Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Takashi Sakamoto | 628 | 65.28% | 74 | 85.06% |
Clemens Ladisch | 302 | 31.39% | 7 | 8.05% |
Kristian Högsberg | 14 | 1.46% | 1 | 1.15% |
Stefan Richter | 6 | 0.62% | 1 | 1.15% |
Edmund Raile | 4 | 0.42% | 1 | 1.15% |
Jay Fenlason | 4 | 0.42% | 1 | 1.15% |
Mark Rutland | 3 | 0.31% | 1 | 1.15% |
Greg Kroah-Hartman | 1 | 0.10% | 1 | 1.15% |
Total | 962 | 87 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef SOUND_FIREWIRE_AMDTP_H_INCLUDED #define SOUND_FIREWIRE_AMDTP_H_INCLUDED #include <linux/err.h> #include <linux/interrupt.h> #include <linux/mutex.h> #include <linux/sched.h> #include <sound/asound.h> #include "packets-buffer.h" /** * enum cip_flags - describes details of the streaming protocol * @CIP_NONBLOCKING: In non-blocking mode, each packet contains * sample_rate/8000 samples, with rounding up or down to adjust * for clock skew and left-over fractional samples. This should * be used if supported by the device. * @CIP_BLOCKING: In blocking mode, each packet contains either zero or * SYT_INTERVAL samples, with these two types alternating so that * the overall sample rate comes out right. * @CIP_EMPTY_WITH_TAG0: Only for in-stream. Empty in-packets have TAG0. * @CIP_DBC_IS_END_EVENT: The value of dbc in an packet corresponds to the end * of event in the packet. Out of IEC 61883. * @CIP_WRONG_DBS: Only for in-stream. The value of dbs is wrong in in-packets. * The value of data_block_quadlets is used instead of reported value. * @CIP_SKIP_DBC_ZERO_CHECK: Only for in-stream. Packets with zero in dbc is * skipped for detecting discontinuity. * @CIP_EMPTY_HAS_WRONG_DBC: Only for in-stream. The value of dbc in empty * packet is wrong but the others are correct. * @CIP_JUMBO_PAYLOAD: Only for in-stream. The number of data blocks in an * packet is larger than IEC 61883-6 defines. Current implementation * allows 5 times as large as IEC 61883-6 defines. * @CIP_HEADER_WITHOUT_EOH: Only for in-stream. CIP Header doesn't include * valid EOH. * @CIP_NO_HEADERS: a lack of headers in packets * @CIP_UNALIGHED_DBC: Only for in-stream. The value of dbc is not alighed to * the value of current SYT_INTERVAL; e.g. initial value is not zero. * @CIP_UNAWARE_SYT: For outgoing packet, the value in SYT field of CIP is 0xffff. * For incoming packet, the value in SYT field of CIP is not handled. * @CIP_DBC_IS_PAYLOAD_QUADLETS: Available for incoming packet, and only effective with * CIP_DBC_IS_END_EVENT flag. The value of dbc field is the number of accumulated quadlets * in CIP payload, instead of the number of accumulated data blocks. */ enum cip_flags { CIP_NONBLOCKING = 0x00, CIP_BLOCKING = 0x01, CIP_EMPTY_WITH_TAG0 = 0x02, CIP_DBC_IS_END_EVENT = 0x04, CIP_WRONG_DBS = 0x08, CIP_SKIP_DBC_ZERO_CHECK = 0x10, CIP_EMPTY_HAS_WRONG_DBC = 0x20, CIP_JUMBO_PAYLOAD = 0x40, CIP_HEADER_WITHOUT_EOH = 0x80, CIP_NO_HEADER = 0x100, CIP_UNALIGHED_DBC = 0x200, CIP_UNAWARE_SYT = 0x400, CIP_DBC_IS_PAYLOAD_QUADLETS = 0x800, }; /** * enum cip_sfc - supported Sampling Frequency Codes (SFCs) * @CIP_SFC_32000: 32,000 data blocks * @CIP_SFC_44100: 44,100 data blocks * @CIP_SFC_48000: 48,000 data blocks * @CIP_SFC_88200: 88,200 data blocks * @CIP_SFC_96000: 96,000 data blocks * @CIP_SFC_176400: 176,400 data blocks * @CIP_SFC_192000: 192,000 data blocks * @CIP_SFC_COUNT: the number of supported SFCs * * These values are used to show nominal Sampling Frequency Code in * Format Dependent Field (FDF) of AMDTP packet header. In IEC 61883-6:2002, * this code means the number of events per second. Actually the code * represents the number of data blocks transferred per second in an AMDTP * stream. * * In IEC 61883-6:2005, some extensions were added to support more types of * data such as 'One Bit LInear Audio', therefore the meaning of SFC became * different depending on the types. * * Currently our implementation is compatible with IEC 61883-6:2002. */ enum cip_sfc { CIP_SFC_32000 = 0, CIP_SFC_44100 = 1, CIP_SFC_48000 = 2, CIP_SFC_88200 = 3, CIP_SFC_96000 = 4, CIP_SFC_176400 = 5, CIP_SFC_192000 = 6, CIP_SFC_COUNT }; struct fw_unit; struct fw_iso_context; struct snd_pcm_substream; struct snd_pcm_runtime; enum amdtp_stream_direction { AMDTP_OUT_STREAM = 0, AMDTP_IN_STREAM }; struct pkt_desc { u32 cycle; u32 syt; unsigned int data_blocks; unsigned int data_block_counter; __be32 *ctx_payload; struct list_head link; }; struct amdtp_stream; typedef void (*amdtp_stream_process_ctx_payloads_t)(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count, struct snd_pcm_substream *pcm); struct amdtp_domain; struct amdtp_stream { struct fw_unit *unit; // The combination of cip_flags enumeration-constants. unsigned int flags; enum amdtp_stream_direction direction; struct mutex mutex; /* For packet processing. */ struct fw_iso_context *context; struct iso_packets_buffer buffer; unsigned int queue_size; int packet_index; struct pkt_desc *packet_descs; struct list_head packet_descs_list; struct pkt_desc *packet_descs_cursor; int tag; union { struct { unsigned int ctx_header_size; // limit for payload of iso packet. unsigned int max_ctx_payload_length; // For quirks of CIP headers. // Fixed interval of dbc between previos/current // packets. unsigned int dbc_interval; // The device starts multiplexing events to the packet. bool event_starts; struct { struct seq_desc *descs; unsigned int size; unsigned int pos; } cache; } tx; struct { // To generate CIP header. unsigned int fdf; // To generate constant hardware IRQ. unsigned int event_count; // To calculate CIP data blocks and tstamp. struct { struct seq_desc *descs; unsigned int size; unsigned int pos; } seq; unsigned int data_block_state; unsigned int syt_offset_state; unsigned int last_syt_offset; struct amdtp_stream *replay_target; unsigned int cache_pos; } rx; } ctx_data; /* For CIP headers. */ unsigned int source_node_id_field; unsigned int data_block_quadlets; unsigned int data_block_counter; unsigned int sph; unsigned int fmt; // Internal flags. unsigned int transfer_delay; enum cip_sfc sfc; unsigned int syt_interval; /* For a PCM substream processing. */ struct snd_pcm_substream *pcm; struct work_struct period_work; snd_pcm_uframes_t pcm_buffer_pointer; unsigned int pcm_period_pointer; unsigned int pcm_frame_multiplier; // To start processing content of packets at the same cycle in several contexts for // each direction. bool ready_processing; wait_queue_head_t ready_wait; unsigned int next_cycle; /* For backends to process data blocks. */ void *protocol; amdtp_stream_process_ctx_payloads_t process_ctx_payloads; // For domain. int channel; int speed; struct list_head list; struct amdtp_domain *domain; }; int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, enum amdtp_stream_direction dir, unsigned int flags, unsigned int fmt, amdtp_stream_process_ctx_payloads_t process_ctx_payloads, unsigned int protocol_size); void amdtp_stream_destroy(struct amdtp_stream *s); int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier); unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s); void amdtp_stream_update(struct amdtp_stream *s); int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, struct snd_pcm_runtime *runtime); void amdtp_stream_pcm_prepare(struct amdtp_stream *s); void amdtp_stream_pcm_abort(struct amdtp_stream *s); extern const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT]; extern const unsigned int amdtp_rate_table[CIP_SFC_COUNT]; /** * amdtp_stream_running - check stream is running or not * @s: the AMDTP stream * * If this function returns true, the stream is running. */ static inline bool amdtp_stream_running(struct amdtp_stream *s) { return !IS_ERR(s->context); } /** * amdtp_streaming_error - check for streaming error * @s: the AMDTP stream * * If this function returns true, the stream's packet queue has stopped due to * an asynchronous error. */ static inline bool amdtp_streaming_error(struct amdtp_stream *s) { return s->packet_index < 0; } /** * amdtp_stream_pcm_running - check PCM substream is running or not * @s: the AMDTP stream * * If this function returns true, PCM substream in the AMDTP stream is running. */ static inline bool amdtp_stream_pcm_running(struct amdtp_stream *s) { return !!s->pcm; } /** * amdtp_stream_pcm_trigger - start/stop playback from a PCM device * @s: the AMDTP stream * @pcm: the PCM device to be started, or %NULL to stop the current device * * Call this function on a running isochronous stream to enable the actual * transmission of PCM data. This function should be called from the PCM * device's .trigger callback. */ static inline void amdtp_stream_pcm_trigger(struct amdtp_stream *s, struct snd_pcm_substream *pcm) { WRITE_ONCE(s->pcm, pcm); } /** * amdtp_stream_next_packet_desc - retrieve next descriptor for amdtp packet. * @s: the AMDTP stream * @desc: the descriptor of packet * * This macro computes next descriptor so that the list of descriptors behaves circular queue. */ #define amdtp_stream_next_packet_desc(s, desc) \ list_next_entry_circular(desc, &s->packet_descs_list, link) static inline bool cip_sfc_is_base_44100(enum cip_sfc sfc) { return sfc & 1; } struct seq_desc { unsigned int syt_offset; unsigned int data_blocks; }; struct amdtp_domain { struct list_head streams; unsigned int events_per_period; unsigned int events_per_buffer; struct amdtp_stream *irq_target; struct { unsigned int tx_init_skip; unsigned int tx_start; unsigned int rx_start; } processing_cycle; struct { bool enable:1; bool on_the_fly:1; } replay; }; int amdtp_domain_init(struct amdtp_domain *d); void amdtp_domain_destroy(struct amdtp_domain *d); int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, int channel, int speed); int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, bool replay_on_the_fly); void amdtp_domain_stop(struct amdtp_domain *d); static inline int amdtp_domain_set_events_per_period(struct amdtp_domain *d, unsigned int events_per_period, unsigned int events_per_buffer) { d->events_per_period = events_per_period; d->events_per_buffer = events_per_buffer; return 0; } unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, struct amdtp_stream *s); int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s); /** * amdtp_domain_wait_ready - sleep till being ready to process packets or timeout * @d: the AMDTP domain * @timeout_ms: msec till timeout * * If this function return false, the AMDTP domain should be stopped. */ static inline bool amdtp_domain_wait_ready(struct amdtp_domain *d, unsigned int timeout_ms) { struct amdtp_stream *s; list_for_each_entry(s, &d->streams, list) { unsigned int j = msecs_to_jiffies(timeout_ms); if (wait_event_interruptible_timeout(s->ready_wait, s->ready_processing, j) <= 0) return false; } return true; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1