Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mimi Zohar | 4324 | 80.82% | 5 | 10.00% |
Jarkko Sakkinen | 415 | 7.76% | 12 | 24.00% |
Sumit Garg | 256 | 4.79% | 4 | 8.00% |
Roberto Sassu | 150 | 2.80% | 5 | 10.00% |
James Bottomley | 77 | 1.44% | 3 | 6.00% |
Tetsuo Handa | 38 | 0.71% | 3 | 6.00% |
Denis Kenzior | 20 | 0.37% | 1 | 2.00% |
Nayna Jain | 14 | 0.26% | 1 | 2.00% |
Colin Ian King | 11 | 0.21% | 1 | 2.00% |
Waiman Long | 8 | 0.15% | 1 | 2.00% |
Kent Yoder | 7 | 0.13% | 1 | 2.00% |
Jan Dabros | 6 | 0.11% | 1 | 2.00% |
Stefan Berger | 4 | 0.07% | 1 | 2.00% |
Eric Biggers | 3 | 0.06% | 2 | 4.00% |
Nick Desaulniers | 3 | 0.06% | 1 | 2.00% |
Dmitry Kasatkin | 3 | 0.06% | 1 | 2.00% |
Jason Gunthorpe | 3 | 0.06% | 2 | 4.00% |
Kylene Jo Hall | 2 | 0.04% | 1 | 2.00% |
Jingoo Han | 2 | 0.04% | 1 | 2.00% |
Marcin Obara | 2 | 0.04% | 1 | 2.00% |
Thomas Gleixner | 1 | 0.02% | 1 | 2.00% |
David Howells | 1 | 0.02% | 1 | 2.00% |
Total | 5350 | 50 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010 IBM Corporation * Copyright (c) 2019-2021, Linaro Limited * * See Documentation/security/keys/trusted-encrypted.rst */ #include <crypto/hash_info.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/parser.h> #include <linux/string.h> #include <linux/err.h> #include <keys/trusted-type.h> #include <linux/key-type.h> #include <linux/crypto.h> #include <crypto/hash.h> #include <crypto/sha1.h> #include <linux/tpm.h> #include <linux/tpm_command.h> #include <keys/trusted_tpm.h> static const char hmac_alg[] = "hmac(sha1)"; static const char hash_alg[] = "sha1"; static struct tpm_chip *chip; static struct tpm_digest *digests; struct sdesc { struct shash_desc shash; char ctx[]; }; static struct crypto_shash *hashalg; static struct crypto_shash *hmacalg; static struct sdesc *init_sdesc(struct crypto_shash *alg) { struct sdesc *sdesc; int size; size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); sdesc = kmalloc(size, GFP_KERNEL); if (!sdesc) return ERR_PTR(-ENOMEM); sdesc->shash.tfm = alg; return sdesc; } static int TSS_sha1(const unsigned char *data, unsigned int datalen, unsigned char *digest) { struct sdesc *sdesc; int ret; sdesc = init_sdesc(hashalg); if (IS_ERR(sdesc)) { pr_info("can't alloc %s\n", hash_alg); return PTR_ERR(sdesc); } ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest); kfree_sensitive(sdesc); return ret; } static int TSS_rawhmac(unsigned char *digest, const unsigned char *key, unsigned int keylen, ...) { struct sdesc *sdesc; va_list argp; unsigned int dlen; unsigned char *data; int ret; sdesc = init_sdesc(hmacalg); if (IS_ERR(sdesc)) { pr_info("can't alloc %s\n", hmac_alg); return PTR_ERR(sdesc); } ret = crypto_shash_setkey(hmacalg, key, keylen); if (ret < 0) goto out; ret = crypto_shash_init(&sdesc->shash); if (ret < 0) goto out; va_start(argp, keylen); for (;;) { dlen = va_arg(argp, unsigned int); if (dlen == 0) break; data = va_arg(argp, unsigned char *); if (data == NULL) { ret = -EINVAL; break; } ret = crypto_shash_update(&sdesc->shash, data, dlen); if (ret < 0) break; } va_end(argp); if (!ret) ret = crypto_shash_final(&sdesc->shash, digest); out: kfree_sensitive(sdesc); return ret; } /* * calculate authorization info fields to send to TPM */ int TSS_authhmac(unsigned char *digest, const unsigned char *key, unsigned int keylen, unsigned char *h1, unsigned char *h2, unsigned int h3, ...) { unsigned char paramdigest[SHA1_DIGEST_SIZE]; struct sdesc *sdesc; unsigned int dlen; unsigned char *data; unsigned char c; int ret; va_list argp; if (!chip) return -ENODEV; sdesc = init_sdesc(hashalg); if (IS_ERR(sdesc)) { pr_info("can't alloc %s\n", hash_alg); return PTR_ERR(sdesc); } c = !!h3; ret = crypto_shash_init(&sdesc->shash); if (ret < 0) goto out; va_start(argp, h3); for (;;) { dlen = va_arg(argp, unsigned int); if (dlen == 0) break; data = va_arg(argp, unsigned char *); if (!data) { ret = -EINVAL; break; } ret = crypto_shash_update(&sdesc->shash, data, dlen); if (ret < 0) break; } va_end(argp); if (!ret) ret = crypto_shash_final(&sdesc->shash, paramdigest); if (!ret) ret = TSS_rawhmac(digest, key, keylen, SHA1_DIGEST_SIZE, paramdigest, TPM_NONCE_SIZE, h1, TPM_NONCE_SIZE, h2, 1, &c, 0, 0); out: kfree_sensitive(sdesc); return ret; } EXPORT_SYMBOL_GPL(TSS_authhmac); /* * verify the AUTH1_COMMAND (Seal) result from TPM */ int TSS_checkhmac1(unsigned char *buffer, const uint32_t command, const unsigned char *ononce, const unsigned char *key, unsigned int keylen, ...) { uint32_t bufsize; uint16_t tag; uint32_t ordinal; uint32_t result; unsigned char *enonce; unsigned char *continueflag; unsigned char *authdata; unsigned char testhmac[SHA1_DIGEST_SIZE]; unsigned char paramdigest[SHA1_DIGEST_SIZE]; struct sdesc *sdesc; unsigned int dlen; unsigned int dpos; va_list argp; int ret; if (!chip) return -ENODEV; bufsize = LOAD32(buffer, TPM_SIZE_OFFSET); tag = LOAD16(buffer, 0); ordinal = command; result = LOAD32N(buffer, TPM_RETURN_OFFSET); if (tag == TPM_TAG_RSP_COMMAND) return 0; if (tag != TPM_TAG_RSP_AUTH1_COMMAND) return -EINVAL; authdata = buffer + bufsize - SHA1_DIGEST_SIZE; continueflag = authdata - 1; enonce = continueflag - TPM_NONCE_SIZE; sdesc = init_sdesc(hashalg); if (IS_ERR(sdesc)) { pr_info("can't alloc %s\n", hash_alg); return PTR_ERR(sdesc); } ret = crypto_shash_init(&sdesc->shash); if (ret < 0) goto out; ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result, sizeof result); if (ret < 0) goto out; ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal, sizeof ordinal); if (ret < 0) goto out; va_start(argp, keylen); for (;;) { dlen = va_arg(argp, unsigned int); if (dlen == 0) break; dpos = va_arg(argp, unsigned int); ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen); if (ret < 0) break; } va_end(argp); if (!ret) ret = crypto_shash_final(&sdesc->shash, paramdigest); if (ret < 0) goto out; ret = TSS_rawhmac(testhmac, key, keylen, SHA1_DIGEST_SIZE, paramdigest, TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce, 1, continueflag, 0, 0); if (ret < 0) goto out; if (memcmp(testhmac, authdata, SHA1_DIGEST_SIZE)) ret = -EINVAL; out: kfree_sensitive(sdesc); return ret; } EXPORT_SYMBOL_GPL(TSS_checkhmac1); /* * verify the AUTH2_COMMAND (unseal) result from TPM */ static int TSS_checkhmac2(unsigned char *buffer, const uint32_t command, const unsigned char *ononce, const unsigned char *key1, unsigned int keylen1, const unsigned char *key2, unsigned int keylen2, ...) { uint32_t bufsize; uint16_t tag; uint32_t ordinal; uint32_t result; unsigned char *enonce1; unsigned char *continueflag1; unsigned char *authdata1; unsigned char *enonce2; unsigned char *continueflag2; unsigned char *authdata2; unsigned char testhmac1[SHA1_DIGEST_SIZE]; unsigned char testhmac2[SHA1_DIGEST_SIZE]; unsigned char paramdigest[SHA1_DIGEST_SIZE]; struct sdesc *sdesc; unsigned int dlen; unsigned int dpos; va_list argp; int ret; bufsize = LOAD32(buffer, TPM_SIZE_OFFSET); tag = LOAD16(buffer, 0); ordinal = command; result = LOAD32N(buffer, TPM_RETURN_OFFSET); if (tag == TPM_TAG_RSP_COMMAND) return 0; if (tag != TPM_TAG_RSP_AUTH2_COMMAND) return -EINVAL; authdata1 = buffer + bufsize - (SHA1_DIGEST_SIZE + 1 + SHA1_DIGEST_SIZE + SHA1_DIGEST_SIZE); authdata2 = buffer + bufsize - (SHA1_DIGEST_SIZE); continueflag1 = authdata1 - 1; continueflag2 = authdata2 - 1; enonce1 = continueflag1 - TPM_NONCE_SIZE; enonce2 = continueflag2 - TPM_NONCE_SIZE; sdesc = init_sdesc(hashalg); if (IS_ERR(sdesc)) { pr_info("can't alloc %s\n", hash_alg); return PTR_ERR(sdesc); } ret = crypto_shash_init(&sdesc->shash); if (ret < 0) goto out; ret = crypto_shash_update(&sdesc->shash, (const u8 *)&result, sizeof result); if (ret < 0) goto out; ret = crypto_shash_update(&sdesc->shash, (const u8 *)&ordinal, sizeof ordinal); if (ret < 0) goto out; va_start(argp, keylen2); for (;;) { dlen = va_arg(argp, unsigned int); if (dlen == 0) break; dpos = va_arg(argp, unsigned int); ret = crypto_shash_update(&sdesc->shash, buffer + dpos, dlen); if (ret < 0) break; } va_end(argp); if (!ret) ret = crypto_shash_final(&sdesc->shash, paramdigest); if (ret < 0) goto out; ret = TSS_rawhmac(testhmac1, key1, keylen1, SHA1_DIGEST_SIZE, paramdigest, TPM_NONCE_SIZE, enonce1, TPM_NONCE_SIZE, ononce, 1, continueflag1, 0, 0); if (ret < 0) goto out; if (memcmp(testhmac1, authdata1, SHA1_DIGEST_SIZE)) { ret = -EINVAL; goto out; } ret = TSS_rawhmac(testhmac2, key2, keylen2, SHA1_DIGEST_SIZE, paramdigest, TPM_NONCE_SIZE, enonce2, TPM_NONCE_SIZE, ononce, 1, continueflag2, 0, 0); if (ret < 0) goto out; if (memcmp(testhmac2, authdata2, SHA1_DIGEST_SIZE)) ret = -EINVAL; out: kfree_sensitive(sdesc); return ret; } /* * For key specific tpm requests, we will generate and send our * own TPM command packets using the drivers send function. */ int trusted_tpm_send(unsigned char *cmd, size_t buflen) { struct tpm_buf buf; int rc; if (!chip) return -ENODEV; rc = tpm_try_get_ops(chip); if (rc) return rc; buf.flags = 0; buf.length = buflen; buf.data = cmd; dump_tpm_buf(cmd); rc = tpm_transmit_cmd(chip, &buf, 4, "sending data"); dump_tpm_buf(cmd); if (rc > 0) /* TPM error */ rc = -EPERM; tpm_put_ops(chip); return rc; } EXPORT_SYMBOL_GPL(trusted_tpm_send); /* * Lock a trusted key, by extending a selected PCR. * * Prevents a trusted key that is sealed to PCRs from being accessed. * This uses the tpm driver's extend function. */ static int pcrlock(const int pcrnum) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; return tpm_pcr_extend(chip, pcrnum, digests) ? -EINVAL : 0; } /* * Create an object specific authorisation protocol (OSAP) session */ static int osap(struct tpm_buf *tb, struct osapsess *s, const unsigned char *key, uint16_t type, uint32_t handle) { unsigned char enonce[TPM_NONCE_SIZE]; unsigned char ononce[TPM_NONCE_SIZE]; int ret; ret = tpm_get_random(chip, ononce, TPM_NONCE_SIZE); if (ret < 0) return ret; if (ret != TPM_NONCE_SIZE) return -EIO; tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OSAP); tpm_buf_append_u16(tb, type); tpm_buf_append_u32(tb, handle); tpm_buf_append(tb, ononce, TPM_NONCE_SIZE); ret = trusted_tpm_send(tb->data, tb->length); if (ret < 0) return ret; s->handle = LOAD32(tb->data, TPM_DATA_OFFSET); memcpy(s->enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)]), TPM_NONCE_SIZE); memcpy(enonce, &(tb->data[TPM_DATA_OFFSET + sizeof(uint32_t) + TPM_NONCE_SIZE]), TPM_NONCE_SIZE); return TSS_rawhmac(s->secret, key, SHA1_DIGEST_SIZE, TPM_NONCE_SIZE, enonce, TPM_NONCE_SIZE, ononce, 0, 0); } /* * Create an object independent authorisation protocol (oiap) session */ int oiap(struct tpm_buf *tb, uint32_t *handle, unsigned char *nonce) { int ret; if (!chip) return -ENODEV; tpm_buf_reset(tb, TPM_TAG_RQU_COMMAND, TPM_ORD_OIAP); ret = trusted_tpm_send(tb->data, tb->length); if (ret < 0) return ret; *handle = LOAD32(tb->data, TPM_DATA_OFFSET); memcpy(nonce, &tb->data[TPM_DATA_OFFSET + sizeof(uint32_t)], TPM_NONCE_SIZE); return 0; } EXPORT_SYMBOL_GPL(oiap); struct tpm_digests { unsigned char encauth[SHA1_DIGEST_SIZE]; unsigned char pubauth[SHA1_DIGEST_SIZE]; unsigned char xorwork[SHA1_DIGEST_SIZE * 2]; unsigned char xorhash[SHA1_DIGEST_SIZE]; unsigned char nonceodd[TPM_NONCE_SIZE]; }; /* * Have the TPM seal(encrypt) the trusted key, possibly based on * Platform Configuration Registers (PCRs). AUTH1 for sealing key. */ static int tpm_seal(struct tpm_buf *tb, uint16_t keytype, uint32_t keyhandle, const unsigned char *keyauth, const unsigned char *data, uint32_t datalen, unsigned char *blob, uint32_t *bloblen, const unsigned char *blobauth, const unsigned char *pcrinfo, uint32_t pcrinfosize) { struct osapsess sess; struct tpm_digests *td; unsigned char cont; uint32_t ordinal; uint32_t pcrsize; uint32_t datsize; int sealinfosize; int encdatasize; int storedsize; int ret; int i; /* alloc some work space for all the hashes */ td = kmalloc(sizeof *td, GFP_KERNEL); if (!td) return -ENOMEM; /* get session for sealing key */ ret = osap(tb, &sess, keyauth, keytype, keyhandle); if (ret < 0) goto out; dump_sess(&sess); /* calculate encrypted authorization value */ memcpy(td->xorwork, sess.secret, SHA1_DIGEST_SIZE); memcpy(td->xorwork + SHA1_DIGEST_SIZE, sess.enonce, SHA1_DIGEST_SIZE); ret = TSS_sha1(td->xorwork, SHA1_DIGEST_SIZE * 2, td->xorhash); if (ret < 0) goto out; ret = tpm_get_random(chip, td->nonceodd, TPM_NONCE_SIZE); if (ret < 0) goto out; if (ret != TPM_NONCE_SIZE) { ret = -EIO; goto out; } ordinal = htonl(TPM_ORD_SEAL); datsize = htonl(datalen); pcrsize = htonl(pcrinfosize); cont = 0; /* encrypt data authorization key */ for (i = 0; i < SHA1_DIGEST_SIZE; ++i) td->encauth[i] = td->xorhash[i] ^ blobauth[i]; /* calculate authorization HMAC value */ if (pcrinfosize == 0) { /* no pcr info specified */ ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE, sess.enonce, td->nonceodd, cont, sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE, td->encauth, sizeof(uint32_t), &pcrsize, sizeof(uint32_t), &datsize, datalen, data, 0, 0); } else { /* pcr info specified */ ret = TSS_authhmac(td->pubauth, sess.secret, SHA1_DIGEST_SIZE, sess.enonce, td->nonceodd, cont, sizeof(uint32_t), &ordinal, SHA1_DIGEST_SIZE, td->encauth, sizeof(uint32_t), &pcrsize, pcrinfosize, pcrinfo, sizeof(uint32_t), &datsize, datalen, data, 0, 0); } if (ret < 0) goto out; /* build and send the TPM request packet */ tpm_buf_reset(tb, TPM_TAG_RQU_AUTH1_COMMAND, TPM_ORD_SEAL); tpm_buf_append_u32(tb, keyhandle); tpm_buf_append(tb, td->encauth, SHA1_DIGEST_SIZE); tpm_buf_append_u32(tb, pcrinfosize); tpm_buf_append(tb, pcrinfo, pcrinfosize); tpm_buf_append_u32(tb, datalen); tpm_buf_append(tb, data, datalen); tpm_buf_append_u32(tb, sess.handle); tpm_buf_append(tb, td->nonceodd, TPM_NONCE_SIZE); tpm_buf_append_u8(tb, cont); tpm_buf_append(tb, td->pubauth, SHA1_DIGEST_SIZE); ret = trusted_tpm_send(tb->data, tb->length); if (ret < 0) goto out; /* calculate the size of the returned Blob */ sealinfosize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t)); encdatasize = LOAD32(tb->data, TPM_DATA_OFFSET + sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize); storedsize = sizeof(uint32_t) + sizeof(uint32_t) + sealinfosize + sizeof(uint32_t) + encdatasize; /* check the HMAC in the response */ ret = TSS_checkhmac1(tb->data, ordinal, td->nonceodd, sess.secret, SHA1_DIGEST_SIZE, storedsize, TPM_DATA_OFFSET, 0, 0); /* copy the returned blob to caller */ if (!ret) { memcpy(blob, tb->data + TPM_DATA_OFFSET, storedsize); *bloblen = storedsize; } out: kfree_sensitive(td); return ret; } /* * use the AUTH2_COMMAND form of unseal, to authorize both key and blob */ static int tpm_unseal(struct tpm_buf *tb, uint32_t keyhandle, const unsigned char *keyauth, const unsigned char *blob, int bloblen, const unsigned char *blobauth, unsigned char *data, unsigned int *datalen) { unsigned char nonceodd[TPM_NONCE_SIZE]; unsigned char enonce1[TPM_NONCE_SIZE]; unsigned char enonce2[TPM_NONCE_SIZE]; unsigned char authdata1[SHA1_DIGEST_SIZE]; unsigned char authdata2[SHA1_DIGEST_SIZE]; uint32_t authhandle1 = 0; uint32_t authhandle2 = 0; unsigned char cont = 0; uint32_t ordinal; int ret; /* sessions for unsealing key and data */ ret = oiap(tb, &authhandle1, enonce1); if (ret < 0) { pr_info("oiap failed (%d)\n", ret); return ret; } ret = oiap(tb, &authhandle2, enonce2); if (ret < 0) { pr_info("oiap failed (%d)\n", ret); return ret; } ordinal = htonl(TPM_ORD_UNSEAL); ret = tpm_get_random(chip, nonceodd, TPM_NONCE_SIZE); if (ret < 0) return ret; if (ret != TPM_NONCE_SIZE) { pr_info("tpm_get_random failed (%d)\n", ret); return -EIO; } ret = TSS_authhmac(authdata1, keyauth, TPM_NONCE_SIZE, enonce1, nonceodd, cont, sizeof(uint32_t), &ordinal, bloblen, blob, 0, 0); if (ret < 0) return ret; ret = TSS_authhmac(authdata2, blobauth, TPM_NONCE_SIZE, enonce2, nonceodd, cont, sizeof(uint32_t), &ordinal, bloblen, blob, 0, 0); if (ret < 0) return ret; /* build and send TPM request packet */ tpm_buf_reset(tb, TPM_TAG_RQU_AUTH2_COMMAND, TPM_ORD_UNSEAL); tpm_buf_append_u32(tb, keyhandle); tpm_buf_append(tb, blob, bloblen); tpm_buf_append_u32(tb, authhandle1); tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE); tpm_buf_append_u8(tb, cont); tpm_buf_append(tb, authdata1, SHA1_DIGEST_SIZE); tpm_buf_append_u32(tb, authhandle2); tpm_buf_append(tb, nonceodd, TPM_NONCE_SIZE); tpm_buf_append_u8(tb, cont); tpm_buf_append(tb, authdata2, SHA1_DIGEST_SIZE); ret = trusted_tpm_send(tb->data, tb->length); if (ret < 0) { pr_info("authhmac failed (%d)\n", ret); return ret; } *datalen = LOAD32(tb->data, TPM_DATA_OFFSET); ret = TSS_checkhmac2(tb->data, ordinal, nonceodd, keyauth, SHA1_DIGEST_SIZE, blobauth, SHA1_DIGEST_SIZE, sizeof(uint32_t), TPM_DATA_OFFSET, *datalen, TPM_DATA_OFFSET + sizeof(uint32_t), 0, 0); if (ret < 0) { pr_info("TSS_checkhmac2 failed (%d)\n", ret); return ret; } memcpy(data, tb->data + TPM_DATA_OFFSET + sizeof(uint32_t), *datalen); return 0; } /* * Have the TPM seal(encrypt) the symmetric key */ static int key_seal(struct trusted_key_payload *p, struct trusted_key_options *o) { struct tpm_buf tb; int ret; ret = tpm_buf_init(&tb, 0, 0); if (ret) return ret; /* include migratable flag at end of sealed key */ p->key[p->key_len] = p->migratable; ret = tpm_seal(&tb, o->keytype, o->keyhandle, o->keyauth, p->key, p->key_len + 1, p->blob, &p->blob_len, o->blobauth, o->pcrinfo, o->pcrinfo_len); if (ret < 0) pr_info("srkseal failed (%d)\n", ret); tpm_buf_destroy(&tb); return ret; } /* * Have the TPM unseal(decrypt) the symmetric key */ static int key_unseal(struct trusted_key_payload *p, struct trusted_key_options *o) { struct tpm_buf tb; int ret; ret = tpm_buf_init(&tb, 0, 0); if (ret) return ret; ret = tpm_unseal(&tb, o->keyhandle, o->keyauth, p->blob, p->blob_len, o->blobauth, p->key, &p->key_len); if (ret < 0) pr_info("srkunseal failed (%d)\n", ret); else /* pull migratable flag out of sealed key */ p->migratable = p->key[--p->key_len]; tpm_buf_destroy(&tb); return ret; } enum { Opt_err, Opt_keyhandle, Opt_keyauth, Opt_blobauth, Opt_pcrinfo, Opt_pcrlock, Opt_migratable, Opt_hash, Opt_policydigest, Opt_policyhandle, }; static const match_table_t key_tokens = { {Opt_keyhandle, "keyhandle=%s"}, {Opt_keyauth, "keyauth=%s"}, {Opt_blobauth, "blobauth=%s"}, {Opt_pcrinfo, "pcrinfo=%s"}, {Opt_pcrlock, "pcrlock=%s"}, {Opt_migratable, "migratable=%s"}, {Opt_hash, "hash=%s"}, {Opt_policydigest, "policydigest=%s"}, {Opt_policyhandle, "policyhandle=%s"}, {Opt_err, NULL} }; /* can have zero or more token= options */ static int getoptions(char *c, struct trusted_key_payload *pay, struct trusted_key_options *opt) { substring_t args[MAX_OPT_ARGS]; char *p = c; int token; int res; unsigned long handle; unsigned long lock; unsigned long token_mask = 0; unsigned int digest_len; int i; int tpm2; tpm2 = tpm_is_tpm2(chip); if (tpm2 < 0) return tpm2; opt->hash = tpm2 ? HASH_ALGO_SHA256 : HASH_ALGO_SHA1; if (!c) return 0; while ((p = strsep(&c, " \t"))) { if (*p == '\0' || *p == ' ' || *p == '\t') continue; token = match_token(p, key_tokens, args); if (test_and_set_bit(token, &token_mask)) return -EINVAL; switch (token) { case Opt_pcrinfo: opt->pcrinfo_len = strlen(args[0].from) / 2; if (opt->pcrinfo_len > MAX_PCRINFO_SIZE) return -EINVAL; res = hex2bin(opt->pcrinfo, args[0].from, opt->pcrinfo_len); if (res < 0) return -EINVAL; break; case Opt_keyhandle: res = kstrtoul(args[0].from, 16, &handle); if (res < 0) return -EINVAL; opt->keytype = SEAL_keytype; opt->keyhandle = handle; break; case Opt_keyauth: if (strlen(args[0].from) != 2 * SHA1_DIGEST_SIZE) return -EINVAL; res = hex2bin(opt->keyauth, args[0].from, SHA1_DIGEST_SIZE); if (res < 0) return -EINVAL; break; case Opt_blobauth: /* * TPM 1.2 authorizations are sha1 hashes passed in as * hex strings. TPM 2.0 authorizations are simple * passwords (although it can take a hash as well) */ opt->blobauth_len = strlen(args[0].from); if (opt->blobauth_len == 2 * TPM_DIGEST_SIZE) { res = hex2bin(opt->blobauth, args[0].from, TPM_DIGEST_SIZE); if (res < 0) return -EINVAL; opt->blobauth_len = TPM_DIGEST_SIZE; break; } if (tpm2 && opt->blobauth_len <= sizeof(opt->blobauth)) { memcpy(opt->blobauth, args[0].from, opt->blobauth_len); break; } return -EINVAL; break; case Opt_migratable: if (*args[0].from == '0') pay->migratable = 0; else if (*args[0].from != '1') return -EINVAL; break; case Opt_pcrlock: res = kstrtoul(args[0].from, 10, &lock); if (res < 0) return -EINVAL; opt->pcrlock = lock; break; case Opt_hash: if (test_bit(Opt_policydigest, &token_mask)) return -EINVAL; for (i = 0; i < HASH_ALGO__LAST; i++) { if (!strcmp(args[0].from, hash_algo_name[i])) { opt->hash = i; break; } } if (i == HASH_ALGO__LAST) return -EINVAL; if (!tpm2 && i != HASH_ALGO_SHA1) { pr_info("TPM 1.x only supports SHA-1.\n"); return -EINVAL; } break; case Opt_policydigest: digest_len = hash_digest_size[opt->hash]; if (!tpm2 || strlen(args[0].from) != (2 * digest_len)) return -EINVAL; res = hex2bin(opt->policydigest, args[0].from, digest_len); if (res < 0) return -EINVAL; opt->policydigest_len = digest_len; break; case Opt_policyhandle: if (!tpm2) return -EINVAL; res = kstrtoul(args[0].from, 16, &handle); if (res < 0) return -EINVAL; opt->policyhandle = handle; break; default: return -EINVAL; } } return 0; } static struct trusted_key_options *trusted_options_alloc(void) { struct trusted_key_options *options; int tpm2; tpm2 = tpm_is_tpm2(chip); if (tpm2 < 0) return NULL; options = kzalloc(sizeof *options, GFP_KERNEL); if (options) { /* set any non-zero defaults */ options->keytype = SRK_keytype; if (!tpm2) options->keyhandle = SRKHANDLE; } return options; } static int trusted_tpm_seal(struct trusted_key_payload *p, char *datablob) { struct trusted_key_options *options = NULL; int ret = 0; int tpm2; tpm2 = tpm_is_tpm2(chip); if (tpm2 < 0) return tpm2; options = trusted_options_alloc(); if (!options) return -ENOMEM; ret = getoptions(datablob, p, options); if (ret < 0) goto out; dump_options(options); if (!options->keyhandle && !tpm2) { ret = -EINVAL; goto out; } if (tpm2) ret = tpm2_seal_trusted(chip, p, options); else ret = key_seal(p, options); if (ret < 0) { pr_info("key_seal failed (%d)\n", ret); goto out; } if (options->pcrlock) { ret = pcrlock(options->pcrlock); if (ret < 0) { pr_info("pcrlock failed (%d)\n", ret); goto out; } } out: kfree_sensitive(options); return ret; } static int trusted_tpm_unseal(struct trusted_key_payload *p, char *datablob) { struct trusted_key_options *options = NULL; int ret = 0; int tpm2; tpm2 = tpm_is_tpm2(chip); if (tpm2 < 0) return tpm2; options = trusted_options_alloc(); if (!options) return -ENOMEM; ret = getoptions(datablob, p, options); if (ret < 0) goto out; dump_options(options); if (!options->keyhandle && !tpm2) { ret = -EINVAL; goto out; } if (tpm2) ret = tpm2_unseal_trusted(chip, p, options); else ret = key_unseal(p, options); if (ret < 0) pr_info("key_unseal failed (%d)\n", ret); if (options->pcrlock) { ret = pcrlock(options->pcrlock); if (ret < 0) { pr_info("pcrlock failed (%d)\n", ret); goto out; } } out: kfree_sensitive(options); return ret; } static int trusted_tpm_get_random(unsigned char *key, size_t key_len) { return tpm_get_random(chip, key, key_len); } static void trusted_shash_release(void) { if (hashalg) crypto_free_shash(hashalg); if (hmacalg) crypto_free_shash(hmacalg); } static int __init trusted_shash_alloc(void) { int ret; hmacalg = crypto_alloc_shash(hmac_alg, 0, 0); if (IS_ERR(hmacalg)) { pr_info("could not allocate crypto %s\n", hmac_alg); return PTR_ERR(hmacalg); } hashalg = crypto_alloc_shash(hash_alg, 0, 0); if (IS_ERR(hashalg)) { pr_info("could not allocate crypto %s\n", hash_alg); ret = PTR_ERR(hashalg); goto hashalg_fail; } return 0; hashalg_fail: crypto_free_shash(hmacalg); return ret; } static int __init init_digests(void) { int i; digests = kcalloc(chip->nr_allocated_banks, sizeof(*digests), GFP_KERNEL); if (!digests) return -ENOMEM; for (i = 0; i < chip->nr_allocated_banks; i++) digests[i].alg_id = chip->allocated_banks[i].alg_id; return 0; } static int __init trusted_tpm_init(void) { int ret; chip = tpm_default_chip(); if (!chip) return -ENODEV; ret = init_digests(); if (ret < 0) goto err_put; ret = trusted_shash_alloc(); if (ret < 0) goto err_free; ret = register_key_type(&key_type_trusted); if (ret < 0) goto err_release; return 0; err_release: trusted_shash_release(); err_free: kfree(digests); err_put: put_device(&chip->dev); return ret; } static void trusted_tpm_exit(void) { if (chip) { put_device(&chip->dev); kfree(digests); trusted_shash_release(); unregister_key_type(&key_type_trusted); } } struct trusted_key_ops trusted_key_tpm_ops = { .migratable = 1, /* migratable by default */ .init = trusted_tpm_init, .seal = trusted_tpm_seal, .unseal = trusted_tpm_unseal, .get_random = trusted_tpm_get_random, .exit = trusted_tpm_exit, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1