Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vijay Subramanian | 1977 | 75.11% | 1 | 3.12% |
Mohit P. Tahiliani | 292 | 11.09% | 5 | 15.62% |
Gautam Ramakrishnan | 181 | 6.88% | 1 | 3.12% |
Eric Dumazet | 82 | 3.12% | 5 | 15.62% |
Kees Cook | 31 | 1.18% | 1 | 3.12% |
Leslie Monis | 30 | 1.14% | 5 | 15.62% |
Johannes Berg | 13 | 0.49% | 3 | 9.38% |
Américo Wang | 8 | 0.30% | 1 | 3.12% |
Michal Koutný | 5 | 0.19% | 1 | 3.12% |
John Fastabend | 3 | 0.11% | 1 | 3.12% |
Alexander Aring | 2 | 0.08% | 1 | 3.12% |
Florian Westphal | 2 | 0.08% | 2 | 6.25% |
Thomas Gleixner | 2 | 0.08% | 1 | 3.12% |
Jason A. Donenfeld | 1 | 0.04% | 1 | 3.12% |
Menglong Dong | 1 | 0.04% | 1 | 3.12% |
Michal Kubeček | 1 | 0.04% | 1 | 3.12% |
Taichi Nishimura | 1 | 0.04% | 1 | 3.12% |
Total | 2632 | 32 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (C) 2013 Cisco Systems, Inc, 2013. * * Author: Vijay Subramanian <vijaynsu@cisco.com> * Author: Mythili Prabhu <mysuryan@cisco.com> * * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no> * University of Oslo, Norway. * * References: * RFC 8033: https://tools.ietf.org/html/rfc8033 */ #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <net/pkt_sched.h> #include <net/inet_ecn.h> #include <net/pie.h> /* private data for the Qdisc */ struct pie_sched_data { struct pie_vars vars; struct pie_params params; struct pie_stats stats; struct timer_list adapt_timer; struct Qdisc *sch; }; bool pie_drop_early(struct Qdisc *sch, struct pie_params *params, struct pie_vars *vars, u32 backlog, u32 packet_size) { u64 rnd; u64 local_prob = vars->prob; u32 mtu = psched_mtu(qdisc_dev(sch)); /* If there is still burst allowance left skip random early drop */ if (vars->burst_time > 0) return false; /* If current delay is less than half of target, and * if drop prob is low already, disable early_drop */ if ((vars->qdelay < params->target / 2) && (vars->prob < MAX_PROB / 5)) return false; /* If we have fewer than 2 mtu-sized packets, disable pie_drop_early, * similar to min_th in RED */ if (backlog < 2 * mtu) return false; /* If bytemode is turned on, use packet size to compute new * probablity. Smaller packets will have lower drop prob in this case */ if (params->bytemode && packet_size <= mtu) local_prob = (u64)packet_size * div_u64(local_prob, mtu); else local_prob = vars->prob; if (local_prob == 0) vars->accu_prob = 0; else vars->accu_prob += local_prob; if (vars->accu_prob < (MAX_PROB / 100) * 85) return false; if (vars->accu_prob >= (MAX_PROB / 2) * 17) return true; get_random_bytes(&rnd, 8); if ((rnd >> BITS_PER_BYTE) < local_prob) { vars->accu_prob = 0; return true; } return false; } EXPORT_SYMBOL_GPL(pie_drop_early); static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) { struct pie_sched_data *q = qdisc_priv(sch); bool enqueue = false; if (unlikely(qdisc_qlen(sch) >= sch->limit)) { q->stats.overlimit++; goto out; } if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog, skb->len)) { enqueue = true; } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) && INET_ECN_set_ce(skb)) { /* If packet is ecn capable, mark it if drop probability * is lower than 10%, else drop it. */ q->stats.ecn_mark++; enqueue = true; } /* we can enqueue the packet */ if (enqueue) { /* Set enqueue time only when dq_rate_estimator is disabled. */ if (!q->params.dq_rate_estimator) pie_set_enqueue_time(skb); q->stats.packets_in++; if (qdisc_qlen(sch) > q->stats.maxq) q->stats.maxq = qdisc_qlen(sch); return qdisc_enqueue_tail(skb, sch); } out: q->stats.dropped++; q->vars.accu_prob = 0; return qdisc_drop(skb, sch, to_free); } static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = { [TCA_PIE_TARGET] = {.type = NLA_U32}, [TCA_PIE_LIMIT] = {.type = NLA_U32}, [TCA_PIE_TUPDATE] = {.type = NLA_U32}, [TCA_PIE_ALPHA] = {.type = NLA_U32}, [TCA_PIE_BETA] = {.type = NLA_U32}, [TCA_PIE_ECN] = {.type = NLA_U32}, [TCA_PIE_BYTEMODE] = {.type = NLA_U32}, [TCA_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32}, }; static int pie_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct pie_sched_data *q = qdisc_priv(sch); struct nlattr *tb[TCA_PIE_MAX + 1]; unsigned int qlen, dropped = 0; int err; err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy, NULL); if (err < 0) return err; sch_tree_lock(sch); /* convert from microseconds to pschedtime */ if (tb[TCA_PIE_TARGET]) { /* target is in us */ u32 target = nla_get_u32(tb[TCA_PIE_TARGET]); /* convert to pschedtime */ WRITE_ONCE(q->params.target, PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC)); } /* tupdate is in jiffies */ if (tb[TCA_PIE_TUPDATE]) WRITE_ONCE(q->params.tupdate, usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]))); if (tb[TCA_PIE_LIMIT]) { u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]); WRITE_ONCE(q->params.limit, limit); WRITE_ONCE(sch->limit, limit); } if (tb[TCA_PIE_ALPHA]) WRITE_ONCE(q->params.alpha, nla_get_u32(tb[TCA_PIE_ALPHA])); if (tb[TCA_PIE_BETA]) WRITE_ONCE(q->params.beta, nla_get_u32(tb[TCA_PIE_BETA])); if (tb[TCA_PIE_ECN]) WRITE_ONCE(q->params.ecn, nla_get_u32(tb[TCA_PIE_ECN])); if (tb[TCA_PIE_BYTEMODE]) WRITE_ONCE(q->params.bytemode, nla_get_u32(tb[TCA_PIE_BYTEMODE])); if (tb[TCA_PIE_DQ_RATE_ESTIMATOR]) WRITE_ONCE(q->params.dq_rate_estimator, nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR])); /* Drop excess packets if new limit is lower */ qlen = sch->q.qlen; while (sch->q.qlen > sch->limit) { struct sk_buff *skb = __qdisc_dequeue_head(&sch->q); dropped += qdisc_pkt_len(skb); qdisc_qstats_backlog_dec(sch, skb); rtnl_qdisc_drop(skb, sch); } qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped); sch_tree_unlock(sch); return 0; } void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params, struct pie_vars *vars, u32 backlog) { psched_time_t now = psched_get_time(); u32 dtime = 0; /* If dq_rate_estimator is disabled, calculate qdelay using the * packet timestamp. */ if (!params->dq_rate_estimator) { vars->qdelay = now - pie_get_enqueue_time(skb); if (vars->dq_tstamp != DTIME_INVALID) dtime = now - vars->dq_tstamp; vars->dq_tstamp = now; if (backlog == 0) vars->qdelay = 0; if (dtime == 0) return; goto burst_allowance_reduction; } /* If current queue is about 10 packets or more and dq_count is unset * we have enough packets to calculate the drain rate. Save * current time as dq_tstamp and start measurement cycle. */ if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) { vars->dq_tstamp = psched_get_time(); vars->dq_count = 0; } /* Calculate the average drain rate from this value. If queue length * has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset * the dq_count to -1 as we don't have enough packets to calculate the * drain rate anymore. The following if block is entered only when we * have a substantial queue built up (QUEUE_THRESHOLD bytes or more) * and we calculate the drain rate for the threshold here. dq_count is * in bytes, time difference in psched_time, hence rate is in * bytes/psched_time. */ if (vars->dq_count != DQCOUNT_INVALID) { vars->dq_count += skb->len; if (vars->dq_count >= QUEUE_THRESHOLD) { u32 count = vars->dq_count << PIE_SCALE; dtime = now - vars->dq_tstamp; if (dtime == 0) return; count = count / dtime; if (vars->avg_dq_rate == 0) vars->avg_dq_rate = count; else vars->avg_dq_rate = (vars->avg_dq_rate - (vars->avg_dq_rate >> 3)) + (count >> 3); /* If the queue has receded below the threshold, we hold * on to the last drain rate calculated, else we reset * dq_count to 0 to re-enter the if block when the next * packet is dequeued */ if (backlog < QUEUE_THRESHOLD) { vars->dq_count = DQCOUNT_INVALID; } else { vars->dq_count = 0; vars->dq_tstamp = psched_get_time(); } goto burst_allowance_reduction; } } return; burst_allowance_reduction: if (vars->burst_time > 0) { if (vars->burst_time > dtime) vars->burst_time -= dtime; else vars->burst_time = 0; } } EXPORT_SYMBOL_GPL(pie_process_dequeue); void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars, u32 backlog) { psched_time_t qdelay = 0; /* in pschedtime */ psched_time_t qdelay_old = 0; /* in pschedtime */ s64 delta = 0; /* determines the change in probability */ u64 oldprob; u64 alpha, beta; u32 power; bool update_prob = true; if (params->dq_rate_estimator) { qdelay_old = vars->qdelay; vars->qdelay_old = vars->qdelay; if (vars->avg_dq_rate > 0) qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate; else qdelay = 0; } else { qdelay = vars->qdelay; qdelay_old = vars->qdelay_old; } /* If qdelay is zero and backlog is not, it means backlog is very small, * so we do not update probability in this round. */ if (qdelay == 0 && backlog != 0) update_prob = false; /* In the algorithm, alpha and beta are between 0 and 2 with typical * value for alpha as 0.125. In this implementation, we use values 0-32 * passed from user space to represent this. Also, alpha and beta have * unit of HZ and need to be scaled before they can used to update * probability. alpha/beta are updated locally below by scaling down * by 16 to come to 0-2 range. */ alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; /* We scale alpha and beta differently depending on how heavy the * congestion is. Please see RFC 8033 for details. */ if (vars->prob < MAX_PROB / 10) { alpha >>= 1; beta >>= 1; power = 100; while (vars->prob < div_u64(MAX_PROB, power) && power <= 1000000) { alpha >>= 2; beta >>= 2; power *= 10; } } /* alpha and beta should be between 0 and 32, in multiples of 1/16 */ delta += alpha * (qdelay - params->target); delta += beta * (qdelay - qdelay_old); oldprob = vars->prob; /* to ensure we increase probability in steps of no more than 2% */ if (delta > (s64)(MAX_PROB / (100 / 2)) && vars->prob >= MAX_PROB / 10) delta = (MAX_PROB / 100) * 2; /* Non-linear drop: * Tune drop probability to increase quickly for high delays(>= 250ms) * 250ms is derived through experiments and provides error protection */ if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC))) delta += MAX_PROB / (100 / 2); vars->prob += delta; if (delta > 0) { /* prevent overflow */ if (vars->prob < oldprob) { vars->prob = MAX_PROB; /* Prevent normalization error. If probability is at * maximum value already, we normalize it here, and * skip the check to do a non-linear drop in the next * section. */ update_prob = false; } } else { /* prevent underflow */ if (vars->prob > oldprob) vars->prob = 0; } /* Non-linear drop in probability: Reduce drop probability quickly if * delay is 0 for 2 consecutive Tupdate periods. */ if (qdelay == 0 && qdelay_old == 0 && update_prob) /* Reduce drop probability to 98.4% */ vars->prob -= vars->prob / 64; vars->qdelay = qdelay; vars->backlog_old = backlog; /* We restart the measurement cycle if the following conditions are met * 1. If the delay has been low for 2 consecutive Tupdate periods * 2. Calculated drop probability is zero * 3. If average dq_rate_estimator is enabled, we have at least one * estimate for the avg_dq_rate ie., is a non-zero value */ if ((vars->qdelay < params->target / 2) && (vars->qdelay_old < params->target / 2) && vars->prob == 0 && (!params->dq_rate_estimator || vars->avg_dq_rate > 0)) { pie_vars_init(vars); } if (!params->dq_rate_estimator) vars->qdelay_old = qdelay; } EXPORT_SYMBOL_GPL(pie_calculate_probability); static void pie_timer(struct timer_list *t) { struct pie_sched_data *q = from_timer(q, t, adapt_timer); struct Qdisc *sch = q->sch; spinlock_t *root_lock; rcu_read_lock(); root_lock = qdisc_lock(qdisc_root_sleeping(sch)); spin_lock(root_lock); pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog); /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */ if (q->params.tupdate) mod_timer(&q->adapt_timer, jiffies + q->params.tupdate); spin_unlock(root_lock); rcu_read_unlock(); } static int pie_init(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { struct pie_sched_data *q = qdisc_priv(sch); pie_params_init(&q->params); pie_vars_init(&q->vars); sch->limit = q->params.limit; q->sch = sch; timer_setup(&q->adapt_timer, pie_timer, 0); if (opt) { int err = pie_change(sch, opt, extack); if (err) return err; } mod_timer(&q->adapt_timer, jiffies + HZ / 2); return 0; } static int pie_dump(struct Qdisc *sch, struct sk_buff *skb) { struct pie_sched_data *q = qdisc_priv(sch); struct nlattr *opts; opts = nla_nest_start_noflag(skb, TCA_OPTIONS); if (!opts) goto nla_put_failure; /* convert target from pschedtime to us */ if (nla_put_u32(skb, TCA_PIE_TARGET, ((u32)PSCHED_TICKS2NS(READ_ONCE(q->params.target))) / NSEC_PER_USEC) || nla_put_u32(skb, TCA_PIE_LIMIT, READ_ONCE(sch->limit)) || nla_put_u32(skb, TCA_PIE_TUPDATE, jiffies_to_usecs(READ_ONCE(q->params.tupdate))) || nla_put_u32(skb, TCA_PIE_ALPHA, READ_ONCE(q->params.alpha)) || nla_put_u32(skb, TCA_PIE_BETA, READ_ONCE(q->params.beta)) || nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) || nla_put_u32(skb, TCA_PIE_BYTEMODE, READ_ONCE(q->params.bytemode)) || nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR, READ_ONCE(q->params.dq_rate_estimator))) goto nla_put_failure; return nla_nest_end(skb, opts); nla_put_failure: nla_nest_cancel(skb, opts); return -1; } static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d) { struct pie_sched_data *q = qdisc_priv(sch); struct tc_pie_xstats st = { .prob = q->vars.prob << BITS_PER_BYTE, .delay = ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) / NSEC_PER_USEC, .packets_in = q->stats.packets_in, .overlimit = q->stats.overlimit, .maxq = q->stats.maxq, .dropped = q->stats.dropped, .ecn_mark = q->stats.ecn_mark, }; /* avg_dq_rate is only valid if dq_rate_estimator is enabled */ st.dq_rate_estimating = q->params.dq_rate_estimator; /* unscale and return dq_rate in bytes per sec */ if (q->params.dq_rate_estimator) st.avg_dq_rate = q->vars.avg_dq_rate * (PSCHED_TICKS_PER_SEC) >> PIE_SCALE; return gnet_stats_copy_app(d, &st, sizeof(st)); } static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); struct sk_buff *skb = qdisc_dequeue_head(sch); if (!skb) return NULL; pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog); return skb; } static void pie_reset(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); qdisc_reset_queue(sch); pie_vars_init(&q->vars); } static void pie_destroy(struct Qdisc *sch) { struct pie_sched_data *q = qdisc_priv(sch); q->params.tupdate = 0; del_timer_sync(&q->adapt_timer); } static struct Qdisc_ops pie_qdisc_ops __read_mostly = { .id = "pie", .priv_size = sizeof(struct pie_sched_data), .enqueue = pie_qdisc_enqueue, .dequeue = pie_qdisc_dequeue, .peek = qdisc_peek_dequeued, .init = pie_init, .destroy = pie_destroy, .reset = pie_reset, .change = pie_change, .dump = pie_dump, .dump_stats = pie_dump_stats, .owner = THIS_MODULE, }; MODULE_ALIAS_NET_SCH("pie"); static int __init pie_module_init(void) { return register_qdisc(&pie_qdisc_ops); } static void __exit pie_module_exit(void) { unregister_qdisc(&pie_qdisc_ops); } module_init(pie_module_init); module_exit(pie_module_exit); MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler"); MODULE_AUTHOR("Vijay Subramanian"); MODULE_AUTHOR("Mythili Prabhu"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1