Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Takashi Sakamoto | 2235 | 99.69% | 18 | 85.71% |
Geert Uytterhoeven | 5 | 0.22% | 1 | 4.76% |
Dan Carpenter | 1 | 0.04% | 1 | 4.76% |
Christophe Jaillet | 1 | 0.04% | 1 | 4.76% |
Total | 2242 | 21 |
// SPDX-License-Identifier: GPL-2.0 // ff-protocol-latter.c - a part of driver for RME Fireface series // // Copyright (c) 2019 Takashi Sakamoto #include <linux/delay.h> #include "ff.h" #define LATTER_STF 0xffff00000004ULL #define LATTER_ISOC_CHANNELS 0xffff00000008ULL #define LATTER_ISOC_START 0xffff0000000cULL #define LATTER_FETCH_MODE 0xffff00000010ULL #define LATTER_SYNC_STATUS 0x0000801c0000ULL // The content of sync status register differs between models. // // Fireface UCX: // 0xf0000000: (unidentified) // 0x0f000000: effective rate of sampling clock // 0x00f00000: detected rate of word clock on BNC interface // 0x000f0000: detected rate of ADAT or S/PDIF on optical interface // 0x0000f000: detected rate of S/PDIF on coaxial interface // 0x00000e00: effective source of sampling clock // 0x00000e00: Internal // 0x00000800: (unidentified) // 0x00000600: Word clock on BNC interface // 0x00000400: ADAT on optical interface // 0x00000200: S/PDIF on coaxial or optical interface // 0x00000100: Optical interface is used for ADAT signal // 0x00000080: (unidentified) // 0x00000040: Synchronized to word clock on BNC interface // 0x00000020: Synchronized to ADAT or S/PDIF on optical interface // 0x00000010: Synchronized to S/PDIF on coaxial interface // 0x00000008: (unidentified) // 0x00000004: Lock word clock on BNC interface // 0x00000002: Lock ADAT or S/PDIF on optical interface // 0x00000001: Lock S/PDIF on coaxial interface // // Fireface 802 (and perhaps UFX): // 0xf0000000: effective rate of sampling clock // 0x0f000000: detected rate of ADAT-B on 2nd optical interface // 0x00f00000: detected rate of ADAT-A on 1st optical interface // 0x000f0000: detected rate of AES/EBU on XLR or coaxial interface // 0x0000f000: detected rate of word clock on BNC interface // 0x00000e00: effective source of sampling clock // 0x00000e00: internal // 0x00000800: ADAT-B // 0x00000600: ADAT-A // 0x00000400: AES/EBU // 0x00000200: Word clock // 0x00000080: Synchronized to ADAT-B on 2nd optical interface // 0x00000040: Synchronized to ADAT-A on 1st optical interface // 0x00000020: Synchronized to AES/EBU on XLR or 2nd optical interface // 0x00000010: Synchronized to word clock on BNC interface // 0x00000008: Lock ADAT-B on 2nd optical interface // 0x00000004: Lock ADAT-A on 1st optical interface // 0x00000002: Lock AES/EBU on XLR or 2nd optical interface // 0x00000001: Lock word clock on BNC interface // // The pattern for rate bits: // 0x00: 32.0 kHz // 0x01: 44.1 kHz // 0x02: 48.0 kHz // 0x04: 64.0 kHz // 0x05: 88.2 kHz // 0x06: 96.0 kHz // 0x08: 128.0 kHz // 0x09: 176.4 kHz // 0x0a: 192.0 kHz static int parse_clock_bits(u32 data, unsigned int *rate, enum snd_ff_clock_src *src, enum snd_ff_unit_version unit_version) { static const struct { unsigned int rate; u32 flag; } *rate_entry, rate_entries[] = { { 32000, 0x00, }, { 44100, 0x01, }, { 48000, 0x02, }, { 64000, 0x04, }, { 88200, 0x05, }, { 96000, 0x06, }, { 128000, 0x08, }, { 176400, 0x09, }, { 192000, 0x0a, }, }; static const struct { enum snd_ff_clock_src src; u32 flag; } *clk_entry, *clk_entries, ucx_clk_entries[] = { { SND_FF_CLOCK_SRC_SPDIF, 0x00000200, }, { SND_FF_CLOCK_SRC_ADAT1, 0x00000400, }, { SND_FF_CLOCK_SRC_WORD, 0x00000600, }, { SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, }, }, ufx_ff802_clk_entries[] = { { SND_FF_CLOCK_SRC_WORD, 0x00000200, }, { SND_FF_CLOCK_SRC_SPDIF, 0x00000400, }, { SND_FF_CLOCK_SRC_ADAT1, 0x00000600, }, { SND_FF_CLOCK_SRC_ADAT2, 0x00000800, }, { SND_FF_CLOCK_SRC_INTERNAL, 0x00000e00, }, }; u32 rate_bits; unsigned int clk_entry_count; int i; if (unit_version == SND_FF_UNIT_VERSION_UCX) { rate_bits = (data & 0x0f000000) >> 24; clk_entries = ucx_clk_entries; clk_entry_count = ARRAY_SIZE(ucx_clk_entries); } else { rate_bits = (data & 0xf0000000) >> 28; clk_entries = ufx_ff802_clk_entries; clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries); } for (i = 0; i < ARRAY_SIZE(rate_entries); ++i) { rate_entry = rate_entries + i; if (rate_bits == rate_entry->flag) { *rate = rate_entry->rate; break; } } if (i == ARRAY_SIZE(rate_entries)) return -EIO; for (i = 0; i < clk_entry_count; ++i) { clk_entry = clk_entries + i; if ((data & 0x000e00) == clk_entry->flag) { *src = clk_entry->src; break; } } if (i == clk_entry_count) return -EIO; return 0; } static int latter_get_clock(struct snd_ff *ff, unsigned int *rate, enum snd_ff_clock_src *src) { __le32 reg; u32 data; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, LATTER_SYNC_STATUS, ®, sizeof(reg), 0); if (err < 0) return err; data = le32_to_cpu(reg); return parse_clock_bits(data, rate, src, ff->unit_version); } static int latter_switch_fetching_mode(struct snd_ff *ff, bool enable) { u32 data; __le32 reg; if (enable) data = 0x00000000; else data = 0xffffffff; reg = cpu_to_le32(data); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_FETCH_MODE, ®, sizeof(reg), 0); } static int latter_allocate_resources(struct snd_ff *ff, unsigned int rate) { enum snd_ff_stream_mode mode; unsigned int code; __le32 reg; unsigned int count; int i; int err; // Set the number of data blocks transferred in a second. if (rate % 48000 == 0) code = 0x04; else if (rate % 44100 == 0) code = 0x02; else if (rate % 32000 == 0) code = 0x00; else return -EINVAL; if (rate >= 64000 && rate < 128000) code |= 0x08; else if (rate >= 128000) code |= 0x10; reg = cpu_to_le32(code); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_STF, ®, sizeof(reg), 0); if (err < 0) return err; // Confirm to shift transmission clock. count = 0; while (count++ < 10) { unsigned int curr_rate; enum snd_ff_clock_src src; err = latter_get_clock(ff, &curr_rate, &src); if (err < 0) return err; if (curr_rate == rate) break; } if (count > 10) return -ETIMEDOUT; for (i = 0; i < ARRAY_SIZE(amdtp_rate_table); ++i) { if (rate == amdtp_rate_table[i]) break; } if (i == ARRAY_SIZE(amdtp_rate_table)) return -EINVAL; err = snd_ff_stream_get_multiplier_mode(i, &mode); if (err < 0) return err; // Keep resources for in-stream. ff->tx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->tx_resources, amdtp_stream_get_max_payload(&ff->tx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) return err; // Keep resources for out-stream. ff->rx_resources.channels_mask = 0x00000000000000ffuLL; err = fw_iso_resources_allocate(&ff->rx_resources, amdtp_stream_get_max_payload(&ff->rx_stream), fw_parent_device(ff->unit)->max_speed); if (err < 0) fw_iso_resources_free(&ff->tx_resources); return err; } static int latter_begin_session(struct snd_ff *ff, unsigned int rate) { unsigned int generation = ff->rx_resources.generation; unsigned int flag; u32 data; __le32 reg; int err; if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) { // For Fireface UCX. Always use the maximum number of data // channels in data block of packet. if (rate >= 32000 && rate <= 48000) flag = 0x92; else if (rate >= 64000 && rate <= 96000) flag = 0x8e; else if (rate >= 128000 && rate <= 192000) flag = 0x8c; else return -EINVAL; } else { // For Fireface UFX and 802. Due to bandwidth limitation on // IEEE 1394a (400 Mbps), Analog 1-12 and AES are available // without any ADAT at quadruple speed. if (rate >= 32000 && rate <= 48000) flag = 0x9e; else if (rate >= 64000 && rate <= 96000) flag = 0x96; else if (rate >= 128000 && rate <= 192000) flag = 0x8e; else return -EINVAL; } if (generation != fw_parent_device(ff->unit)->card->generation) { err = fw_iso_resources_update(&ff->tx_resources); if (err < 0) return err; err = fw_iso_resources_update(&ff->rx_resources); if (err < 0) return err; } data = (ff->tx_resources.channel << 8) | ff->rx_resources.channel; reg = cpu_to_le32(data); err = snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_ISOC_CHANNELS, ®, sizeof(reg), 0); if (err < 0) return err; reg = cpu_to_le32(flag); return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_ISOC_START, ®, sizeof(reg), 0); } static void latter_finish_session(struct snd_ff *ff) { __le32 reg; reg = cpu_to_le32(0x00000000); snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, LATTER_ISOC_START, ®, sizeof(reg), 0); } static void latter_dump_status(struct snd_ff *ff, struct snd_info_buffer *buffer) { static const struct { char *const label; u32 locked_mask; u32 synced_mask; } *clk_entry, *clk_entries, ucx_clk_entries[] = { { "S/PDIF", 0x00000001, 0x00000010, }, { "ADAT", 0x00000002, 0x00000020, }, { "WDClk", 0x00000004, 0x00000040, }, }, ufx_ff802_clk_entries[] = { { "WDClk", 0x00000001, 0x00000010, }, { "AES/EBU", 0x00000002, 0x00000020, }, { "ADAT-A", 0x00000004, 0x00000040, }, { "ADAT-B", 0x00000008, 0x00000080, }, }; __le32 reg; u32 data; unsigned int rate; enum snd_ff_clock_src src; const char *label; unsigned int clk_entry_count; int i; int err; err = snd_fw_transaction(ff->unit, TCODE_READ_QUADLET_REQUEST, LATTER_SYNC_STATUS, ®, sizeof(reg), 0); if (err < 0) return; data = le32_to_cpu(reg); snd_iprintf(buffer, "External source detection:\n"); if (ff->unit_version == SND_FF_UNIT_VERSION_UCX) { clk_entries = ucx_clk_entries; clk_entry_count = ARRAY_SIZE(ucx_clk_entries); } else { clk_entries = ufx_ff802_clk_entries; clk_entry_count = ARRAY_SIZE(ufx_ff802_clk_entries); } for (i = 0; i < clk_entry_count; ++i) { clk_entry = clk_entries + i; snd_iprintf(buffer, "%s: ", clk_entry->label); if (data & clk_entry->locked_mask) { if (data & clk_entry->synced_mask) snd_iprintf(buffer, "sync\n"); else snd_iprintf(buffer, "lock\n"); } else { snd_iprintf(buffer, "none\n"); } } err = parse_clock_bits(data, &rate, &src, ff->unit_version); if (err < 0) return; label = snd_ff_proc_get_clk_label(src); if (!label) return; snd_iprintf(buffer, "Referred clock: %s %d\n", label, rate); } // NOTE: transactions are transferred within 0x00-0x7f in allocated range of // address. This seems to be for check of discontinuity in receiver side. // // Like Fireface 400, drivers can select one of 4 options for lower 4 bytes of // destination address by bit flags in quadlet register (little endian) at // 0x'ffff'0000'0014: // // bit flags: offset of destination address // - 0x00002000: 0x'....'....'0000'0000 // - 0x00004000: 0x'....'....'0000'0080 // - 0x00008000: 0x'....'....'0000'0100 // - 0x00010000: 0x'....'....'0000'0180 // // Drivers can suppress the device to transfer asynchronous transactions by // clear these bit flags. // // Actually, the register is write-only and includes the other settings such as // input attenuation. This driver allocates for the first option // (0x'....'....'0000'0000) and expects userspace application to configure the // register for it. static void latter_handle_midi_msg(struct snd_ff *ff, unsigned int offset, const __le32 *buf, size_t length, u32 tstamp) { u32 data = le32_to_cpu(*buf); unsigned int index = (data & 0x000000f0) >> 4; u8 byte[3]; struct snd_rawmidi_substream *substream; unsigned int len; if (index >= ff->spec->midi_in_ports) return; switch (data & 0x0000000f) { case 0x00000008: case 0x00000009: case 0x0000000a: case 0x0000000b: case 0x0000000e: len = 3; break; case 0x0000000c: case 0x0000000d: len = 2; break; default: len = data & 0x00000003; if (len == 0) len = 3; break; } byte[0] = (data & 0x0000ff00) >> 8; byte[1] = (data & 0x00ff0000) >> 16; byte[2] = (data & 0xff000000) >> 24; substream = READ_ONCE(ff->tx_midi_substreams[index]); if (substream) snd_rawmidi_receive(substream, byte, len); } /* * When return minus value, given argument is not MIDI status. * When return 0, given argument is a beginning of system exclusive. * When return the others, given argument is MIDI data. */ static inline int calculate_message_bytes(u8 status) { switch (status) { case 0xf6: /* Tune request. */ case 0xf8: /* Timing clock. */ case 0xfa: /* Start. */ case 0xfb: /* Continue. */ case 0xfc: /* Stop. */ case 0xfe: /* Active sensing. */ case 0xff: /* System reset. */ return 1; case 0xf1: /* MIDI time code quarter frame. */ case 0xf3: /* Song select. */ return 2; case 0xf2: /* Song position pointer. */ return 3; case 0xf0: /* Exclusive. */ return 0; case 0xf7: /* End of exclusive. */ break; case 0xf4: /* Undefined. */ case 0xf5: /* Undefined. */ case 0xf9: /* Undefined. */ case 0xfd: /* Undefined. */ break; default: switch (status & 0xf0) { case 0x80: /* Note on. */ case 0x90: /* Note off. */ case 0xa0: /* Polyphonic key pressure. */ case 0xb0: /* Control change and Mode change. */ case 0xe0: /* Pitch bend change. */ return 3; case 0xc0: /* Program change. */ case 0xd0: /* Channel pressure. */ return 2; default: break; } break; } return -EINVAL; } static int latter_fill_midi_msg(struct snd_ff *ff, struct snd_rawmidi_substream *substream, unsigned int port) { u32 data = {0}; u8 *buf = (u8 *)&data; int consumed; buf[0] = port << 4; consumed = snd_rawmidi_transmit_peek(substream, buf + 1, 3); if (consumed <= 0) return consumed; if (!ff->on_sysex[port]) { if (buf[1] != 0xf0) { if (consumed < calculate_message_bytes(buf[1])) return 0; } else { // The beginning of exclusives. ff->on_sysex[port] = true; } buf[0] |= consumed; } else { if (buf[1] != 0xf7) { if (buf[2] == 0xf7 || buf[3] == 0xf7) { // Transfer end code at next time. consumed -= 1; } buf[0] |= consumed; } else { // The end of exclusives. ff->on_sysex[port] = false; consumed = 1; buf[0] |= 0x0f; } } ff->msg_buf[port][0] = cpu_to_le32(data); ff->rx_bytes[port] = consumed; return 1; } const struct snd_ff_protocol snd_ff_protocol_latter = { .handle_msg = latter_handle_midi_msg, .fill_midi_msg = latter_fill_midi_msg, .get_clock = latter_get_clock, .switch_fetching_mode = latter_switch_fetching_mode, .allocate_resources = latter_allocate_resources, .begin_session = latter_begin_session, .finish_session = latter_finish_session, .dump_status = latter_dump_status, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1