_info, ao_info); } return 0; out: if (first) kfree(ao_info); return err; } int tcp_parse_ao(struct sock *sk, int cmd, unsigned short int family, sockptr_t optval, int optlen) { if (WARN_ON_ONCE(family != AF_INET && family != AF_INET6)) return -EAFNOSUPPORT; switch (cmd) { case TCP_AO_ADD_KEY: return tcp_ao_add_cmd(sk, family, optval, optlen); case TCP_AO_DEL_KEY: return tcp_ao_del_cmd(sk, family, optval, optlen); case TCP_AO_INFO: return tcp_ao_info_cmd(sk, family, optval, optlen); default: WARN_ON_ONCE(1); return -EINVAL; } } int tcp_v4_parse_ao(struct sock *sk, int cmd, sockptr_t optval, int optlen) { return tcp_parse_ao(sk, cmd, AF_INET, optval, optlen); } /* tcp_ao_copy_mkts_to_user(ao_info, optval, optlen) * * @ao_info: struct tcp_ao_info on the socket that * socket getsockopt(TCP_AO_GET_KEYS) is executed on * @optval: pointer to array of tcp_ao_getsockopt structures in user space. * Must be != NULL. * @optlen: pointer to size of tcp_ao_getsockopt structure. * Must be != NULL. * * Return value: 0 on success, a negative error number otherwise. * * optval points to an array of tcp_ao_getsockopt structures in user space. * optval[0] is used as both input and output to getsockopt. It determines * which keys are returned by the kernel. * optval[0].nkeys is the size of the array in user space. On return it contains * the number of keys matching the search criteria. * If tcp_ao_getsockopt::get_all is set, then all keys in the socket are * returned, otherwise only keys matching <addr, prefix, sndid, rcvid> * in optval[0] are returned. * optlen is also used as both input and output. The user provides the size * of struct tcp_ao_getsockopt in user space, and the kernel returns the size * of the structure in kernel space. * The size of struct tcp_ao_getsockopt may differ between user and kernel. * There are three cases to consider: * * If usize == ksize, then keys are copied verbatim. * * If usize < ksize, then the userspace has passed an old struct to a * newer kernel. The rest of the trailing bytes in optval[0] * (ksize - usize) are interpreted as 0 by the kernel. * * If usize > ksize, then the userspace has passed a new struct to an * older kernel. The trailing bytes unknown to the kernel (usize - ksize) * are checked to ensure they are zeroed, otherwise -E2BIG is returned. * On return the kernel fills in min(usize, ksize) in each entry of the array. * The layout of the fields in the user and kernel structures is expected to * be the same (including in the 32bit vs 64bit case). */ static int tcp_ao_copy_mkts_to_user(struct tcp_ao_info *ao_info, sockptr_t optval, sockptr_t optlen) { struct tcp_ao_getsockopt opt_in, opt_out; struct tcp_ao_key *key, *current_key; bool do_address_matching = true; union tcp_ao_addr *addr = NULL; int err, l3index, user_len; unsigned int max_keys; /* maximum number of keys to copy to user */ size_t out_offset = 0; size_t bytes_to_write; /* number of bytes to write to user level */ u32 matched_keys; /* keys from ao_info matched so far */ int optlen_out; __be16 port = 0; if (copy_from_sockptr(&user_len, optlen, sizeof(int))) return -EFAULT; if (user_len <= 0) return -EINVAL; memset(&opt_in, 0, sizeof(struct tcp_ao_getsockopt)); err = copy_struct_from_sockptr(&opt_in, sizeof(opt_in), optval, user_len); if (err < 0) return err; if (opt_in.pkt_good || opt_in.pkt_bad) return -EINVAL; if (opt_in.keyflags & ~TCP_AO_GET_KEYF_VALID) return -EINVAL; if (opt_in.ifindex && !(opt_in.keyflags & TCP_AO_KEYF_IFINDEX)) return -EINVAL; if (opt_in.reserved != 0) return -EINVAL; max_keys = opt_in.nkeys; l3index = (opt_in.keyflags & TCP_AO_KEYF_IFINDEX) ? opt_in.ifindex : -1; if (opt_in.get_all || opt_in.is_current || opt_in.is_rnext) { if (opt_in.get_all && (opt_in.is_current || opt_in.is_rnext)) return -EINVAL; do_address_matching = false; } switch (opt_in.addr.ss_family) { case AF_INET: { struct sockaddr_in *sin; __be32 mask; sin = (struct sockaddr_in *)&opt_in.addr; port = sin->sin_port; addr = (union tcp_ao_addr *)&sin->sin_addr; if (opt_in.prefix > 32) return -EINVAL; if (ntohl(sin->sin_addr.s_addr) == INADDR_ANY && opt_in.prefix != 0) return -EINVAL; mask = inet_make_mask(opt_in.prefix); if (sin->sin_addr.s_addr & ~mask) return -EINVAL; break; } case AF_INET6: { struct sockaddr_in6 *sin6; struct in6_addr *addr6; sin6 = (struct sockaddr_in6 *)&opt_in.addr; addr = (union tcp_ao_addr *)&sin6->sin6_addr; addr6 = &sin6->sin6_addr; port = sin6->sin6_port; /* We don't have to change family and @addr here if * ipv6_addr_v4mapped() like in key adding: * tcp_ao_key_cmp() does it. Do the sanity checks though. */ if (opt_in.prefix != 0) { if (ipv6_addr_v4mapped(addr6)) { __be32 mask, addr4 = addr6->s6_addr32[3]; if (opt_in.prefix > 32 || ntohl(addr4) == INADDR_ANY) return -EINVAL; mask = inet_make_mask(opt_in.prefix); if (addr4 & ~mask) return -EINVAL; } else { struct in6_addr pfx; if (ipv6_addr_any(addr6) || opt_in.prefix > 128) return -EINVAL; ipv6_addr_prefix(&pfx, addr6, opt_in.prefix); if (ipv6_addr_cmp(&pfx, addr6)) return -EINVAL; } } else if (!ipv6_addr_any(addr6)) { return -EINVAL; } break; } case 0: if (!do_address_matching) break; fallthrough; default: return -EAFNOSUPPORT; } if (!do_address_matching) { /* We could just ignore those, but let's do stricter checks */ if (addr || port) return -EINVAL; if (opt_in.prefix || opt_in.sndid || opt_in.rcvid) return -EINVAL; } bytes_to_write = min_t(int, user_len, sizeof(struct tcp_ao_getsockopt)); matched_keys = 0; /* May change in RX, while we're dumping, pre-fetch it */ current_key = READ_ONCE(ao_info->current_key); hlist_for_each_entry_rcu(key, &ao_info->head, node) { if (opt_in.get_all) goto match; if (opt_in.is_current || opt_in.is_rnext) { if (opt_in.is_current && key == current_key) goto match; if (opt_in.is_rnext && key == ao_info->rnext_key) goto match; continue; } if (tcp_ao_key_cmp(key, l3index, addr, opt_in.prefix, opt_in.addr.ss_family, opt_in.sndid, opt_in.rcvid) != 0) continue; match: matched_keys++; if (matched_keys > max_keys) continue; memset(&opt_out, 0, sizeof(struct tcp_ao_getsockopt)); if (key->family == AF_INET) { struct sockaddr_in *sin_out = (struct sockaddr_in *)&opt_out.addr; sin_out->sin_family = key->family; sin_out->sin_port = 0; memcpy(&sin_out->sin_addr, &key->addr, sizeof(struct in_addr)); } else { struct sockaddr_in6 *sin6_out = (struct sockaddr_in6 *)&opt_out.addr; sin6_out->sin6_family = key->family; sin6_out->sin6_port = 0; memcpy(&sin6_out->sin6_addr, &key->addr, sizeof(struct in6_addr)); } opt_out.sndid = key->sndid; opt_out.rcvid = key->rcvid; opt_out.prefix = key->prefixlen; opt_out.keyflags = key->keyflags; opt_out.is_current = (key == current_key); opt_out.is_rnext = (key == ao_info->rnext_key); opt_out.nkeys = 0; opt_out.maclen = key->maclen; opt_out.keylen = key->keylen; opt_out.ifindex = key->l3index; opt_out.pkt_good = atomic64_read(&key->pkt_good); opt_out.pkt_bad = atomic64_read(&key->pkt_bad); memcpy(&opt_out.key, key->key, key->keylen); tcp_sigpool_algo(key->tcp_sigpool_id, opt_out.alg_name, 64); /* Copy key to user */ if (copy_to_sockptr_offset(optval, out_offset, &opt_out, bytes_to_write)) return -EFAULT; out_offset += user_len; } optlen_out = (int)sizeof(struct tcp_ao_getsockopt); if (copy_to_sockptr(optlen, &optlen_out, sizeof(int))) return -EFAULT; out_offset = offsetof(struct tcp_ao_getsockopt, nkeys); if (copy_to_sockptr_offset(optval, out_offset, &matched_keys, sizeof(u32))) return -EFAULT; return 0; } int tcp_ao_get_mkts(struct sock *sk, sockptr_t optval, sockptr_t optlen) { struct tcp_ao_info *ao_info; ao_info = setsockopt_ao_info(sk); if (IS_ERR(ao_info)) return PTR_ERR(ao_info); if (!ao_info) return -ENOENT; return tcp_ao_copy_mkts_to_user(ao_info, optval, optlen); } int tcp_ao_get_sock_info(struct sock *sk, sockptr_t optval, sockptr_t optlen) { struct tcp_ao_info_opt out, in = {}; struct tcp_ao_key *current_key; struct tcp_ao_info *ao; int err, len; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len <= 0) return -EINVAL; /* Copying this "in" only to check ::reserved, ::reserved2, * that may be needed to extend (struct tcp_ao_info_opt) and * what getsockopt() provides in future. */ err = copy_struct_from_sockptr(&in, sizeof(in), optval, len); if (err) return err; if (in.reserved != 0 || in.reserved2 != 0) return -EINVAL; ao = setsockopt_ao_info(sk); if (IS_ERR(ao)) return PTR_ERR(ao); if (!ao) return -ENOENT; memset(&out, 0, sizeof(out)); out.ao_required = ao->ao_required; out.accept_icmps = ao->accept_icmps; out.pkt_good = atomic64_read(&ao->counters.pkt_good); out.pkt_bad = atomic64_read(&ao->counters.pkt_bad); out.pkt_key_not_found = atomic64_read(&ao->counters.key_not_found); out.pkt_ao_required = atomic64_read(&ao->counters.ao_required); out.pkt_dropped_icmp = atomic64_read(&ao->counters.dropped_icmp); current_key = READ_ONCE(ao->current_key); if (current_key) { out.set_current = 1; out.current_key = current_key->sndid; } if (ao->rnext_key) { out.set_rnext = 1; out.rnext = ao->rnext_key->rcvid; } if (copy_to_sockptr(optval, &out, min_t(int, len, sizeof(out)))) return -EFAULT; return 0; } int tcp_ao_set_repair(struct sock *sk, sockptr_t optval, unsigned int optlen) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_ao_repair cmd; struct tcp_ao_key *key; struct tcp_ao_info *ao; int err; if (optlen < sizeof(cmd)) return -EINVAL; err = copy_struct_from_sockptr(&cmd, sizeof(cmd), optval, optlen); if (err) return err; if (!tp->repair) return -EPERM; ao = setsockopt_ao_info(sk); if (IS_ERR(ao)) return PTR_ERR(ao); if (!ao) return -ENOENT; WRITE_ONCE(ao->lisn, cmd.snt_isn); WRITE_ONCE(ao->risn, cmd.rcv_isn); WRITE_ONCE(ao->snd_sne, cmd.snd_sne); WRITE_ONCE(ao->rcv_sne, cmd.rcv_sne); hlist_for_each_entry_rcu(key, &ao->head, node) tcp_ao_cache_traffic_keys(sk, ao, key); return 0; } int tcp_ao_get_repair(struct sock *sk, sockptr_t optval, sockptr_t optlen) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_ao_repair opt; struct tcp_ao_info *ao; int len; if (copy_from_sockptr(&len, optlen, sizeof(int))) return -EFAULT; if (len <= 0) return -EINVAL; if (!tp->repair) return -EPERM; rcu_read_lock(); ao = getsockopt_ao_info(sk); if (IS_ERR_OR_NULL(ao)) { rcu_read_unlock(); return ao ? PTR_ERR(ao) : -ENOENT; } opt.snt_isn = ao->lisn; opt.rcv_isn = ao->risn; opt.snd_sne = READ_ONCE(ao->snd_sne); opt.rcv_sne = READ_ONCE(ao->rcv_sne); rcu_read_unlock(); if (copy_to_sockptr(optval, &opt, min_t(int, len, sizeof(opt)))) return -EFAULT; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1