Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ido Yariv | 1699 | 21.06% | 1 | 1.03% |
Ben Greear | 1635 | 20.26% | 7 | 7.22% |
Johannes Berg | 1254 | 15.54% | 42 | 43.30% |
Jiri Benc | 1160 | 14.38% | 2 | 2.06% |
Toke Höiland-Jörgensen | 443 | 5.49% | 4 | 4.12% |
Luis R. Rodriguez | 386 | 4.78% | 4 | 4.12% |
Benjamin Berg | 358 | 4.44% | 2 | 2.06% |
Ron Rindjunsky | 204 | 2.53% | 2 | 2.06% |
Michal Kazior | 172 | 2.13% | 1 | 1.03% |
Kan Yan | 165 | 2.04% | 1 | 1.03% |
striebit | 156 | 1.93% | 1 | 1.03% |
Sara Sharon | 122 | 1.51% | 1 | 1.03% |
Liad Kaufman | 82 | 1.02% | 2 | 2.06% |
Sujith Manoharan | 53 | 0.66% | 2 | 2.06% |
Mordechai Goodstein | 52 | 0.64% | 1 | 1.03% |
Felix Fietkau | 46 | 0.57% | 5 | 5.15% |
Pavel Roskin | 15 | 0.19% | 1 | 1.03% |
Abhijit Pawar | 13 | 0.16% | 1 | 1.03% |
Arik Nemtsov | 9 | 0.11% | 2 | 2.06% |
Alexander Wetzel | 8 | 0.10% | 1 | 1.03% |
Miri Korenblit | 8 | 0.10% | 1 | 1.03% |
Marco Porsch | 6 | 0.07% | 1 | 1.03% |
Yi Zhu | 3 | 0.04% | 1 | 1.03% |
Javier Cardona | 3 | 0.04% | 1 | 1.03% |
Eliad Peller | 3 | 0.04% | 1 | 1.03% |
Geert Uytterhoeven | 2 | 0.02% | 1 | 1.03% |
Matti Gottlieb | 2 | 0.02% | 1 | 1.03% |
Stephen Boyd | 2 | 0.02% | 1 | 1.03% |
Saravana | 2 | 0.02% | 1 | 1.03% |
Sriram R | 2 | 0.02% | 1 | 1.03% |
Thomas Gleixner | 1 | 0.01% | 1 | 1.03% |
Tom Rix | 1 | 0.01% | 1 | 1.03% |
Julia Lawall | 1 | 0.01% | 1 | 1.03% |
Zheng tan | 1 | 0.01% | 1 | 1.03% |
Total | 8069 | 97 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2003-2005 Devicescape Software, Inc. * Copyright (c) 2006 Jiri Benc <jbenc@suse.cz> * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * Copyright (C) 2018 - 2023 Intel Corporation */ #include <linux/debugfs.h> #include <linux/ieee80211.h> #include "ieee80211_i.h" #include "debugfs.h" #include "debugfs_sta.h" #include "sta_info.h" #include "driver-ops.h" /* sta attributes */ #define STA_READ(name, field, format_string) \ static ssize_t sta_ ##name## _read(struct file *file, \ char __user *userbuf, \ size_t count, loff_t *ppos) \ { \ struct sta_info *sta = file->private_data; \ return mac80211_format_buffer(userbuf, count, ppos, \ format_string, sta->field); \ } #define STA_READ_D(name, field) STA_READ(name, field, "%d\n") #define STA_OPS(name) \ static const struct file_operations sta_ ##name## _ops = { \ .read = sta_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define STA_OPS_RW(name) \ static const struct file_operations sta_ ##name## _ops = { \ .read = sta_##name##_read, \ .write = sta_##name##_write, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } #define STA_FILE(name, field, format) \ STA_READ_##format(name, field) \ STA_OPS(name) STA_FILE(aid, sta.aid, D); static const char * const sta_flag_names[] = { #define FLAG(F) [WLAN_STA_##F] = #F FLAG(AUTH), FLAG(ASSOC), FLAG(PS_STA), FLAG(AUTHORIZED), FLAG(SHORT_PREAMBLE), FLAG(WDS), FLAG(CLEAR_PS_FILT), FLAG(MFP), FLAG(BLOCK_BA), FLAG(PS_DRIVER), FLAG(PSPOLL), FLAG(TDLS_PEER), FLAG(TDLS_PEER_AUTH), FLAG(TDLS_INITIATOR), FLAG(TDLS_CHAN_SWITCH), FLAG(TDLS_OFF_CHANNEL), FLAG(TDLS_WIDER_BW), FLAG(UAPSD), FLAG(SP), FLAG(4ADDR_EVENT), FLAG(INSERTED), FLAG(RATE_CONTROL), FLAG(TOFFSET_KNOWN), FLAG(MPSP_OWNER), FLAG(MPSP_RECIPIENT), FLAG(PS_DELIVER), FLAG(USES_ENCRYPTION), FLAG(DECAP_OFFLOAD), #undef FLAG }; static ssize_t sta_flags_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char buf[16 * NUM_WLAN_STA_FLAGS], *pos = buf; char *end = buf + sizeof(buf) - 1; struct sta_info *sta = file->private_data; unsigned int flg; BUILD_BUG_ON(ARRAY_SIZE(sta_flag_names) != NUM_WLAN_STA_FLAGS); for (flg = 0; flg < NUM_WLAN_STA_FLAGS; flg++) { if (test_sta_flag(sta, flg)) pos += scnprintf(pos, end - pos, "%s\n", sta_flag_names[flg]); } return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf)); } STA_OPS(flags); static ssize_t sta_num_ps_buf_frames_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; char buf[17*IEEE80211_NUM_ACS], *p = buf; int ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) p += scnprintf(p, sizeof(buf)+buf-p, "AC%d: %d\n", ac, skb_queue_len(&sta->ps_tx_buf[ac]) + skb_queue_len(&sta->tx_filtered[ac])); return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); } STA_OPS(num_ps_buf_frames); static ssize_t sta_last_seq_ctrl_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char buf[15*IEEE80211_NUM_TIDS], *p = buf; int i; struct sta_info *sta = file->private_data; for (i = 0; i < IEEE80211_NUM_TIDS; i++) p += scnprintf(p, sizeof(buf)+buf-p, "%x ", le16_to_cpu(sta->last_seq_ctrl[i])); p += scnprintf(p, sizeof(buf)+buf-p, "\n"); return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); } STA_OPS(last_seq_ctrl); #define AQM_TXQ_ENTRY_LEN 130 static ssize_t sta_aqm_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->local; size_t bufsz = AQM_TXQ_ENTRY_LEN * (IEEE80211_NUM_TIDS + 2); char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf; struct txq_info *txqi; ssize_t rv; int i; if (!buf) return -ENOMEM; spin_lock_bh(&local->fq.lock); rcu_read_lock(); p += scnprintf(p, bufsz + buf - p, "target %uus interval %uus ecn %s\n", codel_time_to_us(sta->cparams.target), codel_time_to_us(sta->cparams.interval), sta->cparams.ecn ? "yes" : "no"); p += scnprintf(p, bufsz + buf - p, "tid ac backlog-bytes backlog-packets new-flows drops marks overlimit collisions tx-bytes tx-packets flags\n"); for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { if (!sta->sta.txq[i]) continue; txqi = to_txq_info(sta->sta.txq[i]); p += scnprintf(p, bufsz + buf - p, "%d %d %u %u %u %u %u %u %u %u %u 0x%lx(%s%s%s%s)\n", txqi->txq.tid, txqi->txq.ac, txqi->tin.backlog_bytes, txqi->tin.backlog_packets, txqi->tin.flows, txqi->cstats.drop_count, txqi->cstats.ecn_mark, txqi->tin.overlimit, txqi->tin.collisions, txqi->tin.tx_bytes, txqi->tin.tx_packets, txqi->flags, test_bit(IEEE80211_TXQ_STOP, &txqi->flags) ? "STOP" : "RUN", test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags) ? " AMPDU" : "", test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags) ? " NO-AMSDU" : "", test_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) ? " DIRTY" : ""); } rcu_read_unlock(); spin_unlock_bh(&local->fq.lock); rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return rv; } STA_OPS(aqm); static ssize_t sta_airtime_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->sdata->local; size_t bufsz = 400; char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf; u64 rx_airtime = 0, tx_airtime = 0; s32 deficit[IEEE80211_NUM_ACS]; ssize_t rv; int ac; if (!buf) return -ENOMEM; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { spin_lock_bh(&local->active_txq_lock[ac]); rx_airtime += sta->airtime[ac].rx_airtime; tx_airtime += sta->airtime[ac].tx_airtime; deficit[ac] = sta->airtime[ac].deficit; spin_unlock_bh(&local->active_txq_lock[ac]); } p += scnprintf(p, bufsz + buf - p, "RX: %llu us\nTX: %llu us\nWeight: %u\n" "Deficit: VO: %d us VI: %d us BE: %d us BK: %d us\n", rx_airtime, tx_airtime, sta->airtime_weight, deficit[0], deficit[1], deficit[2], deficit[3]); rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return rv; } static ssize_t sta_airtime_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->sdata->local; int ac; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { spin_lock_bh(&local->active_txq_lock[ac]); sta->airtime[ac].rx_airtime = 0; sta->airtime[ac].tx_airtime = 0; sta->airtime[ac].deficit = sta->airtime_weight; spin_unlock_bh(&local->active_txq_lock[ac]); } return count; } STA_OPS_RW(airtime); static ssize_t sta_aql_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct ieee80211_local *local = sta->sdata->local; size_t bufsz = 400; char *buf = kzalloc(bufsz, GFP_KERNEL), *p = buf; u32 q_depth[IEEE80211_NUM_ACS]; u32 q_limit_l[IEEE80211_NUM_ACS], q_limit_h[IEEE80211_NUM_ACS]; ssize_t rv; int ac; if (!buf) return -ENOMEM; for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { spin_lock_bh(&local->active_txq_lock[ac]); q_limit_l[ac] = sta->airtime[ac].aql_limit_low; q_limit_h[ac] = sta->airtime[ac].aql_limit_high; spin_unlock_bh(&local->active_txq_lock[ac]); q_depth[ac] = atomic_read(&sta->airtime[ac].aql_tx_pending); } p += scnprintf(p, bufsz + buf - p, "Q depth: VO: %u us VI: %u us BE: %u us BK: %u us\n" "Q limit[low/high]: VO: %u/%u VI: %u/%u BE: %u/%u BK: %u/%u\n", q_depth[0], q_depth[1], q_depth[2], q_depth[3], q_limit_l[0], q_limit_h[0], q_limit_l[1], q_limit_h[1], q_limit_l[2], q_limit_h[2], q_limit_l[3], q_limit_h[3]); rv = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return rv; } static ssize_t sta_aql_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; u32 ac, q_limit_l, q_limit_h; char _buf[100] = {}, *buf = _buf; if (count > sizeof(_buf)) return -EINVAL; if (copy_from_user(buf, userbuf, count)) return -EFAULT; buf[sizeof(_buf) - 1] = '\0'; if (sscanf(buf, "limit %u %u %u", &ac, &q_limit_l, &q_limit_h) != 3) return -EINVAL; if (ac >= IEEE80211_NUM_ACS) return -EINVAL; sta->airtime[ac].aql_limit_low = q_limit_l; sta->airtime[ac].aql_limit_high = q_limit_h; return count; } STA_OPS_RW(aql); static ssize_t sta_agg_status_do_read(struct wiphy *wiphy, struct file *file, char *buf, size_t bufsz, void *data) { struct sta_info *sta = data; char *p = buf; int i; struct tid_ampdu_rx *tid_rx; struct tid_ampdu_tx *tid_tx; p += scnprintf(p, bufsz + buf - p, "next dialog_token: %#02x\n", sta->ampdu_mlme.dialog_token_allocator + 1); p += scnprintf(p, bufsz + buf - p, "TID\t\tRX\tDTKN\tSSN\t\tTX\tDTKN\tpending\n"); for (i = 0; i < IEEE80211_NUM_TIDS; i++) { bool tid_rx_valid; tid_rx = wiphy_dereference(wiphy, sta->ampdu_mlme.tid_rx[i]); tid_tx = wiphy_dereference(wiphy, sta->ampdu_mlme.tid_tx[i]); tid_rx_valid = test_bit(i, sta->ampdu_mlme.agg_session_valid); p += scnprintf(p, bufsz + buf - p, "%02d", i); p += scnprintf(p, bufsz + buf - p, "\t\t%x", tid_rx_valid); p += scnprintf(p, bufsz + buf - p, "\t%#.2x", tid_rx_valid ? sta->ampdu_mlme.tid_rx_token[i] : 0); p += scnprintf(p, bufsz + buf - p, "\t%#.3x", tid_rx ? tid_rx->ssn : 0); p += scnprintf(p, bufsz + buf - p, "\t\t%x", !!tid_tx); p += scnprintf(p, bufsz + buf - p, "\t%#.2x", tid_tx ? tid_tx->dialog_token : 0); p += scnprintf(p, bufsz + buf - p, "\t%03d", tid_tx ? skb_queue_len(&tid_tx->pending) : 0); p += scnprintf(p, bufsz + buf - p, "\n"); } return p - buf; } static ssize_t sta_agg_status_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct wiphy *wiphy = sta->local->hw.wiphy; size_t bufsz = 71 + IEEE80211_NUM_TIDS * 40; char *buf = kmalloc(bufsz, GFP_KERNEL); ssize_t ret; if (!buf) return -ENOMEM; ret = wiphy_locked_debugfs_read(wiphy, file, buf, bufsz, userbuf, count, ppos, sta_agg_status_do_read, sta); kfree(buf); return ret; } static ssize_t sta_agg_status_do_write(struct wiphy *wiphy, struct file *file, char *buf, size_t count, void *data) { struct sta_info *sta = data; bool start, tx; unsigned long tid; char *pos = buf; int ret, timeout = 5000; buf = strsep(&pos, " "); if (!buf) return -EINVAL; if (!strcmp(buf, "tx")) tx = true; else if (!strcmp(buf, "rx")) tx = false; else return -EINVAL; buf = strsep(&pos, " "); if (!buf) return -EINVAL; if (!strcmp(buf, "start")) { start = true; if (!tx) return -EINVAL; } else if (!strcmp(buf, "stop")) { start = false; } else { return -EINVAL; } buf = strsep(&pos, " "); if (!buf) return -EINVAL; if (sscanf(buf, "timeout=%d", &timeout) == 1) { buf = strsep(&pos, " "); if (!buf || !tx || !start) return -EINVAL; } ret = kstrtoul(buf, 0, &tid); if (ret || tid >= IEEE80211_NUM_TIDS) return -EINVAL; if (tx) { if (start) ret = ieee80211_start_tx_ba_session(&sta->sta, tid, timeout); else ret = ieee80211_stop_tx_ba_session(&sta->sta, tid); } else { __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT, 3, true); ret = 0; } return ret ?: count; } static ssize_t sta_agg_status_write(struct file *file, const char __user *userbuf, size_t count, loff_t *ppos) { struct sta_info *sta = file->private_data; struct wiphy *wiphy = sta->local->hw.wiphy; char _buf[26]; return wiphy_locked_debugfs_write(wiphy, file, _buf, sizeof(_buf), userbuf, count, sta_agg_status_do_write, sta); } STA_OPS_RW(agg_status); /* link sta attributes */ #define LINK_STA_OPS(name) \ static const struct file_operations link_sta_ ##name## _ops = { \ .read = link_sta_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ } static ssize_t link_sta_addr_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct link_sta_info *link_sta = file->private_data; u8 mac[3 * ETH_ALEN + 1]; snprintf(mac, sizeof(mac), "%pM\n", link_sta->pub->addr); return simple_read_from_buffer(userbuf, count, ppos, mac, 3 * ETH_ALEN); } LINK_STA_OPS(addr); static ssize_t link_sta_ht_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { #define PRINT_HT_CAP(_cond, _str) \ do { \ if (_cond) \ p += scnprintf(p, bufsz + buf - p, "\t" _str "\n"); \ } while (0) char *buf, *p; int i; ssize_t bufsz = 512; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_ht_cap *htc = &link_sta->pub->ht_cap; ssize_t ret; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, bufsz + buf - p, "ht %ssupported\n", htc->ht_supported ? "" : "not "); if (htc->ht_supported) { p += scnprintf(p, bufsz + buf - p, "cap: %#.4x\n", htc->cap); PRINT_HT_CAP((htc->cap & BIT(0)), "RX LDPC"); PRINT_HT_CAP((htc->cap & BIT(1)), "HT20/HT40"); PRINT_HT_CAP(!(htc->cap & BIT(1)), "HT20"); PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 0, "Static SM Power Save"); PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 1, "Dynamic SM Power Save"); PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 3, "SM Power Save disabled"); PRINT_HT_CAP((htc->cap & BIT(4)), "RX Greenfield"); PRINT_HT_CAP((htc->cap & BIT(5)), "RX HT20 SGI"); PRINT_HT_CAP((htc->cap & BIT(6)), "RX HT40 SGI"); PRINT_HT_CAP((htc->cap & BIT(7)), "TX STBC"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 0, "No RX STBC"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 1, "RX STBC 1-stream"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 2, "RX STBC 2-streams"); PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 3, "RX STBC 3-streams"); PRINT_HT_CAP((htc->cap & BIT(10)), "HT Delayed Block Ack"); PRINT_HT_CAP(!(htc->cap & BIT(11)), "Max AMSDU length: " "3839 bytes"); PRINT_HT_CAP((htc->cap & BIT(11)), "Max AMSDU length: " "7935 bytes"); /* * For beacons and probe response this would mean the BSS * does or does not allow the usage of DSSS/CCK HT40. * Otherwise it means the STA does or does not use * DSSS/CCK HT40. */ PRINT_HT_CAP((htc->cap & BIT(12)), "DSSS/CCK HT40"); PRINT_HT_CAP(!(htc->cap & BIT(12)), "No DSSS/CCK HT40"); /* BIT(13) is reserved */ PRINT_HT_CAP((htc->cap & BIT(14)), "40 MHz Intolerant"); PRINT_HT_CAP((htc->cap & BIT(15)), "L-SIG TXOP protection"); p += scnprintf(p, bufsz + buf - p, "ampdu factor/density: %d/%d\n", htc->ampdu_factor, htc->ampdu_density); p += scnprintf(p, bufsz + buf - p, "MCS mask:"); for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) p += scnprintf(p, bufsz + buf - p, " %.2x", htc->mcs.rx_mask[i]); p += scnprintf(p, bufsz + buf - p, "\n"); /* If not set this is meaningless */ if (le16_to_cpu(htc->mcs.rx_highest)) { p += scnprintf(p, bufsz + buf - p, "MCS rx highest: %d Mbps\n", le16_to_cpu(htc->mcs.rx_highest)); } p += scnprintf(p, bufsz + buf - p, "MCS tx params: %x\n", htc->mcs.tx_params); } ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(ht_capa); static ssize_t link_sta_vht_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_vht_cap *vhtc = &link_sta->pub->vht_cap; ssize_t ret; ssize_t bufsz = 512; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, bufsz + buf - p, "VHT %ssupported\n", vhtc->vht_supported ? "" : "not "); if (vhtc->vht_supported) { p += scnprintf(p, bufsz + buf - p, "cap: %#.8x\n", vhtc->cap); #define PFLAG(a, b) \ do { \ if (vhtc->cap & IEEE80211_VHT_CAP_ ## a) \ p += scnprintf(p, bufsz + buf - p, \ "\t\t%s\n", b); \ } while (0) switch (vhtc->cap & 0x3) { case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-3895\n"); break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-7991\n"); break; case IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-11454\n"); break; default: p += scnprintf(p, bufsz + buf - p, "\t\tMAX-MPDU-UNKNOWN\n"); } switch (vhtc->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { case 0: p += scnprintf(p, bufsz + buf - p, "\t\t80Mhz\n"); break; case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: p += scnprintf(p, bufsz + buf - p, "\t\t160Mhz\n"); break; case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: p += scnprintf(p, bufsz + buf - p, "\t\t80+80Mhz\n"); break; default: p += scnprintf(p, bufsz + buf - p, "\t\tUNKNOWN-MHZ: 0x%x\n", (vhtc->cap >> 2) & 0x3); } PFLAG(RXLDPC, "RXLDPC"); PFLAG(SHORT_GI_80, "SHORT-GI-80"); PFLAG(SHORT_GI_160, "SHORT-GI-160"); PFLAG(TXSTBC, "TXSTBC"); p += scnprintf(p, bufsz + buf - p, "\t\tRXSTBC_%d\n", (vhtc->cap >> 8) & 0x7); PFLAG(SU_BEAMFORMER_CAPABLE, "SU-BEAMFORMER-CAPABLE"); PFLAG(SU_BEAMFORMEE_CAPABLE, "SU-BEAMFORMEE-CAPABLE"); p += scnprintf(p, bufsz + buf - p, "\t\tBEAMFORMEE-STS: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK) >> IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); p += scnprintf(p, bufsz + buf - p, "\t\tSOUNDING-DIMENSIONS: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK) >> IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT); PFLAG(MU_BEAMFORMER_CAPABLE, "MU-BEAMFORMER-CAPABLE"); PFLAG(MU_BEAMFORMEE_CAPABLE, "MU-BEAMFORMEE-CAPABLE"); PFLAG(VHT_TXOP_PS, "TXOP-PS"); PFLAG(HTC_VHT, "HTC-VHT"); p += scnprintf(p, bufsz + buf - p, "\t\tMPDU-LENGTH-EXPONENT: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT); PFLAG(VHT_LINK_ADAPTATION_VHT_UNSOL_MFB, "LINK-ADAPTATION-VHT-UNSOL-MFB"); p += scnprintf(p, bufsz + buf - p, "\t\tLINK-ADAPTATION-VHT-MRQ-MFB: 0x%x\n", (vhtc->cap & IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB) >> 26); PFLAG(RX_ANTENNA_PATTERN, "RX-ANTENNA-PATTERN"); PFLAG(TX_ANTENNA_PATTERN, "TX-ANTENNA-PATTERN"); p += scnprintf(p, bufsz + buf - p, "RX MCS: %.4x\n", le16_to_cpu(vhtc->vht_mcs.rx_mcs_map)); if (vhtc->vht_mcs.rx_highest) p += scnprintf(p, bufsz + buf - p, "MCS RX highest: %d Mbps\n", le16_to_cpu(vhtc->vht_mcs.rx_highest)); p += scnprintf(p, bufsz + buf - p, "TX MCS: %.4x\n", le16_to_cpu(vhtc->vht_mcs.tx_mcs_map)); if (vhtc->vht_mcs.tx_highest) p += scnprintf(p, bufsz + buf - p, "MCS TX highest: %d Mbps\n", le16_to_cpu(vhtc->vht_mcs.tx_highest)); #undef PFLAG } ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(vht_capa); static ssize_t link_sta_he_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; size_t buf_sz = PAGE_SIZE; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_he_cap *hec = &link_sta->pub->he_cap; struct ieee80211_he_mcs_nss_supp *nss = &hec->he_mcs_nss_supp; u8 ppe_size; u8 *cap; int i; ssize_t ret; buf = kmalloc(buf_sz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, buf_sz + buf - p, "HE %ssupported\n", hec->has_he ? "" : "not "); if (!hec->has_he) goto out; cap = hec->he_cap_elem.mac_cap_info; p += scnprintf(p, buf_sz + buf - p, "MAC-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", cap[0], cap[1], cap[2], cap[3], cap[4], cap[5]); #define PRINT(fmt, ...) \ p += scnprintf(p, buf_sz + buf - p, "\t\t" fmt "\n", \ ##__VA_ARGS__) #define PFLAG(t, n, a, b) \ do { \ if (cap[n] & IEEE80211_HE_##t##_CAP##n##_##a) \ PRINT("%s", b); \ } while (0) #define PFLAG_RANGE(t, i, n, s, m, off, fmt) \ do { \ u8 msk = IEEE80211_HE_##t##_CAP##i##_##n##_MASK; \ u8 idx = ((cap[i] & msk) >> (ffs(msk) - 1)) + off; \ PRINT(fmt, (s << idx) + (m * idx)); \ } while (0) #define PFLAG_RANGE_DEFAULT(t, i, n, s, m, off, fmt, a, b) \ do { \ if (cap[i] == IEEE80211_HE_##t ##_CAP##i##_##n##_##a) { \ PRINT("%s", b); \ break; \ } \ PFLAG_RANGE(t, i, n, s, m, off, fmt); \ } while (0) PFLAG(MAC, 0, HTC_HE, "HTC-HE"); PFLAG(MAC, 0, TWT_REQ, "TWT-REQ"); PFLAG(MAC, 0, TWT_RES, "TWT-RES"); PFLAG_RANGE_DEFAULT(MAC, 0, DYNAMIC_FRAG, 0, 1, 0, "DYNAMIC-FRAG-LEVEL-%d", NOT_SUPP, "NOT-SUPP"); PFLAG_RANGE_DEFAULT(MAC, 0, MAX_NUM_FRAG_MSDU, 1, 0, 0, "MAX-NUM-FRAG-MSDU-%d", UNLIMITED, "UNLIMITED"); PFLAG_RANGE_DEFAULT(MAC, 1, MIN_FRAG_SIZE, 128, 0, -1, "MIN-FRAG-SIZE-%d", UNLIMITED, "UNLIMITED"); PFLAG_RANGE_DEFAULT(MAC, 1, TF_MAC_PAD_DUR, 0, 8, 0, "TF-MAC-PAD-DUR-%dUS", MASK, "UNKNOWN"); PFLAG_RANGE(MAC, 1, MULTI_TID_AGG_RX_QOS, 0, 1, 1, "MULTI-TID-AGG-RX-QOS-%d"); if (cap[0] & IEEE80211_HE_MAC_CAP0_HTC_HE) { switch (((cap[2] << 1) | (cap[1] >> 7)) & 0x3) { case 0: PRINT("LINK-ADAPTATION-NO-FEEDBACK"); break; case 1: PRINT("LINK-ADAPTATION-RESERVED"); break; case 2: PRINT("LINK-ADAPTATION-UNSOLICITED-FEEDBACK"); break; case 3: PRINT("LINK-ADAPTATION-BOTH"); break; } } PFLAG(MAC, 2, ALL_ACK, "ALL-ACK"); PFLAG(MAC, 2, TRS, "TRS"); PFLAG(MAC, 2, BSR, "BSR"); PFLAG(MAC, 2, BCAST_TWT, "BCAST-TWT"); PFLAG(MAC, 2, 32BIT_BA_BITMAP, "32BIT-BA-BITMAP"); PFLAG(MAC, 2, MU_CASCADING, "MU-CASCADING"); PFLAG(MAC, 2, ACK_EN, "ACK-EN"); PFLAG(MAC, 3, OMI_CONTROL, "OMI-CONTROL"); PFLAG(MAC, 3, OFDMA_RA, "OFDMA-RA"); switch (cap[3] & IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK) { case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0: PRINT("MAX-AMPDU-LEN-EXP-USE-EXT-0"); break; case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1: PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-1"); break; case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2: PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-2"); break; case IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3: PRINT("MAX-AMPDU-LEN-EXP-VHT-EXT-3"); break; } PFLAG(MAC, 3, AMSDU_FRAG, "AMSDU-FRAG"); PFLAG(MAC, 3, FLEX_TWT_SCHED, "FLEX-TWT-SCHED"); PFLAG(MAC, 3, RX_CTRL_FRAME_TO_MULTIBSS, "RX-CTRL-FRAME-TO-MULTIBSS"); PFLAG(MAC, 4, BSRP_BQRP_A_MPDU_AGG, "BSRP-BQRP-A-MPDU-AGG"); PFLAG(MAC, 4, QTP, "QTP"); PFLAG(MAC, 4, BQR, "BQR"); PFLAG(MAC, 4, PSR_RESP, "PSR-RESP"); PFLAG(MAC, 4, NDP_FB_REP, "NDP-FB-REP"); PFLAG(MAC, 4, OPS, "OPS"); PFLAG(MAC, 4, AMSDU_IN_AMPDU, "AMSDU-IN-AMPDU"); PRINT("MULTI-TID-AGG-TX-QOS-%d", ((cap[5] << 1) | (cap[4] >> 7)) & 0x7); PFLAG(MAC, 5, SUBCHAN_SELECTIVE_TRANSMISSION, "SUBCHAN-SELECTIVE-TRANSMISSION"); PFLAG(MAC, 5, UL_2x996_TONE_RU, "UL-2x996-TONE-RU"); PFLAG(MAC, 5, OM_CTRL_UL_MU_DATA_DIS_RX, "OM-CTRL-UL-MU-DATA-DIS-RX"); PFLAG(MAC, 5, HE_DYNAMIC_SM_PS, "HE-DYNAMIC-SM-PS"); PFLAG(MAC, 5, PUNCTURED_SOUNDING, "PUNCTURED-SOUNDING"); PFLAG(MAC, 5, HT_VHT_TRIG_FRAME_RX, "HT-VHT-TRIG-FRAME-RX"); cap = hec->he_cap_elem.phy_cap_info; p += scnprintf(p, buf_sz + buf - p, "PHY CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", cap[0], cap[1], cap[2], cap[3], cap[4], cap[5], cap[6], cap[7], cap[8], cap[9], cap[10]); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_IN_2G, "CHANNEL-WIDTH-SET-40MHZ-IN-2G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G, "CHANNEL-WIDTH-SET-40MHZ-80MHZ-IN-5G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_160MHZ_IN_5G, "CHANNEL-WIDTH-SET-160MHZ-IN-5G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G, "CHANNEL-WIDTH-SET-80PLUS80-MHZ-IN-5G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G, "CHANNEL-WIDTH-SET-RU-MAPPING-IN-2G"); PFLAG(PHY, 0, CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G, "CHANNEL-WIDTH-SET-RU-MAPPING-IN-5G"); switch (cap[1] & IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK) { case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ: PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-20MHZ"); break; case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ: PRINT("PREAMBLE-PUNC-RX-80MHZ-ONLY-SECOND-40MHZ"); break; case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ: PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-20MHZ"); break; case IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ: PRINT("PREAMBLE-PUNC-RX-160MHZ-ONLY-SECOND-40MHZ"); break; } PFLAG(PHY, 1, DEVICE_CLASS_A, "IEEE80211-HE-PHY-CAP1-DEVICE-CLASS-A"); PFLAG(PHY, 1, LDPC_CODING_IN_PAYLOAD, "LDPC-CODING-IN-PAYLOAD"); PFLAG(PHY, 1, HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US, "HY-CAP1-HE-LTF-AND-GI-FOR-HE-PPDUS-0-8US"); PRINT("MIDAMBLE-RX-MAX-NSTS-%d", ((cap[2] << 1) | (cap[1] >> 7)) & 0x3); PFLAG(PHY, 2, NDP_4x_LTF_AND_3_2US, "NDP-4X-LTF-AND-3-2US"); PFLAG(PHY, 2, STBC_TX_UNDER_80MHZ, "STBC-TX-UNDER-80MHZ"); PFLAG(PHY, 2, STBC_RX_UNDER_80MHZ, "STBC-RX-UNDER-80MHZ"); PFLAG(PHY, 2, DOPPLER_TX, "DOPPLER-TX"); PFLAG(PHY, 2, DOPPLER_RX, "DOPPLER-RX"); PFLAG(PHY, 2, UL_MU_FULL_MU_MIMO, "UL-MU-FULL-MU-MIMO"); PFLAG(PHY, 2, UL_MU_PARTIAL_MU_MIMO, "UL-MU-PARTIAL-MU-MIMO"); switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK) { case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM: PRINT("DCM-MAX-CONST-TX-NO-DCM"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK: PRINT("DCM-MAX-CONST-TX-BPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK: PRINT("DCM-MAX-CONST-TX-QPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM: PRINT("DCM-MAX-CONST-TX-16-QAM"); break; } PFLAG(PHY, 3, DCM_MAX_TX_NSS_1, "DCM-MAX-TX-NSS-1"); PFLAG(PHY, 3, DCM_MAX_TX_NSS_2, "DCM-MAX-TX-NSS-2"); switch (cap[3] & IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK) { case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM: PRINT("DCM-MAX-CONST-RX-NO-DCM"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK: PRINT("DCM-MAX-CONST-RX-BPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK: PRINT("DCM-MAX-CONST-RX-QPSK"); break; case IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM: PRINT("DCM-MAX-CONST-RX-16-QAM"); break; } PFLAG(PHY, 3, DCM_MAX_RX_NSS_1, "DCM-MAX-RX-NSS-1"); PFLAG(PHY, 3, DCM_MAX_RX_NSS_2, "DCM-MAX-RX-NSS-2"); PFLAG(PHY, 3, RX_PARTIAL_BW_SU_IN_20MHZ_MU, "RX-PARTIAL-BW-SU-IN-20MHZ-MU"); PFLAG(PHY, 3, SU_BEAMFORMER, "SU-BEAMFORMER"); PFLAG(PHY, 4, SU_BEAMFORMEE, "SU-BEAMFORMEE"); PFLAG(PHY, 4, MU_BEAMFORMER, "MU-BEAMFORMER"); PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_UNDER_80MHZ, 0, 1, 4, "BEAMFORMEE-MAX-STS-UNDER-%d"); PFLAG_RANGE(PHY, 4, BEAMFORMEE_MAX_STS_ABOVE_80MHZ, 0, 1, 4, "BEAMFORMEE-MAX-STS-ABOVE-%d"); PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ, 0, 1, 1, "NUM-SND-DIM-UNDER-80MHZ-%d"); PFLAG_RANGE(PHY, 5, BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ, 0, 1, 1, "NUM-SND-DIM-ABOVE-80MHZ-%d"); PFLAG(PHY, 5, NG16_SU_FEEDBACK, "NG16-SU-FEEDBACK"); PFLAG(PHY, 5, NG16_MU_FEEDBACK, "NG16-MU-FEEDBACK"); PFLAG(PHY, 6, CODEBOOK_SIZE_42_SU, "CODEBOOK-SIZE-42-SU"); PFLAG(PHY, 6, CODEBOOK_SIZE_75_MU, "CODEBOOK-SIZE-75-MU"); PFLAG(PHY, 6, TRIG_SU_BEAMFORMING_FB, "TRIG-SU-BEAMFORMING-FB"); PFLAG(PHY, 6, TRIG_MU_BEAMFORMING_PARTIAL_BW_FB, "MU-BEAMFORMING-PARTIAL-BW-FB"); PFLAG(PHY, 6, TRIG_CQI_FB, "TRIG-CQI-FB"); PFLAG(PHY, 6, PARTIAL_BW_EXT_RANGE, "PARTIAL-BW-EXT-RANGE"); PFLAG(PHY, 6, PARTIAL_BANDWIDTH_DL_MUMIMO, "PARTIAL-BANDWIDTH-DL-MUMIMO"); PFLAG(PHY, 6, PPE_THRESHOLD_PRESENT, "PPE-THRESHOLD-PRESENT"); PFLAG(PHY, 7, PSR_BASED_SR, "PSR-BASED-SR"); PFLAG(PHY, 7, POWER_BOOST_FACTOR_SUPP, "POWER-BOOST-FACTOR-SUPP"); PFLAG(PHY, 7, HE_SU_MU_PPDU_4XLTF_AND_08_US_GI, "HE-SU-MU-PPDU-4XLTF-AND-08-US-GI"); PFLAG_RANGE(PHY, 7, MAX_NC, 0, 1, 1, "MAX-NC-%d"); PFLAG(PHY, 7, STBC_TX_ABOVE_80MHZ, "STBC-TX-ABOVE-80MHZ"); PFLAG(PHY, 7, STBC_RX_ABOVE_80MHZ, "STBC-RX-ABOVE-80MHZ"); PFLAG(PHY, 8, HE_ER_SU_PPDU_4XLTF_AND_08_US_GI, "HE-ER-SU-PPDU-4XLTF-AND-08-US-GI"); PFLAG(PHY, 8, 20MHZ_IN_40MHZ_HE_PPDU_IN_2G, "20MHZ-IN-40MHZ-HE-PPDU-IN-2G"); PFLAG(PHY, 8, 20MHZ_IN_160MHZ_HE_PPDU, "20MHZ-IN-160MHZ-HE-PPDU"); PFLAG(PHY, 8, 80MHZ_IN_160MHZ_HE_PPDU, "80MHZ-IN-160MHZ-HE-PPDU"); PFLAG(PHY, 8, HE_ER_SU_1XLTF_AND_08_US_GI, "HE-ER-SU-1XLTF-AND-08-US-GI"); PFLAG(PHY, 8, MIDAMBLE_RX_TX_2X_AND_1XLTF, "MIDAMBLE-RX-TX-2X-AND-1XLTF"); switch (cap[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK) { case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242: PRINT("DCM-MAX-RU-242"); break; case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484: PRINT("DCM-MAX-RU-484"); break; case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996: PRINT("DCM-MAX-RU-996"); break; case IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996: PRINT("DCM-MAX-RU-2x996"); break; } PFLAG(PHY, 9, LONGER_THAN_16_SIGB_OFDM_SYM, "LONGER-THAN-16-SIGB-OFDM-SYM"); PFLAG(PHY, 9, NON_TRIGGERED_CQI_FEEDBACK, "NON-TRIGGERED-CQI-FEEDBACK"); PFLAG(PHY, 9, TX_1024_QAM_LESS_THAN_242_TONE_RU, "TX-1024-QAM-LESS-THAN-242-TONE-RU"); PFLAG(PHY, 9, RX_1024_QAM_LESS_THAN_242_TONE_RU, "RX-1024-QAM-LESS-THAN-242-TONE-RU"); PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB, "RX-FULL-BW-SU-USING-MU-WITH-COMP-SIGB"); PFLAG(PHY, 9, RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB, "RX-FULL-BW-SU-USING-MU-WITH-NON-COMP-SIGB"); switch (u8_get_bits(cap[9], IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK)) { case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US: PRINT("NOMINAL-PACKET-PADDING-0US"); break; case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US: PRINT("NOMINAL-PACKET-PADDING-8US"); break; case IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US: PRINT("NOMINAL-PACKET-PADDING-16US"); break; } #undef PFLAG_RANGE_DEFAULT #undef PFLAG_RANGE #undef PFLAG #define PRINT_NSS_SUPP(f, n) \ do { \ int _i; \ u16 v = le16_to_cpu(nss->f); \ p += scnprintf(p, buf_sz + buf - p, n ": %#.4x\n", v); \ for (_i = 0; _i < 8; _i += 2) { \ switch ((v >> _i) & 0x3) { \ case 0: \ PRINT(n "-%d-SUPPORT-0-7", _i / 2); \ break; \ case 1: \ PRINT(n "-%d-SUPPORT-0-9", _i / 2); \ break; \ case 2: \ PRINT(n "-%d-SUPPORT-0-11", _i / 2); \ break; \ case 3: \ PRINT(n "-%d-NOT-SUPPORTED", _i / 2); \ break; \ } \ } \ } while (0) PRINT_NSS_SUPP(rx_mcs_80, "RX-MCS-80"); PRINT_NSS_SUPP(tx_mcs_80, "TX-MCS-80"); if (cap[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) { PRINT_NSS_SUPP(rx_mcs_160, "RX-MCS-160"); PRINT_NSS_SUPP(tx_mcs_160, "TX-MCS-160"); } if (cap[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) { PRINT_NSS_SUPP(rx_mcs_80p80, "RX-MCS-80P80"); PRINT_NSS_SUPP(tx_mcs_80p80, "TX-MCS-80P80"); } #undef PRINT_NSS_SUPP #undef PRINT if (!(cap[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT)) goto out; p += scnprintf(p, buf_sz + buf - p, "PPE-THRESHOLDS: %#.2x", hec->ppe_thres[0]); ppe_size = ieee80211_he_ppe_size(hec->ppe_thres[0], cap); for (i = 1; i < ppe_size; i++) { p += scnprintf(p, buf_sz + buf - p, " %#.2x", hec->ppe_thres[i]); } p += scnprintf(p, buf_sz + buf - p, "\n"); out: ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(he_capa); static ssize_t link_sta_eht_capa_read(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { char *buf, *p; size_t buf_sz = PAGE_SIZE; struct link_sta_info *link_sta = file->private_data; struct ieee80211_sta_eht_cap *bec = &link_sta->pub->eht_cap; struct ieee80211_eht_cap_elem_fixed *fixed = &bec->eht_cap_elem; struct ieee80211_eht_mcs_nss_supp *nss = &bec->eht_mcs_nss_supp; u8 *cap; int i; ssize_t ret; static const char *mcs_desc[] = { "0-7", "8-9", "10-11", "12-13"}; buf = kmalloc(buf_sz, GFP_KERNEL); if (!buf) return -ENOMEM; p = buf; p += scnprintf(p, buf_sz + buf - p, "EHT %ssupported\n", bec->has_eht ? "" : "not "); if (!bec->has_eht) goto out; p += scnprintf(p, buf_sz + buf - p, "MAC-CAP: %#.2x %#.2x\n", fixed->mac_cap_info[0], fixed->mac_cap_info[1]); p += scnprintf(p, buf_sz + buf - p, "PHY-CAP: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", fixed->phy_cap_info[0], fixed->phy_cap_info[1], fixed->phy_cap_info[2], fixed->phy_cap_info[3], fixed->phy_cap_info[4], fixed->phy_cap_info[5], fixed->phy_cap_info[6], fixed->phy_cap_info[7], fixed->phy_cap_info[8]); #define PRINT(fmt, ...) \ p += scnprintf(p, buf_sz + buf - p, "\t\t" fmt "\n", \ ##__VA_ARGS__) #define PFLAG(t, n, a, b) \ do { \ if (cap[n] & IEEE80211_EHT_##t##_CAP##n##_##a) \ PRINT("%s", b); \ } while (0) cap = fixed->mac_cap_info; PFLAG(MAC, 0, EPCS_PRIO_ACCESS, "EPCS-PRIO-ACCESS"); PFLAG(MAC, 0, OM_CONTROL, "OM-CONTROL"); PFLAG(MAC, 0, TRIG_TXOP_SHARING_MODE1, "TRIG-TXOP-SHARING-MODE1"); PFLAG(MAC, 0, TRIG_TXOP_SHARING_MODE2, "TRIG-TXOP-SHARING-MODE2"); PFLAG(MAC, 0, RESTRICTED_TWT, "RESTRICTED-TWT"); PFLAG(MAC, 0, SCS_TRAFFIC_DESC, "SCS-TRAFFIC-DESC"); switch ((cap[0] & 0xc0) >> 6) { case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895: PRINT("MAX-MPDU-LEN: 3985"); break; case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991: PRINT("MAX-MPDU-LEN: 7991"); break; case IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454: PRINT("MAX-MPDU-LEN: 11454"); break; } cap = fixed->phy_cap_info; PFLAG(PHY, 0, 320MHZ_IN_6GHZ, "320MHZ-IN-6GHZ"); PFLAG(PHY, 0, 242_TONE_RU_GT20MHZ, "242-TONE-RU-GT20MHZ"); PFLAG(PHY, 0, NDP_4_EHT_LFT_32_GI, "NDP-4-EHT-LFT-32-GI"); PFLAG(PHY, 0, PARTIAL_BW_UL_MU_MIMO, "PARTIAL-BW-UL-MU-MIMO"); PFLAG(PHY, 0, SU_BEAMFORMER, "SU-BEAMFORMER"); PFLAG(PHY, 0, SU_BEAMFORMEE, "SU-BEAMFORMEE"); i = cap[0] >> 7; i |= (cap[1] & 0x3) << 1; PRINT("BEAMFORMEE-80-NSS: %i", i); PRINT("BEAMFORMEE-160-NSS: %i", (cap[1] >> 2) & 0x7); PRINT("BEAMFORMEE-320-NSS: %i", (cap[1] >> 5) & 0x7); PRINT("SOUNDING-DIM-80-NSS: %i", (cap[2] & 0x7)); PRINT("SOUNDING-DIM-160-NSS: %i", (cap[2] >> 3) & 0x7); i = cap[2] >> 6; i |= (cap[3] & 0x1) << 3; PRINT("SOUNDING-DIM-320-NSS: %i", i); PFLAG(PHY, 3, NG_16_SU_FEEDBACK, "NG-16-SU-FEEDBACK"); PFLAG(PHY, 3, NG_16_MU_FEEDBACK, "NG-16-MU-FEEDBACK"); PFLAG(PHY, 3, CODEBOOK_4_2_SU_FDBK, "CODEBOOK-4-2-SU-FDBK"); PFLAG(PHY, 3, CODEBOOK_7_5_MU_FDBK, "CODEBOOK-7-5-MU-FDBK"); PFLAG(PHY, 3, TRIG_SU_BF_FDBK, "TRIG-SU-BF-FDBK"); PFLAG(PHY, 3, TRIG_MU_BF_PART_BW_FDBK, "TRIG-MU-BF-PART-BW-FDBK"); PFLAG(PHY, 3, TRIG_CQI_FDBK, "TRIG-CQI-FDBK"); PFLAG(PHY, 4, PART_BW_DL_MU_MIMO, "PART-BW-DL-MU-MIMO"); PFLAG(PHY, 4, PSR_SR_SUPP, "PSR-SR-SUPP"); PFLAG(PHY, 4, POWER_BOOST_FACT_SUPP, "POWER-BOOST-FACT-SUPP"); PFLAG(PHY, 4, EHT_MU_PPDU_4_EHT_LTF_08_GI, "EHT-MU-PPDU-4-EHT-LTF-08-GI"); PRINT("MAX_NC: %i", cap[4] >> 4); PFLAG(PHY, 5, NON_TRIG_CQI_FEEDBACK, "NON-TRIG-CQI-FEEDBACK"); PFLAG(PHY, 5, TX_LESS_242_TONE_RU_SUPP, "TX-LESS-242-TONE-RU-SUPP"); PFLAG(PHY, 5, RX_LESS_242_TONE_RU_SUPP, "RX-LESS-242-TONE-RU-SUPP"); PFLAG(PHY, 5, PPE_THRESHOLD_PRESENT, "PPE_THRESHOLD_PRESENT"); switch (cap[5] >> 4 & 0x3) { case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US: PRINT("NOMINAL_PKT_PAD: 0us"); break; case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US: PRINT("NOMINAL_PKT_PAD: 8us"); break; case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US: PRINT("NOMINAL_PKT_PAD: 16us"); break; case IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US: PRINT("NOMINAL_PKT_PAD: 20us"); break; } i = cap[5] >> 6; i |= cap[6] & 0x7; PRINT("MAX-NUM-SUPP-EHT-LTF: %i", i); PFLAG(PHY, 5, SUPP_EXTRA_EHT_LTF, "SUPP-EXTRA-EHT-LTF"); i = (cap[6] >> 3) & 0xf; PRINT("MCS15-SUPP-MASK: %i", i); PFLAG(PHY, 6, EHT_DUP_6GHZ_SUPP, "EHT-DUP-6GHZ-SUPP"); PFLAG(PHY, 7, 20MHZ_STA_RX_NDP_WIDER_BW, "20MHZ-STA-RX-NDP-WIDER-BW"); PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_80MHZ, "NON-OFDMA-UL-MU-MIMO-80MHZ"); PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_160MHZ, "NON-OFDMA-UL-MU-MIMO-160MHZ"); PFLAG(PHY, 7, NON_OFDMA_UL_MU_MIMO_320MHZ, "NON-OFDMA-UL-MU-MIMO-320MHZ"); PFLAG(PHY, 7, MU_BEAMFORMER_80MHZ, "MU-BEAMFORMER-80MHZ"); PFLAG(PHY, 7, MU_BEAMFORMER_160MHZ, "MU-BEAMFORMER-160MHZ"); PFLAG(PHY, 7, MU_BEAMFORMER_320MHZ, "MU-BEAMFORMER-320MHZ"); PFLAG(PHY, 7, TB_SOUNDING_FDBK_RATE_LIMIT, "TB-SOUNDING-FDBK-RATE-LIMIT"); PFLAG(PHY, 8, RX_1024QAM_WIDER_BW_DL_OFDMA, "RX-1024QAM-WIDER-BW-DL-OFDMA"); PFLAG(PHY, 8, RX_4096QAM_WIDER_BW_DL_OFDMA, "RX-4096QAM-WIDER-BW-DL-OFDMA"); #undef PFLAG PRINT(""); /* newline */ if (!(link_sta->pub->he_cap.he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL)) { u8 *mcs_vals = (u8 *)(&nss->only_20mhz); for (i = 0; i < 4; i++) PRINT("EHT bw=20 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); } else { u8 *mcs_vals = (u8 *)(&nss->bw._80); for (i = 0; i < 3; i++) PRINT("EHT bw <= 80 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i + 1], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); mcs_vals = (u8 *)(&nss->bw._160); for (i = 0; i < 3; i++) PRINT("EHT bw <= 160 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i + 1], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); mcs_vals = (u8 *)(&nss->bw._320); for (i = 0; i < 3; i++) PRINT("EHT bw <= 320 MHz, max NSS for MCS %s: Rx=%u, Tx=%u", mcs_desc[i + 1], mcs_vals[i] & 0xf, mcs_vals[i] >> 4); } if (cap[5] & IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) { u8 ppe_size = ieee80211_eht_ppe_size(bec->eht_ppe_thres[0], cap); p += scnprintf(p, buf_sz + buf - p, "EHT PPE Thresholds: "); for (i = 0; i < ppe_size; i++) p += scnprintf(p, buf_sz + buf - p, "0x%02x ", bec->eht_ppe_thres[i]); PRINT(""); /* newline */ } out: ret = simple_read_from_buffer(userbuf, count, ppos, buf, p - buf); kfree(buf); return ret; } LINK_STA_OPS(eht_capa); #define DEBUGFS_ADD(name) \ debugfs_create_file(#name, 0400, \ sta->debugfs_dir, sta, &sta_ ##name## _ops) #define DEBUGFS_ADD_COUNTER(name, field) \ debugfs_create_ulong(#name, 0400, sta->debugfs_dir, &sta->field); void ieee80211_sta_debugfs_add(struct sta_info *sta) { struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct dentry *stations_dir = sta->sdata->debugfs.subdir_stations; u8 mac[3*ETH_ALEN]; if (!stations_dir) return; snprintf(mac, sizeof(mac), "%pM", sta->sta.addr); /* * This might fail due to a race condition: * When mac80211 unlinks a station, the debugfs entries * remain, but it is already possible to link a new * station with the same address which triggers adding * it to debugfs; therefore, if the old station isn't * destroyed quickly enough the old station's debugfs * dir might still be around. */ sta->debugfs_dir = debugfs_create_dir(mac, stations_dir); DEBUGFS_ADD(flags); DEBUGFS_ADD(aid); DEBUGFS_ADD(num_ps_buf_frames); DEBUGFS_ADD(last_seq_ctrl); DEBUGFS_ADD(agg_status); /* FIXME: Kept here as the statistics are only done on the deflink */ DEBUGFS_ADD_COUNTER(tx_filtered, deflink.status_stats.filtered); DEBUGFS_ADD(aqm); DEBUGFS_ADD(airtime); if (wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) DEBUGFS_ADD(aql); debugfs_create_xul("driver_buffered_tids", 0400, sta->debugfs_dir, &sta->driver_buffered_tids); drv_sta_add_debugfs(local, sdata, &sta->sta, sta->debugfs_dir); } void ieee80211_sta_debugfs_remove(struct sta_info *sta) { debugfs_remove_recursive(sta->debugfs_dir); sta->debugfs_dir = NULL; } #undef DEBUGFS_ADD #undef DEBUGFS_ADD_COUNTER #define DEBUGFS_ADD(name) \ debugfs_create_file(#name, 0400, \ link_sta->debugfs_dir, link_sta, &link_sta_ ##name## _ops) #define DEBUGFS_ADD_COUNTER(name, field) \ debugfs_create_ulong(#name, 0400, link_sta->debugfs_dir, &link_sta->field) void ieee80211_link_sta_debugfs_add(struct link_sta_info *link_sta) { if (WARN_ON(!link_sta->sta->debugfs_dir)) return; /* For non-MLO, leave the files in the main directory. */ if (link_sta->sta->sta.valid_links) { char link_dir_name[10]; snprintf(link_dir_name, sizeof(link_dir_name), "link-%d", link_sta->link_id); link_sta->debugfs_dir = debugfs_create_dir(link_dir_name, link_sta->sta->debugfs_dir); DEBUGFS_ADD(addr); } else { if (WARN_ON(link_sta != &link_sta->sta->deflink)) return; link_sta->debugfs_dir = link_sta->sta->debugfs_dir; } DEBUGFS_ADD(ht_capa); DEBUGFS_ADD(vht_capa); DEBUGFS_ADD(he_capa); DEBUGFS_ADD(eht_capa); DEBUGFS_ADD_COUNTER(rx_duplicates, rx_stats.num_duplicates); DEBUGFS_ADD_COUNTER(rx_fragments, rx_stats.fragments); } void ieee80211_link_sta_debugfs_remove(struct link_sta_info *link_sta) { if (!link_sta->debugfs_dir || !link_sta->sta->debugfs_dir) { link_sta->debugfs_dir = NULL; return; } if (link_sta->debugfs_dir == link_sta->sta->debugfs_dir) { WARN_ON(link_sta != &link_sta->sta->deflink); link_sta->sta->debugfs_dir = NULL; return; } debugfs_remove_recursive(link_sta->debugfs_dir); link_sta->debugfs_dir = NULL; } void ieee80211_link_sta_debugfs_drv_add(struct link_sta_info *link_sta) { if (WARN_ON(!link_sta->debugfs_dir)) return; drv_link_sta_add_debugfs(link_sta->sta->local, link_sta->sta->sdata, link_sta->pub, link_sta->debugfs_dir); } void ieee80211_link_sta_debugfs_drv_remove(struct link_sta_info *link_sta) { if (!link_sta->debugfs_dir) return; if (WARN_ON(link_sta->debugfs_dir == link_sta->sta->debugfs_dir)) return; /* Recreate the directory excluding the driver data */ debugfs_remove_recursive(link_sta->debugfs_dir); link_sta->debugfs_dir = NULL; ieee80211_link_sta_debugfs_add(link_sta); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1