Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmitry Kasatkin | 1657 | 44.66% | 17 | 26.15% |
Roberto Sassu | 976 | 26.31% | 13 | 20.00% |
Mimi Zohar | 768 | 20.70% | 8 | 12.31% |
Goldwyn Rodrigues | 97 | 2.61% | 1 | 1.54% |
David Howells | 40 | 1.08% | 2 | 3.08% |
Gilad Ben-Yossef | 32 | 0.86% | 1 | 1.54% |
Linus Torvalds (pre-git) | 26 | 0.70% | 3 | 4.62% |
Behan Webster | 19 | 0.51% | 1 | 1.54% |
Maurizio Drocco | 19 | 0.51% | 1 | 1.54% |
Andreas Steffen | 15 | 0.40% | 1 | 1.54% |
Sascha Hauer | 14 | 0.38% | 2 | 3.08% |
Petr Vorel | 12 | 0.32% | 1 | 1.54% |
Al Viro | 8 | 0.22% | 1 | 1.54% |
Patrick Callaghan | 8 | 0.22% | 1 | 1.54% |
Jianglei Nie | 5 | 0.13% | 1 | 1.54% |
Tomas Winkler | 3 | 0.08% | 1 | 1.54% |
Stefan Berger | 2 | 0.05% | 2 | 3.08% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.54% |
Kirill A. Shutemov | 2 | 0.05% | 2 | 3.08% |
Luis R. Rodriguez | 1 | 0.03% | 1 | 1.54% |
Mel Gorman | 1 | 0.03% | 1 | 1.54% |
Joe Perches | 1 | 0.03% | 1 | 1.54% |
Enrico Bravi | 1 | 0.03% | 1 | 1.54% |
Linus Torvalds | 1 | 0.03% | 1 | 1.54% |
Total | 3710 | 65 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2005,2006,2007,2008 IBM Corporation * * Authors: * Mimi Zohar <zohar@us.ibm.com> * Kylene Hall <kjhall@us.ibm.com> * * File: ima_crypto.c * Calculates md5/sha1 file hash, template hash, boot-aggreate hash */ #include <linux/kernel.h> #include <linux/moduleparam.h> #include <linux/ratelimit.h> #include <linux/file.h> #include <linux/crypto.h> #include <linux/scatterlist.h> #include <linux/err.h> #include <linux/slab.h> #include <crypto/hash.h> #include "ima.h" /* minimum file size for ahash use */ static unsigned long ima_ahash_minsize; module_param_named(ahash_minsize, ima_ahash_minsize, ulong, 0644); MODULE_PARM_DESC(ahash_minsize, "Minimum file size for ahash use"); /* default is 0 - 1 page. */ static int ima_maxorder; static unsigned int ima_bufsize = PAGE_SIZE; static int param_set_bufsize(const char *val, const struct kernel_param *kp) { unsigned long long size; int order; size = memparse(val, NULL); order = get_order(size); if (order > MAX_PAGE_ORDER) return -EINVAL; ima_maxorder = order; ima_bufsize = PAGE_SIZE << order; return 0; } static const struct kernel_param_ops param_ops_bufsize = { .set = param_set_bufsize, .get = param_get_uint, }; #define param_check_bufsize(name, p) __param_check(name, p, unsigned int) module_param_named(ahash_bufsize, ima_bufsize, bufsize, 0644); MODULE_PARM_DESC(ahash_bufsize, "Maximum ahash buffer size"); static struct crypto_shash *ima_shash_tfm; static struct crypto_ahash *ima_ahash_tfm; int ima_sha1_idx __ro_after_init; int ima_hash_algo_idx __ro_after_init; /* * Additional number of slots reserved, as needed, for SHA1 * and IMA default algo. */ int ima_extra_slots __ro_after_init; struct ima_algo_desc *ima_algo_array __ro_after_init; static int __init ima_init_ima_crypto(void) { long rc; ima_shash_tfm = crypto_alloc_shash(hash_algo_name[ima_hash_algo], 0, 0); if (IS_ERR(ima_shash_tfm)) { rc = PTR_ERR(ima_shash_tfm); pr_err("Can not allocate %s (reason: %ld)\n", hash_algo_name[ima_hash_algo], rc); return rc; } pr_info("Allocated hash algorithm: %s\n", hash_algo_name[ima_hash_algo]); return 0; } static struct crypto_shash *ima_alloc_tfm(enum hash_algo algo) { struct crypto_shash *tfm = ima_shash_tfm; int rc, i; if (algo < 0 || algo >= HASH_ALGO__LAST) algo = ima_hash_algo; if (algo == ima_hash_algo) return tfm; for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) if (ima_algo_array[i].tfm && ima_algo_array[i].algo == algo) return ima_algo_array[i].tfm; tfm = crypto_alloc_shash(hash_algo_name[algo], 0, 0); if (IS_ERR(tfm)) { rc = PTR_ERR(tfm); pr_err("Can not allocate %s (reason: %d)\n", hash_algo_name[algo], rc); } return tfm; } int __init ima_init_crypto(void) { enum hash_algo algo; long rc; int i; rc = ima_init_ima_crypto(); if (rc) return rc; ima_sha1_idx = -1; ima_hash_algo_idx = -1; for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) { algo = ima_tpm_chip->allocated_banks[i].crypto_id; if (algo == HASH_ALGO_SHA1) ima_sha1_idx = i; if (algo == ima_hash_algo) ima_hash_algo_idx = i; } if (ima_sha1_idx < 0) { ima_sha1_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++; if (ima_hash_algo == HASH_ALGO_SHA1) ima_hash_algo_idx = ima_sha1_idx; } if (ima_hash_algo_idx < 0) ima_hash_algo_idx = NR_BANKS(ima_tpm_chip) + ima_extra_slots++; ima_algo_array = kcalloc(NR_BANKS(ima_tpm_chip) + ima_extra_slots, sizeof(*ima_algo_array), GFP_KERNEL); if (!ima_algo_array) { rc = -ENOMEM; goto out; } for (i = 0; i < NR_BANKS(ima_tpm_chip); i++) { algo = ima_tpm_chip->allocated_banks[i].crypto_id; ima_algo_array[i].algo = algo; /* unknown TPM algorithm */ if (algo == HASH_ALGO__LAST) continue; if (algo == ima_hash_algo) { ima_algo_array[i].tfm = ima_shash_tfm; continue; } ima_algo_array[i].tfm = ima_alloc_tfm(algo); if (IS_ERR(ima_algo_array[i].tfm)) { if (algo == HASH_ALGO_SHA1) { rc = PTR_ERR(ima_algo_array[i].tfm); ima_algo_array[i].tfm = NULL; goto out_array; } ima_algo_array[i].tfm = NULL; } } if (ima_sha1_idx >= NR_BANKS(ima_tpm_chip)) { if (ima_hash_algo == HASH_ALGO_SHA1) { ima_algo_array[ima_sha1_idx].tfm = ima_shash_tfm; } else { ima_algo_array[ima_sha1_idx].tfm = ima_alloc_tfm(HASH_ALGO_SHA1); if (IS_ERR(ima_algo_array[ima_sha1_idx].tfm)) { rc = PTR_ERR(ima_algo_array[ima_sha1_idx].tfm); goto out_array; } } ima_algo_array[ima_sha1_idx].algo = HASH_ALGO_SHA1; } if (ima_hash_algo_idx >= NR_BANKS(ima_tpm_chip) && ima_hash_algo_idx != ima_sha1_idx) { ima_algo_array[ima_hash_algo_idx].tfm = ima_shash_tfm; ima_algo_array[ima_hash_algo_idx].algo = ima_hash_algo; } return 0; out_array: for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) { if (!ima_algo_array[i].tfm || ima_algo_array[i].tfm == ima_shash_tfm) continue; crypto_free_shash(ima_algo_array[i].tfm); } kfree(ima_algo_array); out: crypto_free_shash(ima_shash_tfm); return rc; } static void ima_free_tfm(struct crypto_shash *tfm) { int i; if (tfm == ima_shash_tfm) return; for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) if (ima_algo_array[i].tfm == tfm) return; crypto_free_shash(tfm); } /** * ima_alloc_pages() - Allocate contiguous pages. * @max_size: Maximum amount of memory to allocate. * @allocated_size: Returned size of actual allocation. * @last_warn: Should the min_size allocation warn or not. * * Tries to do opportunistic allocation for memory first trying to allocate * max_size amount of memory and then splitting that until zero order is * reached. Allocation is tried without generating allocation warnings unless * last_warn is set. Last_warn set affects only last allocation of zero order. * * By default, ima_maxorder is 0 and it is equivalent to kmalloc(GFP_KERNEL) * * Return pointer to allocated memory, or NULL on failure. */ static void *ima_alloc_pages(loff_t max_size, size_t *allocated_size, int last_warn) { void *ptr; int order = ima_maxorder; gfp_t gfp_mask = __GFP_RECLAIM | __GFP_NOWARN | __GFP_NORETRY; if (order) order = min(get_order(max_size), order); for (; order; order--) { ptr = (void *)__get_free_pages(gfp_mask, order); if (ptr) { *allocated_size = PAGE_SIZE << order; return ptr; } } /* order is zero - one page */ gfp_mask = GFP_KERNEL; if (!last_warn) gfp_mask |= __GFP_NOWARN; ptr = (void *)__get_free_pages(gfp_mask, 0); if (ptr) { *allocated_size = PAGE_SIZE; return ptr; } *allocated_size = 0; return NULL; } /** * ima_free_pages() - Free pages allocated by ima_alloc_pages(). * @ptr: Pointer to allocated pages. * @size: Size of allocated buffer. */ static void ima_free_pages(void *ptr, size_t size) { if (!ptr) return; free_pages((unsigned long)ptr, get_order(size)); } static struct crypto_ahash *ima_alloc_atfm(enum hash_algo algo) { struct crypto_ahash *tfm = ima_ahash_tfm; int rc; if (algo < 0 || algo >= HASH_ALGO__LAST) algo = ima_hash_algo; if (algo != ima_hash_algo || !tfm) { tfm = crypto_alloc_ahash(hash_algo_name[algo], 0, 0); if (!IS_ERR(tfm)) { if (algo == ima_hash_algo) ima_ahash_tfm = tfm; } else { rc = PTR_ERR(tfm); pr_err("Can not allocate %s (reason: %d)\n", hash_algo_name[algo], rc); } } return tfm; } static void ima_free_atfm(struct crypto_ahash *tfm) { if (tfm != ima_ahash_tfm) crypto_free_ahash(tfm); } static inline int ahash_wait(int err, struct crypto_wait *wait) { err = crypto_wait_req(err, wait); if (err) pr_crit_ratelimited("ahash calculation failed: err: %d\n", err); return err; } static int ima_calc_file_hash_atfm(struct file *file, struct ima_digest_data *hash, struct crypto_ahash *tfm) { loff_t i_size, offset; char *rbuf[2] = { NULL, }; int rc, rbuf_len, active = 0, ahash_rc = 0; struct ahash_request *req; struct scatterlist sg[1]; struct crypto_wait wait; size_t rbuf_size[2]; hash->length = crypto_ahash_digestsize(tfm); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) return -ENOMEM; crypto_init_wait(&wait); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait); rc = ahash_wait(crypto_ahash_init(req), &wait); if (rc) goto out1; i_size = i_size_read(file_inode(file)); if (i_size == 0) goto out2; /* * Try to allocate maximum size of memory. * Fail if even a single page cannot be allocated. */ rbuf[0] = ima_alloc_pages(i_size, &rbuf_size[0], 1); if (!rbuf[0]) { rc = -ENOMEM; goto out1; } /* Only allocate one buffer if that is enough. */ if (i_size > rbuf_size[0]) { /* * Try to allocate secondary buffer. If that fails fallback to * using single buffering. Use previous memory allocation size * as baseline for possible allocation size. */ rbuf[1] = ima_alloc_pages(i_size - rbuf_size[0], &rbuf_size[1], 0); } for (offset = 0; offset < i_size; offset += rbuf_len) { if (!rbuf[1] && offset) { /* Not using two buffers, and it is not the first * read/request, wait for the completion of the * previous ahash_update() request. */ rc = ahash_wait(ahash_rc, &wait); if (rc) goto out3; } /* read buffer */ rbuf_len = min_t(loff_t, i_size - offset, rbuf_size[active]); rc = integrity_kernel_read(file, offset, rbuf[active], rbuf_len); if (rc != rbuf_len) { if (rc >= 0) rc = -EINVAL; /* * Forward current rc, do not overwrite with return value * from ahash_wait() */ ahash_wait(ahash_rc, &wait); goto out3; } if (rbuf[1] && offset) { /* Using two buffers, and it is not the first * read/request, wait for the completion of the * previous ahash_update() request. */ rc = ahash_wait(ahash_rc, &wait); if (rc) goto out3; } sg_init_one(&sg[0], rbuf[active], rbuf_len); ahash_request_set_crypt(req, sg, NULL, rbuf_len); ahash_rc = crypto_ahash_update(req); if (rbuf[1]) active = !active; /* swap buffers, if we use two */ } /* wait for the last update request to complete */ rc = ahash_wait(ahash_rc, &wait); out3: ima_free_pages(rbuf[0], rbuf_size[0]); ima_free_pages(rbuf[1], rbuf_size[1]); out2: if (!rc) { ahash_request_set_crypt(req, NULL, hash->digest, 0); rc = ahash_wait(crypto_ahash_final(req), &wait); } out1: ahash_request_free(req); return rc; } static int ima_calc_file_ahash(struct file *file, struct ima_digest_data *hash) { struct crypto_ahash *tfm; int rc; tfm = ima_alloc_atfm(hash->algo); if (IS_ERR(tfm)) return PTR_ERR(tfm); rc = ima_calc_file_hash_atfm(file, hash, tfm); ima_free_atfm(tfm); return rc; } static int ima_calc_file_hash_tfm(struct file *file, struct ima_digest_data *hash, struct crypto_shash *tfm) { loff_t i_size, offset = 0; char *rbuf; int rc; SHASH_DESC_ON_STACK(shash, tfm); shash->tfm = tfm; hash->length = crypto_shash_digestsize(tfm); rc = crypto_shash_init(shash); if (rc != 0) return rc; i_size = i_size_read(file_inode(file)); if (i_size == 0) goto out; rbuf = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!rbuf) return -ENOMEM; while (offset < i_size) { int rbuf_len; rbuf_len = integrity_kernel_read(file, offset, rbuf, PAGE_SIZE); if (rbuf_len < 0) { rc = rbuf_len; break; } if (rbuf_len == 0) { /* unexpected EOF */ rc = -EINVAL; break; } offset += rbuf_len; rc = crypto_shash_update(shash, rbuf, rbuf_len); if (rc) break; } kfree(rbuf); out: if (!rc) rc = crypto_shash_final(shash, hash->digest); return rc; } static int ima_calc_file_shash(struct file *file, struct ima_digest_data *hash) { struct crypto_shash *tfm; int rc; tfm = ima_alloc_tfm(hash->algo); if (IS_ERR(tfm)) return PTR_ERR(tfm); rc = ima_calc_file_hash_tfm(file, hash, tfm); ima_free_tfm(tfm); return rc; } /* * ima_calc_file_hash - calculate file hash * * Asynchronous hash (ahash) allows using HW acceleration for calculating * a hash. ahash performance varies for different data sizes on different * crypto accelerators. shash performance might be better for smaller files. * The 'ima.ahash_minsize' module parameter allows specifying the best * minimum file size for using ahash on the system. * * If the ima.ahash_minsize parameter is not specified, this function uses * shash for the hash calculation. If ahash fails, it falls back to using * shash. */ int ima_calc_file_hash(struct file *file, struct ima_digest_data *hash) { loff_t i_size; int rc; struct file *f = file; bool new_file_instance = false; /* * For consistency, fail file's opened with the O_DIRECT flag on * filesystems mounted with/without DAX option. */ if (file->f_flags & O_DIRECT) { hash->length = hash_digest_size[ima_hash_algo]; hash->algo = ima_hash_algo; return -EINVAL; } /* Open a new file instance in O_RDONLY if we cannot read */ if (!(file->f_mode & FMODE_READ)) { int flags = file->f_flags & ~(O_WRONLY | O_APPEND | O_TRUNC | O_CREAT | O_NOCTTY | O_EXCL); flags |= O_RDONLY; f = dentry_open(&file->f_path, flags, file->f_cred); if (IS_ERR(f)) return PTR_ERR(f); new_file_instance = true; } i_size = i_size_read(file_inode(f)); if (ima_ahash_minsize && i_size >= ima_ahash_minsize) { rc = ima_calc_file_ahash(f, hash); if (!rc) goto out; } rc = ima_calc_file_shash(f, hash); out: if (new_file_instance) fput(f); return rc; } /* * Calculate the hash of template data */ static int ima_calc_field_array_hash_tfm(struct ima_field_data *field_data, struct ima_template_entry *entry, int tfm_idx) { SHASH_DESC_ON_STACK(shash, ima_algo_array[tfm_idx].tfm); struct ima_template_desc *td = entry->template_desc; int num_fields = entry->template_desc->num_fields; int rc, i; shash->tfm = ima_algo_array[tfm_idx].tfm; rc = crypto_shash_init(shash); if (rc != 0) return rc; for (i = 0; i < num_fields; i++) { u8 buffer[IMA_EVENT_NAME_LEN_MAX + 1] = { 0 }; u8 *data_to_hash = field_data[i].data; u32 datalen = field_data[i].len; u32 datalen_to_hash = !ima_canonical_fmt ? datalen : (__force u32)cpu_to_le32(datalen); if (strcmp(td->name, IMA_TEMPLATE_IMA_NAME) != 0) { rc = crypto_shash_update(shash, (const u8 *) &datalen_to_hash, sizeof(datalen_to_hash)); if (rc) break; } else if (strcmp(td->fields[i]->field_id, "n") == 0) { memcpy(buffer, data_to_hash, datalen); data_to_hash = buffer; datalen = IMA_EVENT_NAME_LEN_MAX + 1; } rc = crypto_shash_update(shash, data_to_hash, datalen); if (rc) break; } if (!rc) rc = crypto_shash_final(shash, entry->digests[tfm_idx].digest); return rc; } int ima_calc_field_array_hash(struct ima_field_data *field_data, struct ima_template_entry *entry) { u16 alg_id; int rc, i; rc = ima_calc_field_array_hash_tfm(field_data, entry, ima_sha1_idx); if (rc) return rc; entry->digests[ima_sha1_idx].alg_id = TPM_ALG_SHA1; for (i = 0; i < NR_BANKS(ima_tpm_chip) + ima_extra_slots; i++) { if (i == ima_sha1_idx) continue; if (i < NR_BANKS(ima_tpm_chip)) { alg_id = ima_tpm_chip->allocated_banks[i].alg_id; entry->digests[i].alg_id = alg_id; } /* for unmapped TPM algorithms digest is still a padded SHA1 */ if (!ima_algo_array[i].tfm) { memcpy(entry->digests[i].digest, entry->digests[ima_sha1_idx].digest, TPM_DIGEST_SIZE); continue; } rc = ima_calc_field_array_hash_tfm(field_data, entry, i); if (rc) return rc; } return rc; } static int calc_buffer_ahash_atfm(const void *buf, loff_t len, struct ima_digest_data *hash, struct crypto_ahash *tfm) { struct ahash_request *req; struct scatterlist sg; struct crypto_wait wait; int rc, ahash_rc = 0; hash->length = crypto_ahash_digestsize(tfm); req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) return -ENOMEM; crypto_init_wait(&wait); ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait); rc = ahash_wait(crypto_ahash_init(req), &wait); if (rc) goto out; sg_init_one(&sg, buf, len); ahash_request_set_crypt(req, &sg, NULL, len); ahash_rc = crypto_ahash_update(req); /* wait for the update request to complete */ rc = ahash_wait(ahash_rc, &wait); if (!rc) { ahash_request_set_crypt(req, NULL, hash->digest, 0); rc = ahash_wait(crypto_ahash_final(req), &wait); } out: ahash_request_free(req); return rc; } static int calc_buffer_ahash(const void *buf, loff_t len, struct ima_digest_data *hash) { struct crypto_ahash *tfm; int rc; tfm = ima_alloc_atfm(hash->algo); if (IS_ERR(tfm)) return PTR_ERR(tfm); rc = calc_buffer_ahash_atfm(buf, len, hash, tfm); ima_free_atfm(tfm); return rc; } static int calc_buffer_shash_tfm(const void *buf, loff_t size, struct ima_digest_data *hash, struct crypto_shash *tfm) { SHASH_DESC_ON_STACK(shash, tfm); unsigned int len; int rc; shash->tfm = tfm; hash->length = crypto_shash_digestsize(tfm); rc = crypto_shash_init(shash); if (rc != 0) return rc; while (size) { len = size < PAGE_SIZE ? size : PAGE_SIZE; rc = crypto_shash_update(shash, buf, len); if (rc) break; buf += len; size -= len; } if (!rc) rc = crypto_shash_final(shash, hash->digest); return rc; } static int calc_buffer_shash(const void *buf, loff_t len, struct ima_digest_data *hash) { struct crypto_shash *tfm; int rc; tfm = ima_alloc_tfm(hash->algo); if (IS_ERR(tfm)) return PTR_ERR(tfm); rc = calc_buffer_shash_tfm(buf, len, hash, tfm); ima_free_tfm(tfm); return rc; } int ima_calc_buffer_hash(const void *buf, loff_t len, struct ima_digest_data *hash) { int rc; if (ima_ahash_minsize && len >= ima_ahash_minsize) { rc = calc_buffer_ahash(buf, len, hash); if (!rc) return 0; } return calc_buffer_shash(buf, len, hash); } static void ima_pcrread(u32 idx, struct tpm_digest *d) { if (!ima_tpm_chip) return; if (tpm_pcr_read(ima_tpm_chip, idx, d) != 0) pr_err("Error Communicating to TPM chip\n"); } /* * The boot_aggregate is a cumulative hash over TPM registers 0 - 7. With * TPM 1.2 the boot_aggregate was based on reading the SHA1 PCRs, but with * TPM 2.0 hash agility, TPM chips could support multiple TPM PCR banks, * allowing firmware to configure and enable different banks. * * Knowing which TPM bank is read to calculate the boot_aggregate digest * needs to be conveyed to a verifier. For this reason, use the same * hash algorithm for reading the TPM PCRs as for calculating the boot * aggregate digest as stored in the measurement list. */ static int ima_calc_boot_aggregate_tfm(char *digest, u16 alg_id, struct crypto_shash *tfm) { struct tpm_digest d = { .alg_id = alg_id, .digest = {0} }; int rc; u32 i; SHASH_DESC_ON_STACK(shash, tfm); shash->tfm = tfm; pr_devel("calculating the boot-aggregate based on TPM bank: %04x\n", d.alg_id); rc = crypto_shash_init(shash); if (rc != 0) return rc; /* cumulative digest over TPM registers 0-7 */ for (i = TPM_PCR0; i < TPM_PCR8; i++) { ima_pcrread(i, &d); /* now accumulate with current aggregate */ rc = crypto_shash_update(shash, d.digest, crypto_shash_digestsize(tfm)); if (rc != 0) return rc; } /* * Extend cumulative digest over TPM registers 8-9, which contain * measurement for the kernel command line (reg. 8) and image (reg. 9) * in a typical PCR allocation. Registers 8-9 are only included in * non-SHA1 boot_aggregate digests to avoid ambiguity. */ if (alg_id != TPM_ALG_SHA1) { for (i = TPM_PCR8; i < TPM_PCR10; i++) { ima_pcrread(i, &d); rc = crypto_shash_update(shash, d.digest, crypto_shash_digestsize(tfm)); } } if (!rc) crypto_shash_final(shash, digest); return rc; } int ima_calc_boot_aggregate(struct ima_digest_data *hash) { struct crypto_shash *tfm; u16 crypto_id, alg_id; int rc, i, bank_idx = -1; for (i = 0; i < ima_tpm_chip->nr_allocated_banks; i++) { crypto_id = ima_tpm_chip->allocated_banks[i].crypto_id; if (crypto_id == hash->algo) { bank_idx = i; break; } if (crypto_id == HASH_ALGO_SHA256) bank_idx = i; if (bank_idx == -1 && crypto_id == HASH_ALGO_SHA1) bank_idx = i; } if (bank_idx == -1) { pr_err("No suitable TPM algorithm for boot aggregate\n"); return 0; } hash->algo = ima_tpm_chip->allocated_banks[bank_idx].crypto_id; tfm = ima_alloc_tfm(hash->algo); if (IS_ERR(tfm)) return PTR_ERR(tfm); hash->length = crypto_shash_digestsize(tfm); alg_id = ima_tpm_chip->allocated_banks[bank_idx].alg_id; rc = ima_calc_boot_aggregate_tfm(hash->digest, alg_id, tfm); ima_free_tfm(tfm); return rc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1