Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stephen Hemminger | 1470 | 62.58% | 13 | 22.03% |
Eric Dumazet | 368 | 15.67% | 18 | 30.51% |
Sangtae Ha | 303 | 12.90% | 3 | 5.08% |
Neal Cardwell | 54 | 2.30% | 5 | 8.47% |
Kumar Kartikeya Dwivedi | 50 | 2.13% | 3 | 5.08% |
Martin KaFai Lau | 48 | 2.04% | 3 | 5.08% |
Yejune Deng | 12 | 0.51% | 1 | 1.69% |
Yuchung Cheng | 10 | 0.43% | 3 | 5.08% |
Lawrence Brakmo | 9 | 0.38% | 1 | 1.69% |
David Vernet | 6 | 0.26% | 1 | 1.69% |
Daniel Borkmann | 6 | 0.26% | 1 | 1.69% |
Ilpo Järvinen | 4 | 0.17% | 1 | 1.69% |
Roman Zippel | 3 | 0.13% | 1 | 1.69% |
Daniel Xu | 2 | 0.09% | 1 | 1.69% |
Hideaki Yoshifuji / 吉藤英明 | 1 | 0.04% | 1 | 1.69% |
Chema Gonzalez | 1 | 0.04% | 1 | 1.69% |
Alexey Dobriyan | 1 | 0.04% | 1 | 1.69% |
Thomas Gleixner | 1 | 0.04% | 1 | 1.69% |
Total | 2349 | 59 |
// SPDX-License-Identifier: GPL-2.0-only /* * TCP CUBIC: Binary Increase Congestion control for TCP v2.3 * Home page: * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC * This is from the implementation of CUBIC TCP in * Sangtae Ha, Injong Rhee and Lisong Xu, * "CUBIC: A New TCP-Friendly High-Speed TCP Variant" * in ACM SIGOPS Operating System Review, July 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf * * CUBIC integrates a new slow start algorithm, called HyStart. * The details of HyStart are presented in * Sangtae Ha and Injong Rhee, * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008. * Available from: * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf * * All testing results are available from: * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing * * Unless CUBIC is enabled and congestion window is large * this behaves the same as the original Reno. */ #include <linux/mm.h> #include <linux/btf.h> #include <linux/btf_ids.h> #include <linux/module.h> #include <linux/math64.h> #include <net/tcp.h> #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation * max_cwnd = snd_cwnd * beta */ #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */ /* Two methods of hybrid slow start */ #define HYSTART_ACK_TRAIN 0x1 #define HYSTART_DELAY 0x2 /* Number of delay samples for detecting the increase of delay */ #define HYSTART_MIN_SAMPLES 8 #define HYSTART_DELAY_MIN (4000U) /* 4 ms */ #define HYSTART_DELAY_MAX (16000U) /* 16 ms */ #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX) static int fast_convergence __read_mostly = 1; static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */ static int initial_ssthresh __read_mostly; static int bic_scale __read_mostly = 41; static int tcp_friendliness __read_mostly = 1; static int hystart __read_mostly = 1; static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY; static int hystart_low_window __read_mostly = 16; static int hystart_ack_delta_us __read_mostly = 2000; static u32 cube_rtt_scale __read_mostly; static u32 beta_scale __read_mostly; static u64 cube_factor __read_mostly; /* Note parameters that are used for precomputing scale factors are read-only */ module_param(fast_convergence, int, 0644); MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence"); module_param(beta, int, 0644); MODULE_PARM_DESC(beta, "beta for multiplicative increase"); module_param(initial_ssthresh, int, 0644); MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold"); module_param(bic_scale, int, 0444); MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)"); module_param(tcp_friendliness, int, 0644); MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness"); module_param(hystart, int, 0644); MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm"); module_param(hystart_detect, int, 0644); MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms" " 1: packet-train 2: delay 3: both packet-train and delay"); module_param(hystart_low_window, int, 0644); MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start"); module_param(hystart_ack_delta_us, int, 0644); MODULE_PARM_DESC(hystart_ack_delta_us, "spacing between ack's indicating train (usecs)"); /* BIC TCP Parameters */ struct bictcp { u32 cnt; /* increase cwnd by 1 after ACKs */ u32 last_max_cwnd; /* last maximum snd_cwnd */ u32 last_cwnd; /* the last snd_cwnd */ u32 last_time; /* time when updated last_cwnd */ u32 bic_origin_point;/* origin point of bic function */ u32 bic_K; /* time to origin point from the beginning of the current epoch */ u32 delay_min; /* min delay (usec) */ u32 epoch_start; /* beginning of an epoch */ u32 ack_cnt; /* number of acks */ u32 tcp_cwnd; /* estimated tcp cwnd */ u16 unused; u8 sample_cnt; /* number of samples to decide curr_rtt */ u8 found; /* the exit point is found? */ u32 round_start; /* beginning of each round */ u32 end_seq; /* end_seq of the round */ u32 last_ack; /* last time when the ACK spacing is close */ u32 curr_rtt; /* the minimum rtt of current round */ }; static inline void bictcp_reset(struct bictcp *ca) { memset(ca, 0, offsetof(struct bictcp, unused)); ca->found = 0; } static inline u32 bictcp_clock_us(const struct sock *sk) { return tcp_sk(sk)->tcp_mstamp; } static inline void bictcp_hystart_reset(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->round_start = ca->last_ack = bictcp_clock_us(sk); ca->end_seq = tp->snd_nxt; ca->curr_rtt = ~0U; ca->sample_cnt = 0; } __bpf_kfunc static void cubictcp_init(struct sock *sk) { struct bictcp *ca = inet_csk_ca(sk); bictcp_reset(ca); if (hystart) bictcp_hystart_reset(sk); if (!hystart && initial_ssthresh) tcp_sk(sk)->snd_ssthresh = initial_ssthresh; } __bpf_kfunc static void cubictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event) { if (event == CA_EVENT_TX_START) { struct bictcp *ca = inet_csk_ca(sk); u32 now = tcp_jiffies32; s32 delta; delta = now - tcp_sk(sk)->lsndtime; /* We were application limited (idle) for a while. * Shift epoch_start to keep cwnd growth to cubic curve. */ if (ca->epoch_start && delta > 0) { ca->epoch_start += delta; if (after(ca->epoch_start, now)) ca->epoch_start = now; } return; } } /* calculate the cubic root of x using a table lookup followed by one * Newton-Raphson iteration. * Avg err ~= 0.195% */ static u32 cubic_root(u64 a) { u32 x, b, shift; /* * cbrt(x) MSB values for x MSB values in [0..63]. * Precomputed then refined by hand - Willy Tarreau * * For x in [0..63], * v = cbrt(x << 18) - 1 * cbrt(x) = (v[x] + 10) >> 6 */ static const u8 v[] = { /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118, /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156, /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179, /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199, /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215, /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229, /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242, /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254, }; b = fls64(a); if (b < 7) { /* a in [0..63] */ return ((u32)v[(u32)a] + 35) >> 6; } b = ((b * 84) >> 8) - 1; shift = (a >> (b * 3)); x = ((u32)(((u32)v[shift] + 10) << b)) >> 6; /* * Newton-Raphson iteration * 2 * x = ( 2 * x + a / x ) / 3 * k+1 k k */ x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1))); x = ((x * 341) >> 10); return x; } /* * Compute congestion window to use. */ static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked) { u32 delta, bic_target, max_cnt; u64 offs, t; ca->ack_cnt += acked; /* count the number of ACKed packets */ if (ca->last_cwnd == cwnd && (s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32) return; /* The CUBIC function can update ca->cnt at most once per jiffy. * On all cwnd reduction events, ca->epoch_start is set to 0, * which will force a recalculation of ca->cnt. */ if (ca->epoch_start && tcp_jiffies32 == ca->last_time) goto tcp_friendliness; ca->last_cwnd = cwnd; ca->last_time = tcp_jiffies32; if (ca->epoch_start == 0) { ca->epoch_start = tcp_jiffies32; /* record beginning */ ca->ack_cnt = acked; /* start counting */ ca->tcp_cwnd = cwnd; /* syn with cubic */ if (ca->last_max_cwnd <= cwnd) { ca->bic_K = 0; ca->bic_origin_point = cwnd; } else { /* Compute new K based on * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ) */ ca->bic_K = cubic_root(cube_factor * (ca->last_max_cwnd - cwnd)); ca->bic_origin_point = ca->last_max_cwnd; } } /* cubic function - calc*/ /* calculate c * time^3 / rtt, * while considering overflow in calculation of time^3 * (so time^3 is done by using 64 bit) * and without the support of division of 64bit numbers * (so all divisions are done by using 32 bit) * also NOTE the unit of those veriables * time = (t - K) / 2^bictcp_HZ * c = bic_scale >> 10 * rtt = (srtt >> 3) / HZ * !!! The following code does not have overflow problems, * if the cwnd < 1 million packets !!! */ t = (s32)(tcp_jiffies32 - ca->epoch_start); t += usecs_to_jiffies(ca->delay_min); /* change the unit from HZ to bictcp_HZ */ t <<= BICTCP_HZ; do_div(t, HZ); if (t < ca->bic_K) /* t - K */ offs = ca->bic_K - t; else offs = t - ca->bic_K; /* c/rtt * (t-K)^3 */ delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ); if (t < ca->bic_K) /* below origin*/ bic_target = ca->bic_origin_point - delta; else /* above origin*/ bic_target = ca->bic_origin_point + delta; /* cubic function - calc bictcp_cnt*/ if (bic_target > cwnd) { ca->cnt = cwnd / (bic_target - cwnd); } else { ca->cnt = 100 * cwnd; /* very small increment*/ } /* * The initial growth of cubic function may be too conservative * when the available bandwidth is still unknown. */ if (ca->last_max_cwnd == 0 && ca->cnt > 20) ca->cnt = 20; /* increase cwnd 5% per RTT */ tcp_friendliness: /* TCP Friendly */ if (tcp_friendliness) { u32 scale = beta_scale; delta = (cwnd * scale) >> 3; while (ca->ack_cnt > delta) { /* update tcp cwnd */ ca->ack_cnt -= delta; ca->tcp_cwnd++; } if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */ delta = ca->tcp_cwnd - cwnd; max_cnt = cwnd / delta; if (ca->cnt > max_cnt) ca->cnt = max_cnt; } } /* The maximum rate of cwnd increase CUBIC allows is 1 packet per * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT. */ ca->cnt = max(ca->cnt, 2U); } __bpf_kfunc static void cubictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); if (!tcp_is_cwnd_limited(sk)) return; if (tcp_in_slow_start(tp)) { acked = tcp_slow_start(tp, acked); if (!acked) return; } bictcp_update(ca, tcp_snd_cwnd(tp), acked); tcp_cong_avoid_ai(tp, ca->cnt, acked); } __bpf_kfunc static u32 cubictcp_recalc_ssthresh(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); ca->epoch_start = 0; /* end of epoch */ /* Wmax and fast convergence */ if (tcp_snd_cwnd(tp) < ca->last_max_cwnd && fast_convergence) ca->last_max_cwnd = (tcp_snd_cwnd(tp) * (BICTCP_BETA_SCALE + beta)) / (2 * BICTCP_BETA_SCALE); else ca->last_max_cwnd = tcp_snd_cwnd(tp); return max((tcp_snd_cwnd(tp) * beta) / BICTCP_BETA_SCALE, 2U); } __bpf_kfunc static void cubictcp_state(struct sock *sk, u8 new_state) { if (new_state == TCP_CA_Loss) { bictcp_reset(inet_csk_ca(sk)); bictcp_hystart_reset(sk); } } /* Account for TSO/GRO delays. * Otherwise short RTT flows could get too small ssthresh, since during * slow start we begin with small TSO packets and ca->delay_min would * not account for long aggregation delay when TSO packets get bigger. * Ideally even with a very small RTT we would like to have at least one * TSO packet being sent and received by GRO, and another one in qdisc layer. * We apply another 100% factor because @rate is doubled at this point. * We cap the cushion to 1ms. */ static u32 hystart_ack_delay(const struct sock *sk) { unsigned long rate; rate = READ_ONCE(sk->sk_pacing_rate); if (!rate) return 0; return min_t(u64, USEC_PER_MSEC, div64_ul((u64)sk->sk_gso_max_size * 4 * USEC_PER_SEC, rate)); } static void hystart_update(struct sock *sk, u32 delay) { struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); u32 threshold; if (after(tp->snd_una, ca->end_seq)) bictcp_hystart_reset(sk); if (hystart_detect & HYSTART_ACK_TRAIN) { u32 now = bictcp_clock_us(sk); /* first detection parameter - ack-train detection */ if ((s32)(now - ca->last_ack) <= hystart_ack_delta_us) { ca->last_ack = now; threshold = ca->delay_min + hystart_ack_delay(sk); /* Hystart ack train triggers if we get ack past * ca->delay_min/2. * Pacing might have delayed packets up to RTT/2 * during slow start. */ if (sk->sk_pacing_status == SK_PACING_NONE) threshold >>= 1; if ((s32)(now - ca->round_start) > threshold) { ca->found = 1; pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n", now - ca->round_start, threshold, ca->delay_min, hystart_ack_delay(sk), tcp_snd_cwnd(tp)); NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHYSTARTTRAINDETECT); NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPHYSTARTTRAINCWND, tcp_snd_cwnd(tp)); tp->snd_ssthresh = tcp_snd_cwnd(tp); } } } if (hystart_detect & HYSTART_DELAY) { /* obtain the minimum delay of more than sampling packets */ if (ca->curr_rtt > delay) ca->curr_rtt = delay; if (ca->sample_cnt < HYSTART_MIN_SAMPLES) { ca->sample_cnt++; } else { if (ca->curr_rtt > ca->delay_min + HYSTART_DELAY_THRESH(ca->delay_min >> 3)) { ca->found = 1; NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHYSTARTDELAYDETECT); NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPHYSTARTDELAYCWND, tcp_snd_cwnd(tp)); tp->snd_ssthresh = tcp_snd_cwnd(tp); } } } } __bpf_kfunc static void cubictcp_acked(struct sock *sk, const struct ack_sample *sample) { const struct tcp_sock *tp = tcp_sk(sk); struct bictcp *ca = inet_csk_ca(sk); u32 delay; /* Some calls are for duplicates without timetamps */ if (sample->rtt_us < 0) return; /* Discard delay samples right after fast recovery */ if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ) return; delay = sample->rtt_us; if (delay == 0) delay = 1; /* first time call or link delay decreases */ if (ca->delay_min == 0 || ca->delay_min > delay) ca->delay_min = delay; /* hystart triggers when cwnd is larger than some threshold */ if (!ca->found && tcp_in_slow_start(tp) && hystart && tcp_snd_cwnd(tp) >= hystart_low_window) hystart_update(sk, delay); } static struct tcp_congestion_ops cubictcp __read_mostly = { .init = cubictcp_init, .ssthresh = cubictcp_recalc_ssthresh, .cong_avoid = cubictcp_cong_avoid, .set_state = cubictcp_state, .undo_cwnd = tcp_reno_undo_cwnd, .cwnd_event = cubictcp_cwnd_event, .pkts_acked = cubictcp_acked, .owner = THIS_MODULE, .name = "cubic", }; BTF_KFUNCS_START(tcp_cubic_check_kfunc_ids) BTF_ID_FLAGS(func, cubictcp_init) BTF_ID_FLAGS(func, cubictcp_recalc_ssthresh) BTF_ID_FLAGS(func, cubictcp_cong_avoid) BTF_ID_FLAGS(func, cubictcp_state) BTF_ID_FLAGS(func, cubictcp_cwnd_event) BTF_ID_FLAGS(func, cubictcp_acked) BTF_KFUNCS_END(tcp_cubic_check_kfunc_ids) static const struct btf_kfunc_id_set tcp_cubic_kfunc_set = { .owner = THIS_MODULE, .set = &tcp_cubic_check_kfunc_ids, }; static int __init cubictcp_register(void) { int ret; BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE); /* Precompute a bunch of the scaling factors that are used per-packet * based on SRTT of 100ms */ beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3 / (BICTCP_BETA_SCALE - beta); cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */ /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3 * so K = cubic_root( (wmax-cwnd)*rtt/c ) * the unit of K is bictcp_HZ=2^10, not HZ * * c = bic_scale >> 10 * rtt = 100ms * * the following code has been designed and tested for * cwnd < 1 million packets * RTT < 100 seconds * HZ < 1,000,00 (corresponding to 10 nano-second) */ /* 1/c * 2^2*bictcp_HZ * srtt */ cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */ /* divide by bic_scale and by constant Srtt (100ms) */ do_div(cube_factor, bic_scale * 10); ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_cubic_kfunc_set); if (ret < 0) return ret; return tcp_register_congestion_control(&cubictcp); } static void __exit cubictcp_unregister(void) { tcp_unregister_congestion_control(&cubictcp); } module_init(cubictcp_register); module_exit(cubictcp_unregister); MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CUBIC TCP"); MODULE_VERSION("2.3");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1