Contributors: 96
Author Tokens Token Proportion Commits Commit Proportion
David S. Miller 2153 12.71% 38 9.69%
Alexey Kuznetsov 1402 8.27% 7 1.79%
Herbert Xu 1401 8.27% 44 11.22%
Hideaki Yoshifuji / 吉藤英明 1327 7.83% 6 1.53%
Florian Westphal 1014 5.98% 25 6.38%
Steffen Klassert 876 5.17% 20 5.10%
Alexey Dobriyan 847 5.00% 25 6.38%
Shinta Sugimoto 836 4.93% 1 0.26%
Jamal Hadi Salim 803 4.74% 14 3.57%
Leon Romanovsky 651 3.84% 10 2.55%
Joy Latten 556 3.28% 5 1.28%
Masahide Nakamura 519 3.06% 15 3.83%
Fan Du 406 2.40% 8 2.04%
Antony Antony 396 2.34% 10 2.55%
Sabrina Dubroca 383 2.26% 10 2.55%
Kazunori Miyazawa 369 2.18% 2 0.51%
Paul Moore 339 2.00% 4 1.02%
Dmitry Safonov 270 1.59% 2 0.51%
James Morris 220 1.30% 7 1.79%
Patrick McHardy 142 0.84% 11 2.81%
Kunihiro Ishiguro 136 0.80% 2 0.51%
Américo Wang 129 0.76% 6 1.53%
Nicolas Dichtel 124 0.73% 4 1.02%
Andi Kleen 99 0.58% 2 0.51%
Horia Geantă 94 0.55% 1 0.26%
Timo Teräs 88 0.52% 1 0.26%
Noriaki Takamiya 83 0.49% 1 0.26%
Yury Polyanskiy 71 0.42% 1 0.26%
Nathan Harold 71 0.42% 2 0.51%
Venkat Yekkirala 69 0.41% 1 0.26%
Thomas Egerer 68 0.40% 2 0.51%
Derek Atkins 67 0.40% 1 0.26%
Wei Yongjun 58 0.34% 2 0.51%
Martin Willi 55 0.32% 3 0.77%
Koichiro Den 52 0.31% 1 0.26%
Yan Yan 51 0.30% 2 0.51%
Mathias Krause 48 0.28% 4 1.02%
Eyal Birger 47 0.28% 1 0.26%
Thomas Gleixner 46 0.27% 3 0.77%
Ilan Tayari 43 0.25% 2 0.51%
Lorenzo Colitti 35 0.21% 1 0.26%
Pavel Emelyanov 32 0.19% 2 0.51%
Eric Dumazet 31 0.18% 6 1.53%
Adrian Bunk 30 0.18% 2 0.51%
Ahmed S. Darwish 27 0.16% 2 0.51%
Kees Cook 26 0.15% 2 0.51%
Eric W. Biedermann 25 0.15% 3 0.77%
Al Viro 24 0.14% 5 1.28%
Linus Torvalds (pre-git) 21 0.12% 4 1.02%
Tetsuo Handa 21 0.12% 1 0.26%
Arnaldo Carvalho de Melo 19 0.11% 3 0.77%
zhuoliang zhang 16 0.09% 1 0.26%
Johannes Berg 15 0.09% 1 0.26%
Yossi Kuperman 13 0.08% 1 0.26%
Tushar Gohad 13 0.08% 1 0.26%
Vladis Dronov 12 0.07% 1 0.26%
Jiri Benc 12 0.07% 1 0.26%
Trent Jaeger 11 0.06% 1 0.26%
Harvey Harrison 10 0.06% 3 0.77%
Andreas Steffen 10 0.06% 1 0.26%
Benjamin Poirier 8 0.05% 2 0.51%
Yossef Efraim 7 0.04% 1 0.26%
Arnd Bergmann 7 0.04% 1 0.26%
Arnaud Ebalard 7 0.04% 1 0.26%
Geliang Tang 7 0.04% 1 0.26%
Andrew Morton 7 0.04% 2 0.51%
Li RongQing 7 0.04% 3 0.77%
yu kuai 7 0.04% 1 0.26%
Raed Salem 6 0.04% 1 0.26%
David Howells 6 0.04% 1 0.26%
Christoph Hellwig 6 0.04% 2 0.51%
Jonathan Basseri 5 0.03% 1 0.26%
Tom Lendacky 5 0.03% 1 0.26%
Jason A. Donenfeld 5 0.03% 2 0.51%
Ying Xue 4 0.02% 1 0.26%
Benedict Wong 3 0.02% 1 0.26%
Diego Beltrami 3 0.02% 1 0.26%
Kuniyuki Iwashima 3 0.02% 1 0.26%
Gustavo A. R. Silva 3 0.02% 2 0.51%
Ilpo Järvinen 2 0.01% 1 0.26%
Jia He 2 0.01% 1 0.26%
Linus Torvalds 2 0.01% 2 0.51%
Eric Paris 2 0.01% 1 0.26%
Elena Reshetova 2 0.01% 1 0.26%
Artem Savkov 2 0.01% 1 0.26%
David L Stevens 2 0.01% 1 0.26%
Cheng Renquan 2 0.01% 1 0.26%
Julia Lawall 2 0.01% 1 0.26%
Zhengchao Shao 2 0.01% 1 0.26%
huang.zijiang 1 0.01% 1 0.26%
Alexander Alemayhu 1 0.01% 1 0.26%
Chuck Ebbert 1 0.01% 1 0.26%
Jianbo Liu 1 0.01% 1 0.26%
Hannes Eder 1 0.01% 1 0.26%
Joakim Koskela 1 0.01% 1 0.26%
Jiri Bohac 1 0.01% 1 0.26%
Total 16945 392


// SPDX-License-Identifier: GPL-2.0-only
/*
 * xfrm_state.c
 *
 * Changes:
 *	Mitsuru KANDA @USAGI
 * 	Kazunori MIYAZAWA @USAGI
 * 	Kunihiro Ishiguro <kunihiro@ipinfusion.com>
 * 		IPv6 support
 * 	YOSHIFUJI Hideaki @USAGI
 * 		Split up af-specific functions
 *	Derek Atkins <derek@ihtfp.com>
 *		Add UDP Encapsulation
 *
 */

#include <linux/compat.h>
#include <linux/workqueue.h>
#include <net/xfrm.h>
#include <linux/pfkeyv2.h>
#include <linux/ipsec.h>
#include <linux/module.h>
#include <linux/cache.h>
#include <linux/audit.h>
#include <linux/uaccess.h>
#include <linux/ktime.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>

#include <crypto/aead.h>

#include "xfrm_hash.h"

#define xfrm_state_deref_prot(table, net) \
	rcu_dereference_protected((table), lockdep_is_held(&(net)->xfrm.xfrm_state_lock))

static void xfrm_state_gc_task(struct work_struct *work);

/* Each xfrm_state may be linked to two tables:

   1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
   2. Hash table by (daddr,family,reqid) to find what SAs exist for given
      destination/tunnel endpoint. (output)
 */

static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
static struct kmem_cache *xfrm_state_cache __ro_after_init;

static DECLARE_WORK(xfrm_state_gc_work, xfrm_state_gc_task);
static HLIST_HEAD(xfrm_state_gc_list);
static HLIST_HEAD(xfrm_state_dev_gc_list);

static inline bool xfrm_state_hold_rcu(struct xfrm_state __rcu *x)
{
	return refcount_inc_not_zero(&x->refcnt);
}

static inline unsigned int xfrm_dst_hash(struct net *net,
					 const xfrm_address_t *daddr,
					 const xfrm_address_t *saddr,
					 u32 reqid,
					 unsigned short family)
{
	return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
}

static inline unsigned int xfrm_src_hash(struct net *net,
					 const xfrm_address_t *daddr,
					 const xfrm_address_t *saddr,
					 unsigned short family)
{
	return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
}

static inline unsigned int
xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
	      __be32 spi, u8 proto, unsigned short family)
{
	return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
}

static unsigned int xfrm_seq_hash(struct net *net, u32 seq)
{
	return __xfrm_seq_hash(seq, net->xfrm.state_hmask);
}

#define XFRM_STATE_INSERT(by, _n, _h, _type)                               \
	{                                                                  \
		struct xfrm_state *_x = NULL;                              \
									   \
		if (_type != XFRM_DEV_OFFLOAD_PACKET) {                    \
			hlist_for_each_entry_rcu(_x, _h, by) {             \
				if (_x->xso.type == XFRM_DEV_OFFLOAD_PACKET) \
					continue;                          \
				break;                                     \
			}                                                  \
		}                                                          \
									   \
		if (!_x || _x->xso.type == XFRM_DEV_OFFLOAD_PACKET)        \
			/* SAD is empty or consist from HW SAs only */     \
			hlist_add_head_rcu(_n, _h);                        \
		else                                                       \
			hlist_add_before_rcu(_n, &_x->by);                 \
	}

static void xfrm_hash_transfer(struct hlist_head *list,
			       struct hlist_head *ndsttable,
			       struct hlist_head *nsrctable,
			       struct hlist_head *nspitable,
			       struct hlist_head *nseqtable,
			       unsigned int nhashmask)
{
	struct hlist_node *tmp;
	struct xfrm_state *x;

	hlist_for_each_entry_safe(x, tmp, list, bydst) {
		unsigned int h;

		h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
				    x->props.reqid, x->props.family,
				    nhashmask);
		XFRM_STATE_INSERT(bydst, &x->bydst, ndsttable + h, x->xso.type);

		h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
				    x->props.family,
				    nhashmask);
		XFRM_STATE_INSERT(bysrc, &x->bysrc, nsrctable + h, x->xso.type);

		if (x->id.spi) {
			h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
					    x->id.proto, x->props.family,
					    nhashmask);
			XFRM_STATE_INSERT(byspi, &x->byspi, nspitable + h,
					  x->xso.type);
		}

		if (x->km.seq) {
			h = __xfrm_seq_hash(x->km.seq, nhashmask);
			XFRM_STATE_INSERT(byseq, &x->byseq, nseqtable + h,
					  x->xso.type);
		}
	}
}

static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
{
	return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
}

static void xfrm_hash_resize(struct work_struct *work)
{
	struct net *net = container_of(work, struct net, xfrm.state_hash_work);
	struct hlist_head *ndst, *nsrc, *nspi, *nseq, *odst, *osrc, *ospi, *oseq;
	unsigned long nsize, osize;
	unsigned int nhashmask, ohashmask;
	int i;

	nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
	ndst = xfrm_hash_alloc(nsize);
	if (!ndst)
		return;
	nsrc = xfrm_hash_alloc(nsize);
	if (!nsrc) {
		xfrm_hash_free(ndst, nsize);
		return;
	}
	nspi = xfrm_hash_alloc(nsize);
	if (!nspi) {
		xfrm_hash_free(ndst, nsize);
		xfrm_hash_free(nsrc, nsize);
		return;
	}
	nseq = xfrm_hash_alloc(nsize);
	if (!nseq) {
		xfrm_hash_free(ndst, nsize);
		xfrm_hash_free(nsrc, nsize);
		xfrm_hash_free(nspi, nsize);
		return;
	}

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	write_seqcount_begin(&net->xfrm.xfrm_state_hash_generation);

	nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
	odst = xfrm_state_deref_prot(net->xfrm.state_bydst, net);
	for (i = net->xfrm.state_hmask; i >= 0; i--)
		xfrm_hash_transfer(odst + i, ndst, nsrc, nspi, nseq, nhashmask);

	osrc = xfrm_state_deref_prot(net->xfrm.state_bysrc, net);
	ospi = xfrm_state_deref_prot(net->xfrm.state_byspi, net);
	oseq = xfrm_state_deref_prot(net->xfrm.state_byseq, net);
	ohashmask = net->xfrm.state_hmask;

	rcu_assign_pointer(net->xfrm.state_bydst, ndst);
	rcu_assign_pointer(net->xfrm.state_bysrc, nsrc);
	rcu_assign_pointer(net->xfrm.state_byspi, nspi);
	rcu_assign_pointer(net->xfrm.state_byseq, nseq);
	net->xfrm.state_hmask = nhashmask;

	write_seqcount_end(&net->xfrm.xfrm_state_hash_generation);
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);

	osize = (ohashmask + 1) * sizeof(struct hlist_head);

	synchronize_rcu();

	xfrm_hash_free(odst, osize);
	xfrm_hash_free(osrc, osize);
	xfrm_hash_free(ospi, osize);
	xfrm_hash_free(oseq, osize);
}

static DEFINE_SPINLOCK(xfrm_state_afinfo_lock);
static struct xfrm_state_afinfo __rcu *xfrm_state_afinfo[NPROTO];

static DEFINE_SPINLOCK(xfrm_state_gc_lock);
static DEFINE_SPINLOCK(xfrm_state_dev_gc_lock);

int __xfrm_state_delete(struct xfrm_state *x);

int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
static bool km_is_alive(const struct km_event *c);
void km_state_expired(struct xfrm_state *x, int hard, u32 portid);

int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
{
	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
	int err = 0;

	if (!afinfo)
		return -EAFNOSUPPORT;

#define X(afi, T, name) do {			\
		WARN_ON((afi)->type_ ## name);	\
		(afi)->type_ ## name = (T);	\
	} while (0)

	switch (type->proto) {
	case IPPROTO_COMP:
		X(afinfo, type, comp);
		break;
	case IPPROTO_AH:
		X(afinfo, type, ah);
		break;
	case IPPROTO_ESP:
		X(afinfo, type, esp);
		break;
	case IPPROTO_IPIP:
		X(afinfo, type, ipip);
		break;
	case IPPROTO_DSTOPTS:
		X(afinfo, type, dstopts);
		break;
	case IPPROTO_ROUTING:
		X(afinfo, type, routing);
		break;
	case IPPROTO_IPV6:
		X(afinfo, type, ipip6);
		break;
	default:
		WARN_ON(1);
		err = -EPROTONOSUPPORT;
		break;
	}
#undef X
	rcu_read_unlock();
	return err;
}
EXPORT_SYMBOL(xfrm_register_type);

void xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
{
	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);

	if (unlikely(afinfo == NULL))
		return;

#define X(afi, T, name) do {				\
		WARN_ON((afi)->type_ ## name != (T));	\
		(afi)->type_ ## name = NULL;		\
	} while (0)

	switch (type->proto) {
	case IPPROTO_COMP:
		X(afinfo, type, comp);
		break;
	case IPPROTO_AH:
		X(afinfo, type, ah);
		break;
	case IPPROTO_ESP:
		X(afinfo, type, esp);
		break;
	case IPPROTO_IPIP:
		X(afinfo, type, ipip);
		break;
	case IPPROTO_DSTOPTS:
		X(afinfo, type, dstopts);
		break;
	case IPPROTO_ROUTING:
		X(afinfo, type, routing);
		break;
	case IPPROTO_IPV6:
		X(afinfo, type, ipip6);
		break;
	default:
		WARN_ON(1);
		break;
	}
#undef X
	rcu_read_unlock();
}
EXPORT_SYMBOL(xfrm_unregister_type);

static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
{
	const struct xfrm_type *type = NULL;
	struct xfrm_state_afinfo *afinfo;
	int modload_attempted = 0;

retry:
	afinfo = xfrm_state_get_afinfo(family);
	if (unlikely(afinfo == NULL))
		return NULL;

	switch (proto) {
	case IPPROTO_COMP:
		type = afinfo->type_comp;
		break;
	case IPPROTO_AH:
		type = afinfo->type_ah;
		break;
	case IPPROTO_ESP:
		type = afinfo->type_esp;
		break;
	case IPPROTO_IPIP:
		type = afinfo->type_ipip;
		break;
	case IPPROTO_DSTOPTS:
		type = afinfo->type_dstopts;
		break;
	case IPPROTO_ROUTING:
		type = afinfo->type_routing;
		break;
	case IPPROTO_IPV6:
		type = afinfo->type_ipip6;
		break;
	default:
		break;
	}

	if (unlikely(type && !try_module_get(type->owner)))
		type = NULL;

	rcu_read_unlock();

	if (!type && !modload_attempted) {
		request_module("xfrm-type-%d-%d", family, proto);
		modload_attempted = 1;
		goto retry;
	}

	return type;
}

static void xfrm_put_type(const struct xfrm_type *type)
{
	module_put(type->owner);
}

int xfrm_register_type_offload(const struct xfrm_type_offload *type,
			       unsigned short family)
{
	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
	int err = 0;

	if (unlikely(afinfo == NULL))
		return -EAFNOSUPPORT;

	switch (type->proto) {
	case IPPROTO_ESP:
		WARN_ON(afinfo->type_offload_esp);
		afinfo->type_offload_esp = type;
		break;
	default:
		WARN_ON(1);
		err = -EPROTONOSUPPORT;
		break;
	}

	rcu_read_unlock();
	return err;
}
EXPORT_SYMBOL(xfrm_register_type_offload);

void xfrm_unregister_type_offload(const struct xfrm_type_offload *type,
				  unsigned short family)
{
	struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);

	if (unlikely(afinfo == NULL))
		return;

	switch (type->proto) {
	case IPPROTO_ESP:
		WARN_ON(afinfo->type_offload_esp != type);
		afinfo->type_offload_esp = NULL;
		break;
	default:
		WARN_ON(1);
		break;
	}
	rcu_read_unlock();
}
EXPORT_SYMBOL(xfrm_unregister_type_offload);

static const struct xfrm_type_offload *
xfrm_get_type_offload(u8 proto, unsigned short family, bool try_load)
{
	const struct xfrm_type_offload *type = NULL;
	struct xfrm_state_afinfo *afinfo;

retry:
	afinfo = xfrm_state_get_afinfo(family);
	if (unlikely(afinfo == NULL))
		return NULL;

	switch (proto) {
	case IPPROTO_ESP:
		type = afinfo->type_offload_esp;
		break;
	default:
		break;
	}

	if ((type && !try_module_get(type->owner)))
		type = NULL;

	rcu_read_unlock();

	if (!type && try_load) {
		request_module("xfrm-offload-%d-%d", family, proto);
		try_load = false;
		goto retry;
	}

	return type;
}

static void xfrm_put_type_offload(const struct xfrm_type_offload *type)
{
	module_put(type->owner);
}

static const struct xfrm_mode xfrm4_mode_map[XFRM_MODE_MAX] = {
	[XFRM_MODE_BEET] = {
		.encap = XFRM_MODE_BEET,
		.flags = XFRM_MODE_FLAG_TUNNEL,
		.family = AF_INET,
	},
	[XFRM_MODE_TRANSPORT] = {
		.encap = XFRM_MODE_TRANSPORT,
		.family = AF_INET,
	},
	[XFRM_MODE_TUNNEL] = {
		.encap = XFRM_MODE_TUNNEL,
		.flags = XFRM_MODE_FLAG_TUNNEL,
		.family = AF_INET,
	},
};

static const struct xfrm_mode xfrm6_mode_map[XFRM_MODE_MAX] = {
	[XFRM_MODE_BEET] = {
		.encap = XFRM_MODE_BEET,
		.flags = XFRM_MODE_FLAG_TUNNEL,
		.family = AF_INET6,
	},
	[XFRM_MODE_ROUTEOPTIMIZATION] = {
		.encap = XFRM_MODE_ROUTEOPTIMIZATION,
		.family = AF_INET6,
	},
	[XFRM_MODE_TRANSPORT] = {
		.encap = XFRM_MODE_TRANSPORT,
		.family = AF_INET6,
	},
	[XFRM_MODE_TUNNEL] = {
		.encap = XFRM_MODE_TUNNEL,
		.flags = XFRM_MODE_FLAG_TUNNEL,
		.family = AF_INET6,
	},
};

static const struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
{
	const struct xfrm_mode *mode;

	if (unlikely(encap >= XFRM_MODE_MAX))
		return NULL;

	switch (family) {
	case AF_INET:
		mode = &xfrm4_mode_map[encap];
		if (mode->family == family)
			return mode;
		break;
	case AF_INET6:
		mode = &xfrm6_mode_map[encap];
		if (mode->family == family)
			return mode;
		break;
	default:
		break;
	}

	return NULL;
}

void xfrm_state_free(struct xfrm_state *x)
{
	kmem_cache_free(xfrm_state_cache, x);
}
EXPORT_SYMBOL(xfrm_state_free);

static void ___xfrm_state_destroy(struct xfrm_state *x)
{
	hrtimer_cancel(&x->mtimer);
	del_timer_sync(&x->rtimer);
	kfree(x->aead);
	kfree(x->aalg);
	kfree(x->ealg);
	kfree(x->calg);
	kfree(x->encap);
	kfree(x->coaddr);
	kfree(x->replay_esn);
	kfree(x->preplay_esn);
	if (x->type_offload)
		xfrm_put_type_offload(x->type_offload);
	if (x->type) {
		x->type->destructor(x);
		xfrm_put_type(x->type);
	}
	if (x->xfrag.page)
		put_page(x->xfrag.page);
	xfrm_dev_state_free(x);
	security_xfrm_state_free(x);
	xfrm_state_free(x);
}

static void xfrm_state_gc_task(struct work_struct *work)
{
	struct xfrm_state *x;
	struct hlist_node *tmp;
	struct hlist_head gc_list;

	spin_lock_bh(&xfrm_state_gc_lock);
	hlist_move_list(&xfrm_state_gc_list, &gc_list);
	spin_unlock_bh(&xfrm_state_gc_lock);

	synchronize_rcu();

	hlist_for_each_entry_safe(x, tmp, &gc_list, gclist)
		___xfrm_state_destroy(x);
}

static enum hrtimer_restart xfrm_timer_handler(struct hrtimer *me)
{
	struct xfrm_state *x = container_of(me, struct xfrm_state, mtimer);
	enum hrtimer_restart ret = HRTIMER_NORESTART;
	time64_t now = ktime_get_real_seconds();
	time64_t next = TIME64_MAX;
	int warn = 0;
	int err = 0;

	spin_lock(&x->lock);
	xfrm_dev_state_update_stats(x);

	if (x->km.state == XFRM_STATE_DEAD)
		goto out;
	if (x->km.state == XFRM_STATE_EXPIRED)
		goto expired;
	if (x->lft.hard_add_expires_seconds) {
		time64_t tmo = x->lft.hard_add_expires_seconds +
			x->curlft.add_time - now;
		if (tmo <= 0) {
			if (x->xflags & XFRM_SOFT_EXPIRE) {
				/* enter hard expire without soft expire first?!
				 * setting a new date could trigger this.
				 * workaround: fix x->curflt.add_time by below:
				 */
				x->curlft.add_time = now - x->saved_tmo - 1;
				tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
			} else
				goto expired;
		}
		if (tmo < next)
			next = tmo;
	}
	if (x->lft.hard_use_expires_seconds) {
		time64_t tmo = x->lft.hard_use_expires_seconds +
			(READ_ONCE(x->curlft.use_time) ? : now) - now;
		if (tmo <= 0)
			goto expired;
		if (tmo < next)
			next = tmo;
	}
	if (x->km.dying)
		goto resched;
	if (x->lft.soft_add_expires_seconds) {
		time64_t tmo = x->lft.soft_add_expires_seconds +
			x->curlft.add_time - now;
		if (tmo <= 0) {
			warn = 1;
			x->xflags &= ~XFRM_SOFT_EXPIRE;
		} else if (tmo < next) {
			next = tmo;
			x->xflags |= XFRM_SOFT_EXPIRE;
			x->saved_tmo = tmo;
		}
	}
	if (x->lft.soft_use_expires_seconds) {
		time64_t tmo = x->lft.soft_use_expires_seconds +
			(READ_ONCE(x->curlft.use_time) ? : now) - now;
		if (tmo <= 0)
			warn = 1;
		else if (tmo < next)
			next = tmo;
	}

	x->km.dying = warn;
	if (warn)
		km_state_expired(x, 0, 0);
resched:
	if (next != TIME64_MAX) {
		hrtimer_forward_now(&x->mtimer, ktime_set(next, 0));
		ret = HRTIMER_RESTART;
	}

	goto out;

expired:
	if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0)
		x->km.state = XFRM_STATE_EXPIRED;

	err = __xfrm_state_delete(x);
	if (!err)
		km_state_expired(x, 1, 0);

	xfrm_audit_state_delete(x, err ? 0 : 1, true);

out:
	spin_unlock(&x->lock);
	return ret;
}

static void xfrm_replay_timer_handler(struct timer_list *t);

struct xfrm_state *xfrm_state_alloc(struct net *net)
{
	struct xfrm_state *x;

	x = kmem_cache_zalloc(xfrm_state_cache, GFP_ATOMIC);

	if (x) {
		write_pnet(&x->xs_net, net);
		refcount_set(&x->refcnt, 1);
		atomic_set(&x->tunnel_users, 0);
		INIT_LIST_HEAD(&x->km.all);
		INIT_HLIST_NODE(&x->bydst);
		INIT_HLIST_NODE(&x->bysrc);
		INIT_HLIST_NODE(&x->byspi);
		INIT_HLIST_NODE(&x->byseq);
		hrtimer_init(&x->mtimer, CLOCK_BOOTTIME, HRTIMER_MODE_ABS_SOFT);
		x->mtimer.function = xfrm_timer_handler;
		timer_setup(&x->rtimer, xfrm_replay_timer_handler, 0);
		x->curlft.add_time = ktime_get_real_seconds();
		x->lft.soft_byte_limit = XFRM_INF;
		x->lft.soft_packet_limit = XFRM_INF;
		x->lft.hard_byte_limit = XFRM_INF;
		x->lft.hard_packet_limit = XFRM_INF;
		x->replay_maxage = 0;
		x->replay_maxdiff = 0;
		spin_lock_init(&x->lock);
	}
	return x;
}
EXPORT_SYMBOL(xfrm_state_alloc);

#ifdef CONFIG_XFRM_OFFLOAD
void xfrm_dev_state_delete(struct xfrm_state *x)
{
	struct xfrm_dev_offload *xso = &x->xso;
	struct net_device *dev = READ_ONCE(xso->dev);

	if (dev) {
		dev->xfrmdev_ops->xdo_dev_state_delete(x);
		spin_lock_bh(&xfrm_state_dev_gc_lock);
		hlist_add_head(&x->dev_gclist, &xfrm_state_dev_gc_list);
		spin_unlock_bh(&xfrm_state_dev_gc_lock);
	}
}
EXPORT_SYMBOL_GPL(xfrm_dev_state_delete);

void xfrm_dev_state_free(struct xfrm_state *x)
{
	struct xfrm_dev_offload *xso = &x->xso;
	struct net_device *dev = READ_ONCE(xso->dev);

	if (dev && dev->xfrmdev_ops) {
		spin_lock_bh(&xfrm_state_dev_gc_lock);
		if (!hlist_unhashed(&x->dev_gclist))
			hlist_del(&x->dev_gclist);
		spin_unlock_bh(&xfrm_state_dev_gc_lock);

		if (dev->xfrmdev_ops->xdo_dev_state_free)
			dev->xfrmdev_ops->xdo_dev_state_free(x);
		WRITE_ONCE(xso->dev, NULL);
		xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED;
		netdev_put(dev, &xso->dev_tracker);
	}
}
#endif

void __xfrm_state_destroy(struct xfrm_state *x, bool sync)
{
	WARN_ON(x->km.state != XFRM_STATE_DEAD);

	if (sync) {
		synchronize_rcu();
		___xfrm_state_destroy(x);
	} else {
		spin_lock_bh(&xfrm_state_gc_lock);
		hlist_add_head(&x->gclist, &xfrm_state_gc_list);
		spin_unlock_bh(&xfrm_state_gc_lock);
		schedule_work(&xfrm_state_gc_work);
	}
}
EXPORT_SYMBOL(__xfrm_state_destroy);

int __xfrm_state_delete(struct xfrm_state *x)
{
	struct net *net = xs_net(x);
	int err = -ESRCH;

	if (x->km.state != XFRM_STATE_DEAD) {
		x->km.state = XFRM_STATE_DEAD;
		spin_lock(&net->xfrm.xfrm_state_lock);
		list_del(&x->km.all);
		hlist_del_rcu(&x->bydst);
		hlist_del_rcu(&x->bysrc);
		if (x->km.seq)
			hlist_del_rcu(&x->byseq);
		if (x->id.spi)
			hlist_del_rcu(&x->byspi);
		net->xfrm.state_num--;
		xfrm_nat_keepalive_state_updated(x);
		spin_unlock(&net->xfrm.xfrm_state_lock);

		if (x->encap_sk)
			sock_put(rcu_dereference_raw(x->encap_sk));

		xfrm_dev_state_delete(x);

		/* All xfrm_state objects are created by xfrm_state_alloc.
		 * The xfrm_state_alloc call gives a reference, and that
		 * is what we are dropping here.
		 */
		xfrm_state_put(x);
		err = 0;
	}

	return err;
}
EXPORT_SYMBOL(__xfrm_state_delete);

int xfrm_state_delete(struct xfrm_state *x)
{
	int err;

	spin_lock_bh(&x->lock);
	err = __xfrm_state_delete(x);
	spin_unlock_bh(&x->lock);

	return err;
}
EXPORT_SYMBOL(xfrm_state_delete);

#ifdef CONFIG_SECURITY_NETWORK_XFRM
static inline int
xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
{
	int i, err = 0;

	for (i = 0; i <= net->xfrm.state_hmask; i++) {
		struct xfrm_state *x;

		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
			if (xfrm_id_proto_match(x->id.proto, proto) &&
			   (err = security_xfrm_state_delete(x)) != 0) {
				xfrm_audit_state_delete(x, 0, task_valid);
				return err;
			}
		}
	}

	return err;
}

static inline int
xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
{
	int i, err = 0;

	for (i = 0; i <= net->xfrm.state_hmask; i++) {
		struct xfrm_state *x;
		struct xfrm_dev_offload *xso;

		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
			xso = &x->xso;

			if (xso->dev == dev &&
			   (err = security_xfrm_state_delete(x)) != 0) {
				xfrm_audit_state_delete(x, 0, task_valid);
				return err;
			}
		}
	}

	return err;
}
#else
static inline int
xfrm_state_flush_secctx_check(struct net *net, u8 proto, bool task_valid)
{
	return 0;
}

static inline int
xfrm_dev_state_flush_secctx_check(struct net *net, struct net_device *dev, bool task_valid)
{
	return 0;
}
#endif

int xfrm_state_flush(struct net *net, u8 proto, bool task_valid, bool sync)
{
	int i, err = 0, cnt = 0;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	err = xfrm_state_flush_secctx_check(net, proto, task_valid);
	if (err)
		goto out;

	err = -ESRCH;
	for (i = 0; i <= net->xfrm.state_hmask; i++) {
		struct xfrm_state *x;
restart:
		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
			if (!xfrm_state_kern(x) &&
			    xfrm_id_proto_match(x->id.proto, proto)) {
				xfrm_state_hold(x);
				spin_unlock_bh(&net->xfrm.xfrm_state_lock);

				err = xfrm_state_delete(x);
				xfrm_audit_state_delete(x, err ? 0 : 1,
							task_valid);
				if (sync)
					xfrm_state_put_sync(x);
				else
					xfrm_state_put(x);
				if (!err)
					cnt++;

				spin_lock_bh(&net->xfrm.xfrm_state_lock);
				goto restart;
			}
		}
	}
out:
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
	if (cnt)
		err = 0;

	return err;
}
EXPORT_SYMBOL(xfrm_state_flush);

int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid)
{
	struct xfrm_state *x;
	struct hlist_node *tmp;
	struct xfrm_dev_offload *xso;
	int i, err = 0, cnt = 0;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	err = xfrm_dev_state_flush_secctx_check(net, dev, task_valid);
	if (err)
		goto out;

	err = -ESRCH;
	for (i = 0; i <= net->xfrm.state_hmask; i++) {
restart:
		hlist_for_each_entry(x, net->xfrm.state_bydst+i, bydst) {
			xso = &x->xso;

			if (!xfrm_state_kern(x) && xso->dev == dev) {
				xfrm_state_hold(x);
				spin_unlock_bh(&net->xfrm.xfrm_state_lock);

				err = xfrm_state_delete(x);
				xfrm_dev_state_free(x);

				xfrm_audit_state_delete(x, err ? 0 : 1,
							task_valid);
				xfrm_state_put(x);
				if (!err)
					cnt++;

				spin_lock_bh(&net->xfrm.xfrm_state_lock);
				goto restart;
			}
		}
	}
	if (cnt)
		err = 0;

out:
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);

	spin_lock_bh(&xfrm_state_dev_gc_lock);
restart_gc:
	hlist_for_each_entry_safe(x, tmp, &xfrm_state_dev_gc_list, dev_gclist) {
		xso = &x->xso;

		if (xso->dev == dev) {
			spin_unlock_bh(&xfrm_state_dev_gc_lock);
			xfrm_dev_state_free(x);
			spin_lock_bh(&xfrm_state_dev_gc_lock);
			goto restart_gc;
		}

	}
	spin_unlock_bh(&xfrm_state_dev_gc_lock);

	xfrm_flush_gc();

	return err;
}
EXPORT_SYMBOL(xfrm_dev_state_flush);

void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
{
	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	si->sadcnt = net->xfrm.state_num;
	si->sadhcnt = net->xfrm.state_hmask + 1;
	si->sadhmcnt = xfrm_state_hashmax;
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_sad_getinfo);

static void
__xfrm4_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
{
	const struct flowi4 *fl4 = &fl->u.ip4;

	sel->daddr.a4 = fl4->daddr;
	sel->saddr.a4 = fl4->saddr;
	sel->dport = xfrm_flowi_dport(fl, &fl4->uli);
	sel->dport_mask = htons(0xffff);
	sel->sport = xfrm_flowi_sport(fl, &fl4->uli);
	sel->sport_mask = htons(0xffff);
	sel->family = AF_INET;
	sel->prefixlen_d = 32;
	sel->prefixlen_s = 32;
	sel->proto = fl4->flowi4_proto;
	sel->ifindex = fl4->flowi4_oif;
}

static void
__xfrm6_init_tempsel(struct xfrm_selector *sel, const struct flowi *fl)
{
	const struct flowi6 *fl6 = &fl->u.ip6;

	/* Initialize temporary selector matching only to current session. */
	*(struct in6_addr *)&sel->daddr = fl6->daddr;
	*(struct in6_addr *)&sel->saddr = fl6->saddr;
	sel->dport = xfrm_flowi_dport(fl, &fl6->uli);
	sel->dport_mask = htons(0xffff);
	sel->sport = xfrm_flowi_sport(fl, &fl6->uli);
	sel->sport_mask = htons(0xffff);
	sel->family = AF_INET6;
	sel->prefixlen_d = 128;
	sel->prefixlen_s = 128;
	sel->proto = fl6->flowi6_proto;
	sel->ifindex = fl6->flowi6_oif;
}

static void
xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
		    const struct xfrm_tmpl *tmpl,
		    const xfrm_address_t *daddr, const xfrm_address_t *saddr,
		    unsigned short family)
{
	switch (family) {
	case AF_INET:
		__xfrm4_init_tempsel(&x->sel, fl);
		break;
	case AF_INET6:
		__xfrm6_init_tempsel(&x->sel, fl);
		break;
	}

	x->id = tmpl->id;

	switch (tmpl->encap_family) {
	case AF_INET:
		if (x->id.daddr.a4 == 0)
			x->id.daddr.a4 = daddr->a4;
		x->props.saddr = tmpl->saddr;
		if (x->props.saddr.a4 == 0)
			x->props.saddr.a4 = saddr->a4;
		break;
	case AF_INET6:
		if (ipv6_addr_any((struct in6_addr *)&x->id.daddr))
			memcpy(&x->id.daddr, daddr, sizeof(x->sel.daddr));
		memcpy(&x->props.saddr, &tmpl->saddr, sizeof(x->props.saddr));
		if (ipv6_addr_any((struct in6_addr *)&x->props.saddr))
			memcpy(&x->props.saddr, saddr, sizeof(x->props.saddr));
		break;
	}

	x->props.mode = tmpl->mode;
	x->props.reqid = tmpl->reqid;
	x->props.family = tmpl->encap_family;
}

static struct xfrm_state *__xfrm_state_lookup_all(struct net *net, u32 mark,
						  const xfrm_address_t *daddr,
						  __be32 spi, u8 proto,
						  unsigned short family,
						  struct xfrm_dev_offload *xdo)
{
	unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
	struct xfrm_state *x;

	hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
#ifdef CONFIG_XFRM_OFFLOAD
		if (xdo->type == XFRM_DEV_OFFLOAD_PACKET) {
			if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET)
				/* HW states are in the head of list, there is
				 * no need to iterate further.
				 */
				break;

			/* Packet offload: both policy and SA should
			 * have same device.
			 */
			if (xdo->dev != x->xso.dev)
				continue;
		} else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET)
			/* Skip HW policy for SW lookups */
			continue;
#endif
		if (x->props.family != family ||
		    x->id.spi       != spi ||
		    x->id.proto     != proto ||
		    !xfrm_addr_equal(&x->id.daddr, daddr, family))
			continue;

		if ((mark & x->mark.m) != x->mark.v)
			continue;
		if (!xfrm_state_hold_rcu(x))
			continue;
		return x;
	}

	return NULL;
}

static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
					      const xfrm_address_t *daddr,
					      __be32 spi, u8 proto,
					      unsigned short family)
{
	unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
	struct xfrm_state *x;

	hlist_for_each_entry_rcu(x, net->xfrm.state_byspi + h, byspi) {
		if (x->props.family != family ||
		    x->id.spi       != spi ||
		    x->id.proto     != proto ||
		    !xfrm_addr_equal(&x->id.daddr, daddr, family))
			continue;

		if ((mark & x->mark.m) != x->mark.v)
			continue;
		if (!xfrm_state_hold_rcu(x))
			continue;
		return x;
	}

	return NULL;
}

static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
						     const xfrm_address_t *daddr,
						     const xfrm_address_t *saddr,
						     u8 proto, unsigned short family)
{
	unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
	struct xfrm_state *x;

	hlist_for_each_entry_rcu(x, net->xfrm.state_bysrc + h, bysrc) {
		if (x->props.family != family ||
		    x->id.proto     != proto ||
		    !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
		    !xfrm_addr_equal(&x->props.saddr, saddr, family))
			continue;

		if ((mark & x->mark.m) != x->mark.v)
			continue;
		if (!xfrm_state_hold_rcu(x))
			continue;
		return x;
	}

	return NULL;
}

static inline struct xfrm_state *
__xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
{
	struct net *net = xs_net(x);
	u32 mark = x->mark.v & x->mark.m;

	if (use_spi)
		return __xfrm_state_lookup(net, mark, &x->id.daddr,
					   x->id.spi, x->id.proto, family);
	else
		return __xfrm_state_lookup_byaddr(net, mark,
						  &x->id.daddr,
						  &x->props.saddr,
						  x->id.proto, family);
}

static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
{
	if (have_hash_collision &&
	    (net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
	    net->xfrm.state_num > net->xfrm.state_hmask)
		schedule_work(&net->xfrm.state_hash_work);
}

static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
			       const struct flowi *fl, unsigned short family,
			       struct xfrm_state **best, int *acq_in_progress,
			       int *error)
{
	/* Resolution logic:
	 * 1. There is a valid state with matching selector. Done.
	 * 2. Valid state with inappropriate selector. Skip.
	 *
	 * Entering area of "sysdeps".
	 *
	 * 3. If state is not valid, selector is temporary, it selects
	 *    only session which triggered previous resolution. Key
	 *    manager will do something to install a state with proper
	 *    selector.
	 */
	if (x->km.state == XFRM_STATE_VALID) {
		if ((x->sel.family &&
		     (x->sel.family != family ||
		      !xfrm_selector_match(&x->sel, fl, family))) ||
		    !security_xfrm_state_pol_flow_match(x, pol,
							&fl->u.__fl_common))
			return;

		if (!*best ||
		    (*best)->km.dying > x->km.dying ||
		    ((*best)->km.dying == x->km.dying &&
		     (*best)->curlft.add_time < x->curlft.add_time))
			*best = x;
	} else if (x->km.state == XFRM_STATE_ACQ) {
		*acq_in_progress = 1;
	} else if (x->km.state == XFRM_STATE_ERROR ||
		   x->km.state == XFRM_STATE_EXPIRED) {
		if ((!x->sel.family ||
		     (x->sel.family == family &&
		      xfrm_selector_match(&x->sel, fl, family))) &&
		    security_xfrm_state_pol_flow_match(x, pol,
						       &fl->u.__fl_common))
			*error = -ESRCH;
	}
}

struct xfrm_state *
xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
		const struct flowi *fl, struct xfrm_tmpl *tmpl,
		struct xfrm_policy *pol, int *err,
		unsigned short family, u32 if_id)
{
	static xfrm_address_t saddr_wildcard = { };
	struct net *net = xp_net(pol);
	unsigned int h, h_wildcard;
	struct xfrm_state *x, *x0, *to_put;
	int acquire_in_progress = 0;
	int error = 0;
	struct xfrm_state *best = NULL;
	u32 mark = pol->mark.v & pol->mark.m;
	unsigned short encap_family = tmpl->encap_family;
	unsigned int sequence;
	struct km_event c;

	to_put = NULL;

	sequence = read_seqcount_begin(&net->xfrm.xfrm_state_hash_generation);

	rcu_read_lock();
	h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
	hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) {
#ifdef CONFIG_XFRM_OFFLOAD
		if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) {
			if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET)
				/* HW states are in the head of list, there is
				 * no need to iterate further.
				 */
				break;

			/* Packet offload: both policy and SA should
			 * have same device.
			 */
			if (pol->xdo.dev != x->xso.dev)
				continue;
		} else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET)
			/* Skip HW policy for SW lookups */
			continue;
#endif
		if (x->props.family == encap_family &&
		    x->props.reqid == tmpl->reqid &&
		    (mark & x->mark.m) == x->mark.v &&
		    x->if_id == if_id &&
		    !(x->props.flags & XFRM_STATE_WILDRECV) &&
		    xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
		    tmpl->mode == x->props.mode &&
		    tmpl->id.proto == x->id.proto &&
		    (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
			xfrm_state_look_at(pol, x, fl, family,
					   &best, &acquire_in_progress, &error);
	}
	if (best || acquire_in_progress)
		goto found;

	h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
	hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h_wildcard, bydst) {
#ifdef CONFIG_XFRM_OFFLOAD
		if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) {
			if (x->xso.type != XFRM_DEV_OFFLOAD_PACKET)
				/* HW states are in the head of list, there is
				 * no need to iterate further.
				 */
				break;

			/* Packet offload: both policy and SA should
			 * have same device.
			 */
			if (pol->xdo.dev != x->xso.dev)
				continue;
		} else if (x->xso.type == XFRM_DEV_OFFLOAD_PACKET)
			/* Skip HW policy for SW lookups */
			continue;
#endif
		if (x->props.family == encap_family &&
		    x->props.reqid == tmpl->reqid &&
		    (mark & x->mark.m) == x->mark.v &&
		    x->if_id == if_id &&
		    !(x->props.flags & XFRM_STATE_WILDRECV) &&
		    xfrm_addr_equal(&x->id.daddr, daddr, encap_family) &&
		    tmpl->mode == x->props.mode &&
		    tmpl->id.proto == x->id.proto &&
		    (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
			xfrm_state_look_at(pol, x, fl, family,
					   &best, &acquire_in_progress, &error);
	}

found:
	x = best;
	if (!x && !error && !acquire_in_progress) {
		if (tmpl->id.spi &&
		    (x0 = __xfrm_state_lookup_all(net, mark, daddr,
						  tmpl->id.spi, tmpl->id.proto,
						  encap_family,
						  &pol->xdo)) != NULL) {
			to_put = x0;
			error = -EEXIST;
			goto out;
		}

		c.net = net;
		/* If the KMs have no listeners (yet...), avoid allocating an SA
		 * for each and every packet - garbage collection might not
		 * handle the flood.
		 */
		if (!km_is_alive(&c)) {
			error = -ESRCH;
			goto out;
		}

		x = xfrm_state_alloc(net);
		if (x == NULL) {
			error = -ENOMEM;
			goto out;
		}
		/* Initialize temporary state matching only
		 * to current session. */
		xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
		memcpy(&x->mark, &pol->mark, sizeof(x->mark));
		x->if_id = if_id;

		error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
		if (error) {
			x->km.state = XFRM_STATE_DEAD;
			to_put = x;
			x = NULL;
			goto out;
		}
#ifdef CONFIG_XFRM_OFFLOAD
		if (pol->xdo.type == XFRM_DEV_OFFLOAD_PACKET) {
			struct xfrm_dev_offload *xdo = &pol->xdo;
			struct xfrm_dev_offload *xso = &x->xso;

			xso->type = XFRM_DEV_OFFLOAD_PACKET;
			xso->dir = xdo->dir;
			xso->dev = xdo->dev;
			xso->real_dev = xdo->real_dev;
			xso->flags = XFRM_DEV_OFFLOAD_FLAG_ACQ;
			netdev_hold(xso->dev, &xso->dev_tracker, GFP_ATOMIC);
			error = xso->dev->xfrmdev_ops->xdo_dev_state_add(x, NULL);
			if (error) {
				xso->dir = 0;
				netdev_put(xso->dev, &xso->dev_tracker);
				xso->dev = NULL;
				xso->real_dev = NULL;
				xso->type = XFRM_DEV_OFFLOAD_UNSPECIFIED;
				x->km.state = XFRM_STATE_DEAD;
				to_put = x;
				x = NULL;
				goto out;
			}
		}
#endif
		if (km_query(x, tmpl, pol) == 0) {
			spin_lock_bh(&net->xfrm.xfrm_state_lock);
			x->km.state = XFRM_STATE_ACQ;
			x->dir = XFRM_SA_DIR_OUT;
			list_add(&x->km.all, &net->xfrm.state_all);
			XFRM_STATE_INSERT(bydst, &x->bydst,
					  net->xfrm.state_bydst + h,
					  x->xso.type);
			h = xfrm_src_hash(net, daddr, saddr, encap_family);
			XFRM_STATE_INSERT(bysrc, &x->bysrc,
					  net->xfrm.state_bysrc + h,
					  x->xso.type);
			if (x->id.spi) {
				h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
				XFRM_STATE_INSERT(byspi, &x->byspi,
						  net->xfrm.state_byspi + h,
						  x->xso.type);
			}
			if (x->km.seq) {
				h = xfrm_seq_hash(net, x->km.seq);
				XFRM_STATE_INSERT(byseq, &x->byseq,
						  net->xfrm.state_byseq + h,
						  x->xso.type);
			}
			x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
			hrtimer_start(&x->mtimer,
				      ktime_set(net->xfrm.sysctl_acq_expires, 0),
				      HRTIMER_MODE_REL_SOFT);
			net->xfrm.state_num++;
			xfrm_hash_grow_check(net, x->bydst.next != NULL);
			spin_unlock_bh(&net->xfrm.xfrm_state_lock);
		} else {
#ifdef CONFIG_XFRM_OFFLOAD
			struct xfrm_dev_offload *xso = &x->xso;

			if (xso->type == XFRM_DEV_OFFLOAD_PACKET) {
				xfrm_dev_state_delete(x);
				xfrm_dev_state_free(x);
			}
#endif
			x->km.state = XFRM_STATE_DEAD;
			to_put = x;
			x = NULL;
			error = -ESRCH;
		}
	}
out:
	if (x) {
		if (!xfrm_state_hold_rcu(x)) {
			*err = -EAGAIN;
			x = NULL;
		}
	} else {
		*err = acquire_in_progress ? -EAGAIN : error;
	}
	rcu_read_unlock();
	if (to_put)
		xfrm_state_put(to_put);

	if (read_seqcount_retry(&net->xfrm.xfrm_state_hash_generation, sequence)) {
		*err = -EAGAIN;
		if (x) {
			xfrm_state_put(x);
			x = NULL;
		}
	}

	return x;
}

struct xfrm_state *
xfrm_stateonly_find(struct net *net, u32 mark, u32 if_id,
		    xfrm_address_t *daddr, xfrm_address_t *saddr,
		    unsigned short family, u8 mode, u8 proto, u32 reqid)
{
	unsigned int h;
	struct xfrm_state *rx = NULL, *x = NULL;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
	hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
		if (x->props.family == family &&
		    x->props.reqid == reqid &&
		    (mark & x->mark.m) == x->mark.v &&
		    x->if_id == if_id &&
		    !(x->props.flags & XFRM_STATE_WILDRECV) &&
		    xfrm_state_addr_check(x, daddr, saddr, family) &&
		    mode == x->props.mode &&
		    proto == x->id.proto &&
		    x->km.state == XFRM_STATE_VALID) {
			rx = x;
			break;
		}
	}

	if (rx)
		xfrm_state_hold(rx);
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);


	return rx;
}
EXPORT_SYMBOL(xfrm_stateonly_find);

struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi,
					      unsigned short family)
{
	struct xfrm_state *x;
	struct xfrm_state_walk *w;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	list_for_each_entry(w, &net->xfrm.state_all, all) {
		x = container_of(w, struct xfrm_state, km);
		if (x->props.family != family ||
			x->id.spi != spi)
			continue;

		xfrm_state_hold(x);
		spin_unlock_bh(&net->xfrm.xfrm_state_lock);
		return x;
	}
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
	return NULL;
}
EXPORT_SYMBOL(xfrm_state_lookup_byspi);

static void __xfrm_state_insert(struct xfrm_state *x)
{
	struct net *net = xs_net(x);
	unsigned int h;

	list_add(&x->km.all, &net->xfrm.state_all);

	h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
			  x->props.reqid, x->props.family);
	XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h,
			  x->xso.type);

	h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
	XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h,
			  x->xso.type);

	if (x->id.spi) {
		h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
				  x->props.family);

		XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h,
				  x->xso.type);
	}

	if (x->km.seq) {
		h = xfrm_seq_hash(net, x->km.seq);

		XFRM_STATE_INSERT(byseq, &x->byseq, net->xfrm.state_byseq + h,
				  x->xso.type);
	}

	hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
	if (x->replay_maxage)
		mod_timer(&x->rtimer, jiffies + x->replay_maxage);

	net->xfrm.state_num++;

	xfrm_hash_grow_check(net, x->bydst.next != NULL);
	xfrm_nat_keepalive_state_updated(x);
}

/* net->xfrm.xfrm_state_lock is held */
static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
{
	struct net *net = xs_net(xnew);
	unsigned short family = xnew->props.family;
	u32 reqid = xnew->props.reqid;
	struct xfrm_state *x;
	unsigned int h;
	u32 mark = xnew->mark.v & xnew->mark.m;
	u32 if_id = xnew->if_id;

	h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
	hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
		if (x->props.family	== family &&
		    x->props.reqid	== reqid &&
		    x->if_id		== if_id &&
		    (mark & x->mark.m) == x->mark.v &&
		    xfrm_addr_equal(&x->id.daddr, &xnew->id.daddr, family) &&
		    xfrm_addr_equal(&x->props.saddr, &xnew->props.saddr, family))
			x->genid++;
	}
}

void xfrm_state_insert(struct xfrm_state *x)
{
	struct net *net = xs_net(x);

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	__xfrm_state_bump_genids(x);
	__xfrm_state_insert(x);
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_state_insert);

/* net->xfrm.xfrm_state_lock is held */
static struct xfrm_state *__find_acq_core(struct net *net,
					  const struct xfrm_mark *m,
					  unsigned short family, u8 mode,
					  u32 reqid, u32 if_id, u8 proto,
					  const xfrm_address_t *daddr,
					  const xfrm_address_t *saddr,
					  int create)
{
	unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
	struct xfrm_state *x;
	u32 mark = m->v & m->m;

	hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
		if (x->props.reqid  != reqid ||
		    x->props.mode   != mode ||
		    x->props.family != family ||
		    x->km.state     != XFRM_STATE_ACQ ||
		    x->id.spi       != 0 ||
		    x->id.proto	    != proto ||
		    (mark & x->mark.m) != x->mark.v ||
		    !xfrm_addr_equal(&x->id.daddr, daddr, family) ||
		    !xfrm_addr_equal(&x->props.saddr, saddr, family))
			continue;

		xfrm_state_hold(x);
		return x;
	}

	if (!create)
		return NULL;

	x = xfrm_state_alloc(net);
	if (likely(x)) {
		switch (family) {
		case AF_INET:
			x->sel.daddr.a4 = daddr->a4;
			x->sel.saddr.a4 = saddr->a4;
			x->sel.prefixlen_d = 32;
			x->sel.prefixlen_s = 32;
			x->props.saddr.a4 = saddr->a4;
			x->id.daddr.a4 = daddr->a4;
			break;

		case AF_INET6:
			x->sel.daddr.in6 = daddr->in6;
			x->sel.saddr.in6 = saddr->in6;
			x->sel.prefixlen_d = 128;
			x->sel.prefixlen_s = 128;
			x->props.saddr.in6 = saddr->in6;
			x->id.daddr.in6 = daddr->in6;
			break;
		}

		x->km.state = XFRM_STATE_ACQ;
		x->id.proto = proto;
		x->props.family = family;
		x->props.mode = mode;
		x->props.reqid = reqid;
		x->if_id = if_id;
		x->mark.v = m->v;
		x->mark.m = m->m;
		x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
		xfrm_state_hold(x);
		hrtimer_start(&x->mtimer,
			      ktime_set(net->xfrm.sysctl_acq_expires, 0),
			      HRTIMER_MODE_REL_SOFT);
		list_add(&x->km.all, &net->xfrm.state_all);
		XFRM_STATE_INSERT(bydst, &x->bydst, net->xfrm.state_bydst + h,
				  x->xso.type);
		h = xfrm_src_hash(net, daddr, saddr, family);
		XFRM_STATE_INSERT(bysrc, &x->bysrc, net->xfrm.state_bysrc + h,
				  x->xso.type);

		net->xfrm.state_num++;

		xfrm_hash_grow_check(net, x->bydst.next != NULL);
	}

	return x;
}

static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);

int xfrm_state_add(struct xfrm_state *x)
{
	struct net *net = xs_net(x);
	struct xfrm_state *x1, *to_put;
	int family;
	int err;
	u32 mark = x->mark.v & x->mark.m;
	int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);

	family = x->props.family;

	to_put = NULL;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);

	x1 = __xfrm_state_locate(x, use_spi, family);
	if (x1) {
		to_put = x1;
		x1 = NULL;
		err = -EEXIST;
		goto out;
	}

	if (use_spi && x->km.seq) {
		x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
		if (x1 && ((x1->id.proto != x->id.proto) ||
		    !xfrm_addr_equal(&x1->id.daddr, &x->id.daddr, family))) {
			to_put = x1;
			x1 = NULL;
		}
	}

	if (use_spi && !x1)
		x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
				     x->props.reqid, x->if_id, x->id.proto,
				     &x->id.daddr, &x->props.saddr, 0);

	__xfrm_state_bump_genids(x);
	__xfrm_state_insert(x);
	err = 0;

out:
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);

	if (x1) {
		xfrm_state_delete(x1);
		xfrm_state_put(x1);
	}

	if (to_put)
		xfrm_state_put(to_put);

	return err;
}
EXPORT_SYMBOL(xfrm_state_add);

#ifdef CONFIG_XFRM_MIGRATE
static inline int clone_security(struct xfrm_state *x, struct xfrm_sec_ctx *security)
{
	struct xfrm_user_sec_ctx *uctx;
	int size = sizeof(*uctx) + security->ctx_len;
	int err;

	uctx = kmalloc(size, GFP_KERNEL);
	if (!uctx)
		return -ENOMEM;

	uctx->exttype = XFRMA_SEC_CTX;
	uctx->len = size;
	uctx->ctx_doi = security->ctx_doi;
	uctx->ctx_alg = security->ctx_alg;
	uctx->ctx_len = security->ctx_len;
	memcpy(uctx + 1, security->ctx_str, security->ctx_len);
	err = security_xfrm_state_alloc(x, uctx);
	kfree(uctx);
	if (err)
		return err;

	return 0;
}

static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig,
					   struct xfrm_encap_tmpl *encap)
{
	struct net *net = xs_net(orig);
	struct xfrm_state *x = xfrm_state_alloc(net);
	if (!x)
		goto out;

	memcpy(&x->id, &orig->id, sizeof(x->id));
	memcpy(&x->sel, &orig->sel, sizeof(x->sel));
	memcpy(&x->lft, &orig->lft, sizeof(x->lft));
	x->props.mode = orig->props.mode;
	x->props.replay_window = orig->props.replay_window;
	x->props.reqid = orig->props.reqid;
	x->props.family = orig->props.family;
	x->props.saddr = orig->props.saddr;

	if (orig->aalg) {
		x->aalg = xfrm_algo_auth_clone(orig->aalg);
		if (!x->aalg)
			goto error;
	}
	x->props.aalgo = orig->props.aalgo;

	if (orig->aead) {
		x->aead = xfrm_algo_aead_clone(orig->aead);
		x->geniv = orig->geniv;
		if (!x->aead)
			goto error;
	}
	if (orig->ealg) {
		x->ealg = xfrm_algo_clone(orig->ealg);
		if (!x->ealg)
			goto error;
	}
	x->props.ealgo = orig->props.ealgo;

	if (orig->calg) {
		x->calg = xfrm_algo_clone(orig->calg);
		if (!x->calg)
			goto error;
	}
	x->props.calgo = orig->props.calgo;

	if (encap || orig->encap) {
		if (encap)
			x->encap = kmemdup(encap, sizeof(*x->encap),
					GFP_KERNEL);
		else
			x->encap = kmemdup(orig->encap, sizeof(*x->encap),
					GFP_KERNEL);

		if (!x->encap)
			goto error;
	}

	if (orig->security)
		if (clone_security(x, orig->security))
			goto error;

	if (orig->coaddr) {
		x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
				    GFP_KERNEL);
		if (!x->coaddr)
			goto error;
	}

	if (orig->replay_esn) {
		if (xfrm_replay_clone(x, orig))
			goto error;
	}

	memcpy(&x->mark, &orig->mark, sizeof(x->mark));
	memcpy(&x->props.smark, &orig->props.smark, sizeof(x->props.smark));

	x->props.flags = orig->props.flags;
	x->props.extra_flags = orig->props.extra_flags;

	x->if_id = orig->if_id;
	x->tfcpad = orig->tfcpad;
	x->replay_maxdiff = orig->replay_maxdiff;
	x->replay_maxage = orig->replay_maxage;
	memcpy(&x->curlft, &orig->curlft, sizeof(x->curlft));
	x->km.state = orig->km.state;
	x->km.seq = orig->km.seq;
	x->replay = orig->replay;
	x->preplay = orig->preplay;
	x->mapping_maxage = orig->mapping_maxage;
	x->lastused = orig->lastused;
	x->new_mapping = 0;
	x->new_mapping_sport = 0;
	x->dir = orig->dir;

	return x;

 error:
	xfrm_state_put(x);
out:
	return NULL;
}

struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net,
						u32 if_id)
{
	unsigned int h;
	struct xfrm_state *x = NULL;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);

	if (m->reqid) {
		h = xfrm_dst_hash(net, &m->old_daddr, &m->old_saddr,
				  m->reqid, m->old_family);
		hlist_for_each_entry(x, net->xfrm.state_bydst+h, bydst) {
			if (x->props.mode != m->mode ||
			    x->id.proto != m->proto)
				continue;
			if (m->reqid && x->props.reqid != m->reqid)
				continue;
			if (if_id != 0 && x->if_id != if_id)
				continue;
			if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
					     m->old_family) ||
			    !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
					     m->old_family))
				continue;
			xfrm_state_hold(x);
			break;
		}
	} else {
		h = xfrm_src_hash(net, &m->old_daddr, &m->old_saddr,
				  m->old_family);
		hlist_for_each_entry(x, net->xfrm.state_bysrc+h, bysrc) {
			if (x->props.mode != m->mode ||
			    x->id.proto != m->proto)
				continue;
			if (if_id != 0 && x->if_id != if_id)
				continue;
			if (!xfrm_addr_equal(&x->id.daddr, &m->old_daddr,
					     m->old_family) ||
			    !xfrm_addr_equal(&x->props.saddr, &m->old_saddr,
					     m->old_family))
				continue;
			xfrm_state_hold(x);
			break;
		}
	}

	spin_unlock_bh(&net->xfrm.xfrm_state_lock);

	return x;
}
EXPORT_SYMBOL(xfrm_migrate_state_find);

struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x,
				      struct xfrm_migrate *m,
				      struct xfrm_encap_tmpl *encap)
{
	struct xfrm_state *xc;

	xc = xfrm_state_clone(x, encap);
	if (!xc)
		return NULL;

	xc->props.family = m->new_family;

	if (xfrm_init_state(xc) < 0)
		goto error;

	memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
	memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));

	/* add state */
	if (xfrm_addr_equal(&x->id.daddr, &m->new_daddr, m->new_family)) {
		/* a care is needed when the destination address of the
		   state is to be updated as it is a part of triplet */
		xfrm_state_insert(xc);
	} else {
		if (xfrm_state_add(xc) < 0)
			goto error;
	}

	return xc;
error:
	xfrm_state_put(xc);
	return NULL;
}
EXPORT_SYMBOL(xfrm_state_migrate);
#endif

int xfrm_state_update(struct xfrm_state *x)
{
	struct xfrm_state *x1, *to_put;
	int err;
	int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
	struct net *net = xs_net(x);

	to_put = NULL;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	x1 = __xfrm_state_locate(x, use_spi, x->props.family);

	err = -ESRCH;
	if (!x1)
		goto out;

	if (xfrm_state_kern(x1)) {
		to_put = x1;
		err = -EEXIST;
		goto out;
	}

	if (x1->km.state == XFRM_STATE_ACQ) {
		if (x->dir && x1->dir != x->dir)
			goto out;

		__xfrm_state_insert(x);
		x = NULL;
	} else {
		if (x1->dir != x->dir)
			goto out;
	}
	err = 0;

out:
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);

	if (to_put)
		xfrm_state_put(to_put);

	if (err)
		return err;

	if (!x) {
		xfrm_state_delete(x1);
		xfrm_state_put(x1);
		return 0;
	}

	err = -EINVAL;
	spin_lock_bh(&x1->lock);
	if (likely(x1->km.state == XFRM_STATE_VALID)) {
		if (x->encap && x1->encap &&
		    x->encap->encap_type == x1->encap->encap_type)
			memcpy(x1->encap, x->encap, sizeof(*x1->encap));
		else if (x->encap || x1->encap)
			goto fail;

		if (x->coaddr && x1->coaddr) {
			memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
		}
		if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
			memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
		memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
		x1->km.dying = 0;

		hrtimer_start(&x1->mtimer, ktime_set(1, 0),
			      HRTIMER_MODE_REL_SOFT);
		if (READ_ONCE(x1->curlft.use_time))
			xfrm_state_check_expire(x1);

		if (x->props.smark.m || x->props.smark.v || x->if_id) {
			spin_lock_bh(&net->xfrm.xfrm_state_lock);

			if (x->props.smark.m || x->props.smark.v)
				x1->props.smark = x->props.smark;

			if (x->if_id)
				x1->if_id = x->if_id;

			__xfrm_state_bump_genids(x1);
			spin_unlock_bh(&net->xfrm.xfrm_state_lock);
		}

		err = 0;
		x->km.state = XFRM_STATE_DEAD;
		__xfrm_state_put(x);
	}

fail:
	spin_unlock_bh(&x1->lock);

	xfrm_state_put(x1);

	return err;
}
EXPORT_SYMBOL(xfrm_state_update);

int xfrm_state_check_expire(struct xfrm_state *x)
{
	xfrm_dev_state_update_stats(x);

	if (!READ_ONCE(x->curlft.use_time))
		WRITE_ONCE(x->curlft.use_time, ktime_get_real_seconds());

	if (x->curlft.bytes >= x->lft.hard_byte_limit ||
	    x->curlft.packets >= x->lft.hard_packet_limit) {
		x->km.state = XFRM_STATE_EXPIRED;
		hrtimer_start(&x->mtimer, 0, HRTIMER_MODE_REL_SOFT);
		return -EINVAL;
	}

	if (!x->km.dying &&
	    (x->curlft.bytes >= x->lft.soft_byte_limit ||
	     x->curlft.packets >= x->lft.soft_packet_limit)) {
		x->km.dying = 1;
		km_state_expired(x, 0, 0);
	}
	return 0;
}
EXPORT_SYMBOL(xfrm_state_check_expire);

void xfrm_state_update_stats(struct net *net)
{
	struct xfrm_state *x;
	int i;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	for (i = 0; i <= net->xfrm.state_hmask; i++) {
		hlist_for_each_entry(x, net->xfrm.state_bydst + i, bydst)
			xfrm_dev_state_update_stats(x);
	}
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}

struct xfrm_state *
xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
		  u8 proto, unsigned short family)
{
	struct xfrm_state *x;

	rcu_read_lock();
	x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
	rcu_read_unlock();
	return x;
}
EXPORT_SYMBOL(xfrm_state_lookup);

struct xfrm_state *
xfrm_state_lookup_byaddr(struct net *net, u32 mark,
			 const xfrm_address_t *daddr, const xfrm_address_t *saddr,
			 u8 proto, unsigned short family)
{
	struct xfrm_state *x;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
	return x;
}
EXPORT_SYMBOL(xfrm_state_lookup_byaddr);

struct xfrm_state *
xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, u8 mode, u32 reqid,
	      u32 if_id, u8 proto, const xfrm_address_t *daddr,
	      const xfrm_address_t *saddr, int create, unsigned short family)
{
	struct xfrm_state *x;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	x = __find_acq_core(net, mark, family, mode, reqid, if_id, proto, daddr, saddr, create);
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);

	return x;
}
EXPORT_SYMBOL(xfrm_find_acq);

#ifdef CONFIG_XFRM_SUB_POLICY
#if IS_ENABLED(CONFIG_IPV6)
/* distribution counting sort function for xfrm_state and xfrm_tmpl */
static void
__xfrm6_sort(void **dst, void **src, int n,
	     int (*cmp)(const void *p), int maxclass)
{
	int count[XFRM_MAX_DEPTH] = { };
	int class[XFRM_MAX_DEPTH];
	int i;

	for (i = 0; i < n; i++) {
		int c = cmp(src[i]);

		class[i] = c;
		count[c]++;
	}

	for (i = 2; i < maxclass; i++)
		count[i] += count[i - 1];

	for (i = 0; i < n; i++) {
		dst[count[class[i] - 1]++] = src[i];
		src[i] = NULL;
	}
}

/* Rule for xfrm_state:
 *
 * rule 1: select IPsec transport except AH
 * rule 2: select MIPv6 RO or inbound trigger
 * rule 3: select IPsec transport AH
 * rule 4: select IPsec tunnel
 * rule 5: others
 */
static int __xfrm6_state_sort_cmp(const void *p)
{
	const struct xfrm_state *v = p;

	switch (v->props.mode) {
	case XFRM_MODE_TRANSPORT:
		if (v->id.proto != IPPROTO_AH)
			return 1;
		else
			return 3;
#if IS_ENABLED(CONFIG_IPV6_MIP6)
	case XFRM_MODE_ROUTEOPTIMIZATION:
	case XFRM_MODE_IN_TRIGGER:
		return 2;
#endif
	case XFRM_MODE_TUNNEL:
	case XFRM_MODE_BEET:
		return 4;
	}
	return 5;
}

/* Rule for xfrm_tmpl:
 *
 * rule 1: select IPsec transport
 * rule 2: select MIPv6 RO or inbound trigger
 * rule 3: select IPsec tunnel
 * rule 4: others
 */
static int __xfrm6_tmpl_sort_cmp(const void *p)
{
	const struct xfrm_tmpl *v = p;

	switch (v->mode) {
	case XFRM_MODE_TRANSPORT:
		return 1;
#if IS_ENABLED(CONFIG_IPV6_MIP6)
	case XFRM_MODE_ROUTEOPTIMIZATION:
	case XFRM_MODE_IN_TRIGGER:
		return 2;
#endif
	case XFRM_MODE_TUNNEL:
	case XFRM_MODE_BEET:
		return 3;
	}
	return 4;
}
#else
static inline int __xfrm6_state_sort_cmp(const void *p) { return 5; }
static inline int __xfrm6_tmpl_sort_cmp(const void *p) { return 4; }

static inline void
__xfrm6_sort(void **dst, void **src, int n,
	     int (*cmp)(const void *p), int maxclass)
{
	int i;

	for (i = 0; i < n; i++)
		dst[i] = src[i];
}
#endif /* CONFIG_IPV6 */

void
xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
	       unsigned short family)
{
	int i;

	if (family == AF_INET6)
		__xfrm6_sort((void **)dst, (void **)src, n,
			     __xfrm6_tmpl_sort_cmp, 5);
	else
		for (i = 0; i < n; i++)
			dst[i] = src[i];
}

void
xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
		unsigned short family)
{
	int i;

	if (family == AF_INET6)
		__xfrm6_sort((void **)dst, (void **)src, n,
			     __xfrm6_state_sort_cmp, 6);
	else
		for (i = 0; i < n; i++)
			dst[i] = src[i];
}
#endif

/* Silly enough, but I'm lazy to build resolution list */

static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
{
	unsigned int h = xfrm_seq_hash(net, seq);
	struct xfrm_state *x;

	hlist_for_each_entry_rcu(x, net->xfrm.state_byseq + h, byseq) {
		if (x->km.seq == seq &&
		    (mark & x->mark.m) == x->mark.v &&
		    x->km.state == XFRM_STATE_ACQ) {
			xfrm_state_hold(x);
			return x;
		}
	}

	return NULL;
}

struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
{
	struct xfrm_state *x;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	x = __xfrm_find_acq_byseq(net, mark, seq);
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
	return x;
}
EXPORT_SYMBOL(xfrm_find_acq_byseq);

u32 xfrm_get_acqseq(void)
{
	u32 res;
	static atomic_t acqseq;

	do {
		res = atomic_inc_return(&acqseq);
	} while (!res);

	return res;
}
EXPORT_SYMBOL(xfrm_get_acqseq);

int verify_spi_info(u8 proto, u32 min, u32 max, struct netlink_ext_ack *extack)
{
	switch (proto) {
	case IPPROTO_AH:
	case IPPROTO_ESP:
		break;

	case IPPROTO_COMP:
		/* IPCOMP spi is 16-bits. */
		if (max >= 0x10000) {
			NL_SET_ERR_MSG(extack, "IPCOMP SPI must be <= 65535");
			return -EINVAL;
		}
		break;

	default:
		NL_SET_ERR_MSG(extack, "Invalid protocol, must be one of AH, ESP, IPCOMP");
		return -EINVAL;
	}

	if (min > max) {
		NL_SET_ERR_MSG(extack, "Invalid SPI range: min > max");
		return -EINVAL;
	}

	return 0;
}
EXPORT_SYMBOL(verify_spi_info);

int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high,
		   struct netlink_ext_ack *extack)
{
	struct net *net = xs_net(x);
	unsigned int h;
	struct xfrm_state *x0;
	int err = -ENOENT;
	__be32 minspi = htonl(low);
	__be32 maxspi = htonl(high);
	__be32 newspi = 0;
	u32 mark = x->mark.v & x->mark.m;

	spin_lock_bh(&x->lock);
	if (x->km.state == XFRM_STATE_DEAD) {
		NL_SET_ERR_MSG(extack, "Target ACQUIRE is in DEAD state");
		goto unlock;
	}

	err = 0;
	if (x->id.spi)
		goto unlock;

	err = -ENOENT;

	if (minspi == maxspi) {
		x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
		if (x0) {
			NL_SET_ERR_MSG(extack, "Requested SPI is already in use");
			xfrm_state_put(x0);
			goto unlock;
		}
		newspi = minspi;
	} else {
		u32 spi = 0;
		for (h = 0; h < high-low+1; h++) {
			spi = get_random_u32_inclusive(low, high);
			x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
			if (x0 == NULL) {
				newspi = htonl(spi);
				break;
			}
			xfrm_state_put(x0);
		}
	}
	if (newspi) {
		spin_lock_bh(&net->xfrm.xfrm_state_lock);
		x->id.spi = newspi;
		h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
		XFRM_STATE_INSERT(byspi, &x->byspi, net->xfrm.state_byspi + h,
				  x->xso.type);
		spin_unlock_bh(&net->xfrm.xfrm_state_lock);

		err = 0;
	} else {
		NL_SET_ERR_MSG(extack, "No SPI available in the requested range");
	}

unlock:
	spin_unlock_bh(&x->lock);

	return err;
}
EXPORT_SYMBOL(xfrm_alloc_spi);

static bool __xfrm_state_filter_match(struct xfrm_state *x,
				      struct xfrm_address_filter *filter)
{
	if (filter) {
		if ((filter->family == AF_INET ||
		     filter->family == AF_INET6) &&
		    x->props.family != filter->family)
			return false;

		return addr_match(&x->props.saddr, &filter->saddr,
				  filter->splen) &&
		       addr_match(&x->id.daddr, &filter->daddr,
				  filter->dplen);
	}
	return true;
}

int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
		    int (*func)(struct xfrm_state *, int, void*),
		    void *data)
{
	struct xfrm_state *state;
	struct xfrm_state_walk *x;
	int err = 0;

	if (walk->seq != 0 && list_empty(&walk->all))
		return 0;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	if (list_empty(&walk->all))
		x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
	else
		x = list_first_entry(&walk->all, struct xfrm_state_walk, all);
	list_for_each_entry_from(x, &net->xfrm.state_all, all) {
		if (x->state == XFRM_STATE_DEAD)
			continue;
		state = container_of(x, struct xfrm_state, km);
		if (!xfrm_id_proto_match(state->id.proto, walk->proto))
			continue;
		if (!__xfrm_state_filter_match(state, walk->filter))
			continue;
		err = func(state, walk->seq, data);
		if (err) {
			list_move_tail(&walk->all, &x->all);
			goto out;
		}
		walk->seq++;
	}
	if (walk->seq == 0) {
		err = -ENOENT;
		goto out;
	}
	list_del_init(&walk->all);
out:
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
	return err;
}
EXPORT_SYMBOL(xfrm_state_walk);

void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto,
			  struct xfrm_address_filter *filter)
{
	INIT_LIST_HEAD(&walk->all);
	walk->proto = proto;
	walk->state = XFRM_STATE_DEAD;
	walk->seq = 0;
	walk->filter = filter;
}
EXPORT_SYMBOL(xfrm_state_walk_init);

void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net)
{
	kfree(walk->filter);

	if (list_empty(&walk->all))
		return;

	spin_lock_bh(&net->xfrm.xfrm_state_lock);
	list_del(&walk->all);
	spin_unlock_bh(&net->xfrm.xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_state_walk_done);

static void xfrm_replay_timer_handler(struct timer_list *t)
{
	struct xfrm_state *x = from_timer(x, t, rtimer);

	spin_lock(&x->lock);

	if (x->km.state == XFRM_STATE_VALID) {
		if (xfrm_aevent_is_on(xs_net(x)))
			xfrm_replay_notify(x, XFRM_REPLAY_TIMEOUT);
		else
			x->xflags |= XFRM_TIME_DEFER;
	}

	spin_unlock(&x->lock);
}

static LIST_HEAD(xfrm_km_list);

void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
{
	struct xfrm_mgr *km;

	rcu_read_lock();
	list_for_each_entry_rcu(km, &xfrm_km_list, list)
		if (km->notify_policy)
			km->notify_policy(xp, dir, c);
	rcu_read_unlock();
}

void km_state_notify(struct xfrm_state *x, const struct km_event *c)
{
	struct xfrm_mgr *km;
	rcu_read_lock();
	list_for_each_entry_rcu(km, &xfrm_km_list, list)
		if (km->notify)
			km->notify(x, c);
	rcu_read_unlock();
}

EXPORT_SYMBOL(km_policy_notify);
EXPORT_SYMBOL(km_state_notify);

void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
{
	struct km_event c;

	c.data.hard = hard;
	c.portid = portid;
	c.event = XFRM_MSG_EXPIRE;
	km_state_notify(x, &c);
}

EXPORT_SYMBOL(km_state_expired);
/*
 * We send to all registered managers regardless of failure
 * We are happy with one success
*/
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
{
	int err = -EINVAL, acqret;
	struct xfrm_mgr *km;

	rcu_read_lock();
	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
		acqret = km->acquire(x, t, pol);
		if (!acqret)
			err = acqret;
	}
	rcu_read_unlock();
	return err;
}
EXPORT_SYMBOL(km_query);

static int __km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
{
	int err = -EINVAL;
	struct xfrm_mgr *km;

	rcu_read_lock();
	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
		if (km->new_mapping)
			err = km->new_mapping(x, ipaddr, sport);
		if (!err)
			break;
	}
	rcu_read_unlock();
	return err;
}

int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
{
	int ret = 0;

	if (x->mapping_maxage) {
		if ((jiffies / HZ - x->new_mapping) > x->mapping_maxage ||
		    x->new_mapping_sport != sport) {
			x->new_mapping_sport = sport;
			x->new_mapping = jiffies / HZ;
			ret = __km_new_mapping(x, ipaddr, sport);
		}
	} else {
		ret = __km_new_mapping(x, ipaddr, sport);
	}

	return ret;
}
EXPORT_SYMBOL(km_new_mapping);

void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
{
	struct km_event c;

	c.data.hard = hard;
	c.portid = portid;
	c.event = XFRM_MSG_POLEXPIRE;
	km_policy_notify(pol, dir, &c);
}
EXPORT_SYMBOL(km_policy_expired);

#ifdef CONFIG_XFRM_MIGRATE
int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
	       const struct xfrm_migrate *m, int num_migrate,
	       const struct xfrm_kmaddress *k,
	       const struct xfrm_encap_tmpl *encap)
{
	int err = -EINVAL;
	int ret;
	struct xfrm_mgr *km;

	rcu_read_lock();
	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
		if (km->migrate) {
			ret = km->migrate(sel, dir, type, m, num_migrate, k,
					  encap);
			if (!ret)
				err = ret;
		}
	}
	rcu_read_unlock();
	return err;
}
EXPORT_SYMBOL(km_migrate);
#endif

int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
{
	int err = -EINVAL;
	int ret;
	struct xfrm_mgr *km;

	rcu_read_lock();
	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
		if (km->report) {
			ret = km->report(net, proto, sel, addr);
			if (!ret)
				err = ret;
		}
	}
	rcu_read_unlock();
	return err;
}
EXPORT_SYMBOL(km_report);

static bool km_is_alive(const struct km_event *c)
{
	struct xfrm_mgr *km;
	bool is_alive = false;

	rcu_read_lock();
	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
		if (km->is_alive && km->is_alive(c)) {
			is_alive = true;
			break;
		}
	}
	rcu_read_unlock();

	return is_alive;
}

#if IS_ENABLED(CONFIG_XFRM_USER_COMPAT)
static DEFINE_SPINLOCK(xfrm_translator_lock);
static struct xfrm_translator __rcu *xfrm_translator;

struct xfrm_translator *xfrm_get_translator(void)
{
	struct xfrm_translator *xtr;

	rcu_read_lock();
	xtr = rcu_dereference(xfrm_translator);
	if (unlikely(!xtr))
		goto out;
	if (!try_module_get(xtr->owner))
		xtr = NULL;
out:
	rcu_read_unlock();
	return xtr;
}
EXPORT_SYMBOL_GPL(xfrm_get_translator);

void xfrm_put_translator(struct xfrm_translator *xtr)
{
	module_put(xtr->owner);
}
EXPORT_SYMBOL_GPL(xfrm_put_translator);

int xfrm_register_translator(struct xfrm_translator *xtr)
{
	int err = 0;

	spin_lock_bh(&xfrm_translator_lock);
	if (unlikely(xfrm_translator != NULL))
		err = -EEXIST;
	else
		rcu_assign_pointer(xfrm_translator, xtr);
	spin_unlock_bh(&xfrm_translator_lock);

	return err;
}
EXPORT_SYMBOL_GPL(xfrm_register_translator);

int xfrm_unregister_translator(struct xfrm_translator *xtr)
{
	int err = 0;

	spin_lock_bh(&xfrm_translator_lock);
	if (likely(xfrm_translator != NULL)) {
		if (rcu_access_pointer(xfrm_translator) != xtr)
			err = -EINVAL;
		else
			RCU_INIT_POINTER(xfrm_translator, NULL);
	}
	spin_unlock_bh(&xfrm_translator_lock);
	synchronize_rcu();

	return err;
}
EXPORT_SYMBOL_GPL(xfrm_unregister_translator);
#endif

int xfrm_user_policy(struct sock *sk, int optname, sockptr_t optval, int optlen)
{
	int err;
	u8 *data;
	struct xfrm_mgr *km;
	struct xfrm_policy *pol = NULL;

	if (sockptr_is_null(optval) && !optlen) {
		xfrm_sk_policy_insert(sk, XFRM_POLICY_IN, NULL);
		xfrm_sk_policy_insert(sk, XFRM_POLICY_OUT, NULL);
		__sk_dst_reset(sk);
		return 0;
	}

	if (optlen <= 0 || optlen > PAGE_SIZE)
		return -EMSGSIZE;

	data = memdup_sockptr(optval, optlen);
	if (IS_ERR(data))
		return PTR_ERR(data);

	if (in_compat_syscall()) {
		struct xfrm_translator *xtr = xfrm_get_translator();

		if (!xtr) {
			kfree(data);
			return -EOPNOTSUPP;
		}

		err = xtr->xlate_user_policy_sockptr(&data, optlen);
		xfrm_put_translator(xtr);
		if (err) {
			kfree(data);
			return err;
		}
	}

	err = -EINVAL;
	rcu_read_lock();
	list_for_each_entry_rcu(km, &xfrm_km_list, list) {
		pol = km->compile_policy(sk, optname, data,
					 optlen, &err);
		if (err >= 0)
			break;
	}
	rcu_read_unlock();

	if (err >= 0) {
		xfrm_sk_policy_insert(sk, err, pol);
		xfrm_pol_put(pol);
		__sk_dst_reset(sk);
		err = 0;
	}

	kfree(data);
	return err;
}
EXPORT_SYMBOL(xfrm_user_policy);

static DEFINE_SPINLOCK(xfrm_km_lock);

void xfrm_register_km(struct xfrm_mgr *km)
{
	spin_lock_bh(&xfrm_km_lock);
	list_add_tail_rcu(&km->list, &xfrm_km_list);
	spin_unlock_bh(&xfrm_km_lock);
}
EXPORT_SYMBOL(xfrm_register_km);

void xfrm_unregister_km(struct xfrm_mgr *km)
{
	spin_lock_bh(&xfrm_km_lock);
	list_del_rcu(&km->list);
	spin_unlock_bh(&xfrm_km_lock);
	synchronize_rcu();
}
EXPORT_SYMBOL(xfrm_unregister_km);

int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
{
	int err = 0;

	if (WARN_ON(afinfo->family >= NPROTO))
		return -EAFNOSUPPORT;

	spin_lock_bh(&xfrm_state_afinfo_lock);
	if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
		err = -EEXIST;
	else
		rcu_assign_pointer(xfrm_state_afinfo[afinfo->family], afinfo);
	spin_unlock_bh(&xfrm_state_afinfo_lock);
	return err;
}
EXPORT_SYMBOL(xfrm_state_register_afinfo);

int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
{
	int err = 0, family = afinfo->family;

	if (WARN_ON(family >= NPROTO))
		return -EAFNOSUPPORT;

	spin_lock_bh(&xfrm_state_afinfo_lock);
	if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
		if (rcu_access_pointer(xfrm_state_afinfo[family]) != afinfo)
			err = -EINVAL;
		else
			RCU_INIT_POINTER(xfrm_state_afinfo[afinfo->family], NULL);
	}
	spin_unlock_bh(&xfrm_state_afinfo_lock);
	synchronize_rcu();
	return err;
}
EXPORT_SYMBOL(xfrm_state_unregister_afinfo);

struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family)
{
	if (unlikely(family >= NPROTO))
		return NULL;

	return rcu_dereference(xfrm_state_afinfo[family]);
}
EXPORT_SYMBOL_GPL(xfrm_state_afinfo_get_rcu);

struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
{
	struct xfrm_state_afinfo *afinfo;
	if (unlikely(family >= NPROTO))
		return NULL;
	rcu_read_lock();
	afinfo = rcu_dereference(xfrm_state_afinfo[family]);
	if (unlikely(!afinfo))
		rcu_read_unlock();
	return afinfo;
}

void xfrm_flush_gc(void)
{
	flush_work(&xfrm_state_gc_work);
}
EXPORT_SYMBOL(xfrm_flush_gc);

/* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
void xfrm_state_delete_tunnel(struct xfrm_state *x)
{
	if (x->tunnel) {
		struct xfrm_state *t = x->tunnel;

		if (atomic_read(&t->tunnel_users) == 2)
			xfrm_state_delete(t);
		atomic_dec(&t->tunnel_users);
		xfrm_state_put_sync(t);
		x->tunnel = NULL;
	}
}
EXPORT_SYMBOL(xfrm_state_delete_tunnel);

u32 xfrm_state_mtu(struct xfrm_state *x, int mtu)
{
	const struct xfrm_type *type = READ_ONCE(x->type);
	struct crypto_aead *aead;
	u32 blksize, net_adj = 0;

	if (x->km.state != XFRM_STATE_VALID ||
	    !type || type->proto != IPPROTO_ESP)
		return mtu - x->props.header_len;

	aead = x->data;
	blksize = ALIGN(crypto_aead_blocksize(aead), 4);

	switch (x->props.mode) {
	case XFRM_MODE_TRANSPORT:
	case XFRM_MODE_BEET:
		if (x->props.family == AF_INET)
			net_adj = sizeof(struct iphdr);
		else if (x->props.family == AF_INET6)
			net_adj = sizeof(struct ipv6hdr);
		break;
	case XFRM_MODE_TUNNEL:
		break;
	default:
		WARN_ON_ONCE(1);
		break;
	}

	return ((mtu - x->props.header_len - crypto_aead_authsize(aead) -
		 net_adj) & ~(blksize - 1)) + net_adj - 2;
}
EXPORT_SYMBOL_GPL(xfrm_state_mtu);

int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload,
		      struct netlink_ext_ack *extack)
{
	const struct xfrm_mode *inner_mode;
	const struct xfrm_mode *outer_mode;
	int family = x->props.family;
	int err;

	if (family == AF_INET &&
	    READ_ONCE(xs_net(x)->ipv4.sysctl_ip_no_pmtu_disc))
		x->props.flags |= XFRM_STATE_NOPMTUDISC;

	err = -EPROTONOSUPPORT;

	if (x->sel.family != AF_UNSPEC) {
		inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
		if (inner_mode == NULL) {
			NL_SET_ERR_MSG(extack, "Requested mode not found");
			goto error;
		}

		if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
		    family != x->sel.family) {
			NL_SET_ERR_MSG(extack, "Only tunnel modes can accommodate a change of family");
			goto error;
		}

		x->inner_mode = *inner_mode;
	} else {
		const struct xfrm_mode *inner_mode_iaf;
		int iafamily = AF_INET;

		inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
		if (inner_mode == NULL) {
			NL_SET_ERR_MSG(extack, "Requested mode not found");
			goto error;
		}

		x->inner_mode = *inner_mode;

		if (x->props.family == AF_INET)
			iafamily = AF_INET6;

		inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
		if (inner_mode_iaf) {
			if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
				x->inner_mode_iaf = *inner_mode_iaf;
		}
	}

	x->type = xfrm_get_type(x->id.proto, family);
	if (x->type == NULL) {
		NL_SET_ERR_MSG(extack, "Requested type not found");
		goto error;
	}

	x->type_offload = xfrm_get_type_offload(x->id.proto, family, offload);

	err = x->type->init_state(x, extack);
	if (err)
		goto error;

	outer_mode = xfrm_get_mode(x->props.mode, family);
	if (!outer_mode) {
		NL_SET_ERR_MSG(extack, "Requested mode not found");
		err = -EPROTONOSUPPORT;
		goto error;
	}

	x->outer_mode = *outer_mode;
	if (init_replay) {
		err = xfrm_init_replay(x, extack);
		if (err)
			goto error;
	}

	if (x->nat_keepalive_interval) {
		if (x->dir != XFRM_SA_DIR_OUT) {
			NL_SET_ERR_MSG(extack, "NAT keepalive is only supported for outbound SAs");
			err = -EINVAL;
			goto error;
		}

		if (!x->encap || x->encap->encap_type != UDP_ENCAP_ESPINUDP) {
			NL_SET_ERR_MSG(extack,
				       "NAT keepalive is only supported for UDP encapsulation");
			err = -EINVAL;
			goto error;
		}
	}

error:
	return err;
}

EXPORT_SYMBOL(__xfrm_init_state);

int xfrm_init_state(struct xfrm_state *x)
{
	int err;

	err = __xfrm_init_state(x, true, false, NULL);
	if (!err)
		x->km.state = XFRM_STATE_VALID;

	return err;
}

EXPORT_SYMBOL(xfrm_init_state);

int __net_init xfrm_state_init(struct net *net)
{
	unsigned int sz;

	if (net_eq(net, &init_net))
		xfrm_state_cache = KMEM_CACHE(xfrm_state,
					      SLAB_HWCACHE_ALIGN | SLAB_PANIC);

	INIT_LIST_HEAD(&net->xfrm.state_all);

	sz = sizeof(struct hlist_head) * 8;

	net->xfrm.state_bydst = xfrm_hash_alloc(sz);
	if (!net->xfrm.state_bydst)
		goto out_bydst;
	net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
	if (!net->xfrm.state_bysrc)
		goto out_bysrc;
	net->xfrm.state_byspi = xfrm_hash_alloc(sz);
	if (!net->xfrm.state_byspi)
		goto out_byspi;
	net->xfrm.state_byseq = xfrm_hash_alloc(sz);
	if (!net->xfrm.state_byseq)
		goto out_byseq;
	net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);

	net->xfrm.state_num = 0;
	INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
	spin_lock_init(&net->xfrm.xfrm_state_lock);
	seqcount_spinlock_init(&net->xfrm.xfrm_state_hash_generation,
			       &net->xfrm.xfrm_state_lock);
	return 0;

out_byseq:
	xfrm_hash_free(net->xfrm.state_byspi, sz);
out_byspi:
	xfrm_hash_free(net->xfrm.state_bysrc, sz);
out_bysrc:
	xfrm_hash_free(net->xfrm.state_bydst, sz);
out_bydst:
	return -ENOMEM;
}

void xfrm_state_fini(struct net *net)
{
	unsigned int sz;

	flush_work(&net->xfrm.state_hash_work);
	flush_work(&xfrm_state_gc_work);
	xfrm_state_flush(net, 0, false, true);

	WARN_ON(!list_empty(&net->xfrm.state_all));

	sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
	WARN_ON(!hlist_empty(net->xfrm.state_byseq));
	xfrm_hash_free(net->xfrm.state_byseq, sz);
	WARN_ON(!hlist_empty(net->xfrm.state_byspi));
	xfrm_hash_free(net->xfrm.state_byspi, sz);
	WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
	xfrm_hash_free(net->xfrm.state_bysrc, sz);
	WARN_ON(!hlist_empty(net->xfrm.state_bydst));
	xfrm_hash_free(net->xfrm.state_bydst, sz);
}

#ifdef CONFIG_AUDITSYSCALL
static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
				     struct audit_buffer *audit_buf)
{
	struct xfrm_sec_ctx *ctx = x->security;
	u32 spi = ntohl(x->id.spi);

	if (ctx)
		audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
				 ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);

	switch (x->props.family) {
	case AF_INET:
		audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
				 &x->props.saddr.a4, &x->id.daddr.a4);
		break;
	case AF_INET6:
		audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
				 x->props.saddr.a6, x->id.daddr.a6);
		break;
	}

	audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
}

static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
				      struct audit_buffer *audit_buf)
{
	const struct iphdr *iph4;
	const struct ipv6hdr *iph6;

	switch (family) {
	case AF_INET:
		iph4 = ip_hdr(skb);
		audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
				 &iph4->saddr, &iph4->daddr);
		break;
	case AF_INET6:
		iph6 = ipv6_hdr(skb);
		audit_log_format(audit_buf,
				 " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
				 &iph6->saddr, &iph6->daddr,
				 iph6->flow_lbl[0] & 0x0f,
				 iph6->flow_lbl[1],
				 iph6->flow_lbl[2]);
		break;
	}
}

void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid)
{
	struct audit_buffer *audit_buf;

	audit_buf = xfrm_audit_start("SAD-add");
	if (audit_buf == NULL)
		return;
	xfrm_audit_helper_usrinfo(task_valid, audit_buf);
	xfrm_audit_helper_sainfo(x, audit_buf);
	audit_log_format(audit_buf, " res=%u", result);
	audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_add);

void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid)
{
	struct audit_buffer *audit_buf;

	audit_buf = xfrm_audit_start("SAD-delete");
	if (audit_buf == NULL)
		return;
	xfrm_audit_helper_usrinfo(task_valid, audit_buf);
	xfrm_audit_helper_sainfo(x, audit_buf);
	audit_log_format(audit_buf, " res=%u", result);
	audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);

void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
				      struct sk_buff *skb)
{
	struct audit_buffer *audit_buf;
	u32 spi;

	audit_buf = xfrm_audit_start("SA-replay-overflow");
	if (audit_buf == NULL)
		return;
	xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
	/* don't record the sequence number because it's inherent in this kind
	 * of audit message */
	spi = ntohl(x->id.spi);
	audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
	audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);

void xfrm_audit_state_replay(struct xfrm_state *x,
			     struct sk_buff *skb, __be32 net_seq)
{
	struct audit_buffer *audit_buf;
	u32 spi;

	audit_buf = xfrm_audit_start("SA-replayed-pkt");
	if (audit_buf == NULL)
		return;
	xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
	spi = ntohl(x->id.spi);
	audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
			 spi, spi, ntohl(net_seq));
	audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);

void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
{
	struct audit_buffer *audit_buf;

	audit_buf = xfrm_audit_start("SA-notfound");
	if (audit_buf == NULL)
		return;
	xfrm_audit_helper_pktinfo(skb, family, audit_buf);
	audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);

void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
			       __be32 net_spi, __be32 net_seq)
{
	struct audit_buffer *audit_buf;
	u32 spi;

	audit_buf = xfrm_audit_start("SA-notfound");
	if (audit_buf == NULL)
		return;
	xfrm_audit_helper_pktinfo(skb, family, audit_buf);
	spi = ntohl(net_spi);
	audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
			 spi, spi, ntohl(net_seq));
	audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);

void xfrm_audit_state_icvfail(struct xfrm_state *x,
			      struct sk_buff *skb, u8 proto)
{
	struct audit_buffer *audit_buf;
	__be32 net_spi;
	__be32 net_seq;

	audit_buf = xfrm_audit_start("SA-icv-failure");
	if (audit_buf == NULL)
		return;
	xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
	if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
		u32 spi = ntohl(net_spi);
		audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
				 spi, spi, ntohl(net_seq));
	}
	audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
#endif /* CONFIG_AUDITSYSCALL */