Contributors: 9
Author Tokens Token Proportion Commits Commit Proportion
Pablo Neira Ayuso 1434 94.84% 14 58.33%
Liping Zhang 60 3.97% 2 8.33%
Patrick McHardy 5 0.33% 1 4.17%
Phil Sutter 5 0.33% 1 4.17%
Florian Westphal 2 0.13% 2 8.33%
Taehee Yoo 2 0.13% 1 4.17%
Thomas Gleixner 2 0.13% 1 4.17%
Valdis Kletnieks 1 0.07% 1 4.17%
Zhang Jiaming 1 0.07% 1 4.17%
Total 1512 24


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2017 Pablo Neira Ayuso <pablo@netfilter.org>
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/netlink.h>
#include <linux/netfilter.h>
#include <linux/netfilter/nf_tables.h>
#include <net/netfilter/nf_tables_core.h>

struct nft_bitmap_elem {
	struct nft_elem_priv	priv;
	struct list_head	head;
	struct nft_set_ext	ext;
};

/* This bitmap uses two bits to represent one element. These two bits determine
 * the element state in the current and the future generation.
 *
 * An element can be in three states. The generation cursor is represented using
 * the ^ character, note that this cursor shifts on every successful transaction.
 * If no transaction is going on, we observe all elements are in the following
 * state:
 *
 * 11 = this element is active in the current generation. In case of no updates,
 * ^    it stays active in the next generation.
 * 00 = this element is inactive in the current generation. In case of no
 * ^    updates, it stays inactive in the next generation.
 *
 * On transaction handling, we observe these two temporary states:
 *
 * 01 = this element is inactive in the current generation and it becomes active
 * ^    in the next one. This happens when the element is inserted but commit
 *      path has not yet been executed yet, so activation is still pending. On
 *      transaction abortion, the element is removed.
 * 10 = this element is active in the current generation and it becomes inactive
 * ^    in the next one. This happens when the element is deactivated but commit
 *      path has not yet been executed yet, so removal is still pending. On
 *      transaction abortion, the next generation bit is reset to go back to
 *      restore its previous state.
 */
struct nft_bitmap {
	struct	list_head	list;
	u16			bitmap_size;
	u8			bitmap[];
};

static inline void nft_bitmap_location(const struct nft_set *set,
				       const void *key,
				       u32 *idx, u32 *off)
{
	u32 k;

	if (set->klen == 2)
		k = *(u16 *)key;
	else
		k = *(u8 *)key;
	k <<= 1;

	*idx = k / BITS_PER_BYTE;
	*off = k % BITS_PER_BYTE;
}

/* Fetch the two bits that represent the element and check if it is active based
 * on the generation mask.
 */
static inline bool
nft_bitmap_active(const u8 *bitmap, u32 idx, u32 off, u8 genmask)
{
	return (bitmap[idx] & (0x3 << off)) & (genmask << off);
}

INDIRECT_CALLABLE_SCOPE
bool nft_bitmap_lookup(const struct net *net, const struct nft_set *set,
		       const u32 *key, const struct nft_set_ext **ext)
{
	const struct nft_bitmap *priv = nft_set_priv(set);
	u8 genmask = nft_genmask_cur(net);
	u32 idx, off;

	nft_bitmap_location(set, key, &idx, &off);

	return nft_bitmap_active(priv->bitmap, idx, off, genmask);
}

static struct nft_bitmap_elem *
nft_bitmap_elem_find(const struct nft_set *set, struct nft_bitmap_elem *this,
		     u8 genmask)
{
	const struct nft_bitmap *priv = nft_set_priv(set);
	struct nft_bitmap_elem *be;

	list_for_each_entry_rcu(be, &priv->list, head) {
		if (memcmp(nft_set_ext_key(&be->ext),
			   nft_set_ext_key(&this->ext), set->klen) ||
		    !nft_set_elem_active(&be->ext, genmask))
			continue;

		return be;
	}
	return NULL;
}

static struct nft_elem_priv *
nft_bitmap_get(const struct net *net, const struct nft_set *set,
	       const struct nft_set_elem *elem, unsigned int flags)
{
	const struct nft_bitmap *priv = nft_set_priv(set);
	u8 genmask = nft_genmask_cur(net);
	struct nft_bitmap_elem *be;

	list_for_each_entry_rcu(be, &priv->list, head) {
		if (memcmp(nft_set_ext_key(&be->ext), elem->key.val.data, set->klen) ||
		    !nft_set_elem_active(&be->ext, genmask))
			continue;

		return &be->priv;
	}
	return ERR_PTR(-ENOENT);
}

static int nft_bitmap_insert(const struct net *net, const struct nft_set *set,
			     const struct nft_set_elem *elem,
			     struct nft_elem_priv **elem_priv)
{
	struct nft_bitmap_elem *new = nft_elem_priv_cast(elem->priv), *be;
	struct nft_bitmap *priv = nft_set_priv(set);
	u8 genmask = nft_genmask_next(net);
	u32 idx, off;

	be = nft_bitmap_elem_find(set, new, genmask);
	if (be) {
		*elem_priv = &be->priv;
		return -EEXIST;
	}

	nft_bitmap_location(set, nft_set_ext_key(&new->ext), &idx, &off);
	/* Enter 01 state. */
	priv->bitmap[idx] |= (genmask << off);
	list_add_tail_rcu(&new->head, &priv->list);

	return 0;
}

static void nft_bitmap_remove(const struct net *net, const struct nft_set *set,
			      struct nft_elem_priv *elem_priv)
{
	struct nft_bitmap_elem *be = nft_elem_priv_cast(elem_priv);
	struct nft_bitmap *priv = nft_set_priv(set);
	u8 genmask = nft_genmask_next(net);
	u32 idx, off;

	nft_bitmap_location(set, nft_set_ext_key(&be->ext), &idx, &off);
	/* Enter 00 state. */
	priv->bitmap[idx] &= ~(genmask << off);
	list_del_rcu(&be->head);
}

static void nft_bitmap_activate(const struct net *net,
				const struct nft_set *set,
				struct nft_elem_priv *elem_priv)
{
	struct nft_bitmap_elem *be = nft_elem_priv_cast(elem_priv);
	struct nft_bitmap *priv = nft_set_priv(set);
	u8 genmask = nft_genmask_next(net);
	u32 idx, off;

	nft_bitmap_location(set, nft_set_ext_key(&be->ext), &idx, &off);
	/* Enter 11 state. */
	priv->bitmap[idx] |= (genmask << off);
	nft_clear(net, &be->ext);
}

static void nft_bitmap_flush(const struct net *net,
			     const struct nft_set *set,
			     struct nft_elem_priv *elem_priv)
{
	struct nft_bitmap_elem *be = nft_elem_priv_cast(elem_priv);
	struct nft_bitmap *priv = nft_set_priv(set);
	u8 genmask = nft_genmask_next(net);
	u32 idx, off;

	nft_bitmap_location(set, nft_set_ext_key(&be->ext), &idx, &off);
	/* Enter 10 state, similar to deactivation. */
	priv->bitmap[idx] &= ~(genmask << off);
	nft_set_elem_change_active(net, set, &be->ext);
}

static struct nft_elem_priv *
nft_bitmap_deactivate(const struct net *net, const struct nft_set *set,
		      const struct nft_set_elem *elem)
{
	struct nft_bitmap_elem *this = nft_elem_priv_cast(elem->priv), *be;
	struct nft_bitmap *priv = nft_set_priv(set);
	u8 genmask = nft_genmask_next(net);
	u32 idx, off;

	nft_bitmap_location(set, elem->key.val.data, &idx, &off);

	be = nft_bitmap_elem_find(set, this, genmask);
	if (!be)
		return NULL;

	/* Enter 10 state. */
	priv->bitmap[idx] &= ~(genmask << off);
	nft_set_elem_change_active(net, set, &be->ext);

	return &be->priv;
}

static void nft_bitmap_walk(const struct nft_ctx *ctx,
			    struct nft_set *set,
			    struct nft_set_iter *iter)
{
	const struct nft_bitmap *priv = nft_set_priv(set);
	struct nft_bitmap_elem *be;

	list_for_each_entry_rcu(be, &priv->list, head) {
		if (iter->count < iter->skip)
			goto cont;

		iter->err = iter->fn(ctx, set, iter, &be->priv);

		if (iter->err < 0)
			return;
cont:
		iter->count++;
	}
}

/* The bitmap size is pow(2, key length in bits) / bits per byte. This is
 * multiplied by two since each element takes two bits. For 8 bit keys, the
 * bitmap consumes 66 bytes. For 16 bit keys, 16388 bytes.
 */
static inline u32 nft_bitmap_size(u32 klen)
{
	return ((2 << ((klen * BITS_PER_BYTE) - 1)) / BITS_PER_BYTE) << 1;
}

static inline u64 nft_bitmap_total_size(u32 klen)
{
	return sizeof(struct nft_bitmap) + nft_bitmap_size(klen);
}

static u64 nft_bitmap_privsize(const struct nlattr * const nla[],
			       const struct nft_set_desc *desc)
{
	u32 klen = ntohl(nla_get_be32(nla[NFTA_SET_KEY_LEN]));

	return nft_bitmap_total_size(klen);
}

static int nft_bitmap_init(const struct nft_set *set,
			   const struct nft_set_desc *desc,
			   const struct nlattr * const nla[])
{
	struct nft_bitmap *priv = nft_set_priv(set);

	BUILD_BUG_ON(offsetof(struct nft_bitmap_elem, priv) != 0);

	INIT_LIST_HEAD(&priv->list);
	priv->bitmap_size = nft_bitmap_size(set->klen);

	return 0;
}

static void nft_bitmap_destroy(const struct nft_ctx *ctx,
			       const struct nft_set *set)
{
	struct nft_bitmap *priv = nft_set_priv(set);
	struct nft_bitmap_elem *be, *n;

	list_for_each_entry_safe(be, n, &priv->list, head)
		nf_tables_set_elem_destroy(ctx, set, &be->priv);
}

static bool nft_bitmap_estimate(const struct nft_set_desc *desc, u32 features,
				struct nft_set_estimate *est)
{
	/* Make sure bitmaps we don't get bitmaps larger than 16 Kbytes. */
	if (desc->klen > 2)
		return false;
	else if (desc->expr)
		return false;

	est->size   = nft_bitmap_total_size(desc->klen);
	est->lookup = NFT_SET_CLASS_O_1;
	est->space  = NFT_SET_CLASS_O_1;

	return true;
}

const struct nft_set_type nft_set_bitmap_type = {
	.ops		= {
		.privsize	= nft_bitmap_privsize,
		.elemsize	= offsetof(struct nft_bitmap_elem, ext),
		.estimate	= nft_bitmap_estimate,
		.init		= nft_bitmap_init,
		.destroy	= nft_bitmap_destroy,
		.insert		= nft_bitmap_insert,
		.remove		= nft_bitmap_remove,
		.deactivate	= nft_bitmap_deactivate,
		.flush		= nft_bitmap_flush,
		.activate	= nft_bitmap_activate,
		.lookup		= nft_bitmap_lookup,
		.walk		= nft_bitmap_walk,
		.get		= nft_bitmap_get,
	},
};