Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eliot Blennerhassett | 3420 | 98.59% | 18 | 81.82% |
Jesper Juhl | 41 | 1.18% | 1 | 4.55% |
Pierre-Louis Bossart | 3 | 0.09% | 1 | 4.55% |
Thomas Meyer | 3 | 0.09% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.06% | 1 | 4.55% |
Total | 3469 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /****************************************************************************** AudioScience HPI driver Copyright (C) 1997-2014 AudioScience Inc. <support@audioscience.com> \file hpicmn.c Common functions used by hpixxxx.c modules (C) Copyright AudioScience Inc. 1998-2003 *******************************************************************************/ #define SOURCEFILE_NAME "hpicmn.c" #include "hpi_internal.h" #include "hpidebug.h" #include "hpimsginit.h" #include "hpicmn.h" struct hpi_adapters_list { struct hpios_spinlock list_lock; struct hpi_adapter_obj adapter[HPI_MAX_ADAPTERS]; u16 gw_num_adapters; }; static struct hpi_adapters_list adapters; /** * hpi_validate_response - Given an HPI Message that was sent out and * a response that was received, validate that the response has the * correct fields filled in, i.e ObjectType, Function etc * @phm: message * @phr: response */ u16 hpi_validate_response(struct hpi_message *phm, struct hpi_response *phr) { if (phr->type != HPI_TYPE_RESPONSE) { HPI_DEBUG_LOG(ERROR, "header type %d invalid\n", phr->type); return HPI_ERROR_INVALID_RESPONSE; } if (phr->object != phm->object) { HPI_DEBUG_LOG(ERROR, "header object %d invalid\n", phr->object); return HPI_ERROR_INVALID_RESPONSE; } if (phr->function != phm->function) { HPI_DEBUG_LOG(ERROR, "header function %d invalid\n", phr->function); return HPI_ERROR_INVALID_RESPONSE; } return 0; } u16 hpi_add_adapter(struct hpi_adapter_obj *pao) { u16 retval = 0; /*HPI_ASSERT(pao->type); */ hpios_alistlock_lock(&adapters); if (pao->index >= HPI_MAX_ADAPTERS) { retval = HPI_ERROR_BAD_ADAPTER_NUMBER; goto unlock; } if (adapters.adapter[pao->index].type) { int a; for (a = HPI_MAX_ADAPTERS - 1; a >= 0; a--) { if (!adapters.adapter[a].type) { HPI_DEBUG_LOG(WARNING, "ASI%X duplicate index %d moved to %d\n", pao->type, pao->index, a); pao->index = a; break; } } if (a < 0) { retval = HPI_ERROR_DUPLICATE_ADAPTER_NUMBER; goto unlock; } } adapters.adapter[pao->index] = *pao; hpios_dsplock_init(&adapters.adapter[pao->index]); adapters.gw_num_adapters++; unlock: hpios_alistlock_unlock(&adapters); return retval; } void hpi_delete_adapter(struct hpi_adapter_obj *pao) { if (!pao->type) { HPI_DEBUG_LOG(ERROR, "removing null adapter?\n"); return; } hpios_alistlock_lock(&adapters); if (adapters.adapter[pao->index].type) adapters.gw_num_adapters--; memset(&adapters.adapter[pao->index], 0, sizeof(adapters.adapter[0])); hpios_alistlock_unlock(&adapters); } /** * hpi_find_adapter - FindAdapter returns a pointer to the struct * hpi_adapter_obj with index wAdapterIndex in an HPI_ADAPTERS_LIST * structure. * @adapter_index: value in [0, HPI_MAX_ADAPTERS[ */ struct hpi_adapter_obj *hpi_find_adapter(u16 adapter_index) { struct hpi_adapter_obj *pao = NULL; if (adapter_index >= HPI_MAX_ADAPTERS) { HPI_DEBUG_LOG(VERBOSE, "find_adapter invalid index %d\n", adapter_index); return NULL; } pao = &adapters.adapter[adapter_index]; if (pao->type != 0) { /* HPI_DEBUG_LOG(VERBOSE, "Found adapter index %d\n", wAdapterIndex); */ return pao; } else { /* HPI_DEBUG_LOG(VERBOSE, "No adapter index %d\n", wAdapterIndex); */ return NULL; } } /** * wipe_adapter_list - wipe an HPI_ADAPTERS_LIST structure. * */ static void wipe_adapter_list(void) { memset(&adapters, 0, sizeof(adapters)); } static void subsys_get_adapter(struct hpi_message *phm, struct hpi_response *phr) { int count = phm->obj_index; u16 index = 0; /* find the nCount'th nonzero adapter in array */ for (index = 0; index < HPI_MAX_ADAPTERS; index++) { if (adapters.adapter[index].type) { if (!count) break; count--; } } if (index < HPI_MAX_ADAPTERS) { phr->u.s.adapter_index = adapters.adapter[index].index; phr->u.s.adapter_type = adapters.adapter[index].type; } else { phr->u.s.adapter_index = 0; phr->u.s.adapter_type = 0; phr->error = HPI_ERROR_INVALID_OBJ_INDEX; } } static unsigned int control_cache_alloc_check(struct hpi_control_cache *pC) { unsigned int i; int cached = 0; if (!pC) return 0; if (pC->init) return pC->init; if (!pC->p_cache) return 0; if (pC->control_count && pC->cache_size_in_bytes) { char *p_master_cache; unsigned int byte_count = 0; p_master_cache = (char *)pC->p_cache; HPI_DEBUG_LOG(DEBUG, "check %d controls\n", pC->control_count); for (i = 0; i < pC->control_count; i++) { struct hpi_control_cache_info *info = (struct hpi_control_cache_info *) &p_master_cache[byte_count]; u16 control_index = info->control_index; if (control_index >= pC->control_count) { HPI_DEBUG_LOG(INFO, "adap %d control index %d out of range, cache not ready?\n", pC->adap_idx, control_index); return 0; } if (!info->size_in32bit_words) { if (!i) { HPI_DEBUG_LOG(INFO, "adap %d cache not ready?\n", pC->adap_idx); return 0; } /* The cache is invalid. * Minimum valid entry size is * sizeof(struct hpi_control_cache_info) */ HPI_DEBUG_LOG(ERROR, "adap %d zero size cache entry %d\n", pC->adap_idx, i); break; } if (info->control_type) { pC->p_info[control_index] = info; cached++; } else { /* dummy cache entry */ pC->p_info[control_index] = NULL; } byte_count += info->size_in32bit_words * 4; HPI_DEBUG_LOG(VERBOSE, "cached %d, pinfo %p index %d type %d size %d\n", cached, pC->p_info[info->control_index], info->control_index, info->control_type, info->size_in32bit_words); /* quit loop early if whole cache has been scanned. * dwControlCount is the maximum possible entries * but some may be absent from the cache */ if (byte_count >= pC->cache_size_in_bytes) break; /* have seen last control index */ if (info->control_index == pC->control_count - 1) break; } if (byte_count != pC->cache_size_in_bytes) HPI_DEBUG_LOG(WARNING, "adap %d bytecount %d != cache size %d\n", pC->adap_idx, byte_count, pC->cache_size_in_bytes); else HPI_DEBUG_LOG(DEBUG, "adap %d cache good, bytecount == cache size = %d\n", pC->adap_idx, byte_count); pC->init = (u16)cached; } return pC->init; } /** Find a control. */ static short find_control(u16 control_index, struct hpi_control_cache *p_cache, struct hpi_control_cache_info **pI) { if (!control_cache_alloc_check(p_cache)) { HPI_DEBUG_LOG(VERBOSE, "control_cache_alloc_check() failed %d\n", control_index); return 0; } *pI = p_cache->p_info[control_index]; if (!*pI) { HPI_DEBUG_LOG(VERBOSE, "Uncached Control %d\n", control_index); return 0; } else { HPI_DEBUG_LOG(VERBOSE, "find_control() type %d\n", (*pI)->control_type); } return 1; } /* allow unified treatment of several string fields within struct */ #define HPICMN_PAD_OFS_AND_SIZE(m) {\ offsetof(struct hpi_control_cache_pad, m), \ sizeof(((struct hpi_control_cache_pad *)(NULL))->m) } struct pad_ofs_size { unsigned int offset; unsigned int field_size; }; static const struct pad_ofs_size pad_desc[] = { HPICMN_PAD_OFS_AND_SIZE(c_channel), /* HPI_PAD_CHANNEL_NAME */ HPICMN_PAD_OFS_AND_SIZE(c_artist), /* HPI_PAD_ARTIST */ HPICMN_PAD_OFS_AND_SIZE(c_title), /* HPI_PAD_TITLE */ HPICMN_PAD_OFS_AND_SIZE(c_comment), /* HPI_PAD_COMMENT */ }; /** CheckControlCache checks the cache and fills the struct hpi_response * accordingly. It returns one if a cache hit occurred, zero otherwise. */ short hpi_check_control_cache_single(struct hpi_control_cache_single *pC, struct hpi_message *phm, struct hpi_response *phr) { size_t response_size; short found = 1; /* set the default response size */ response_size = sizeof(struct hpi_response_header) + sizeof(struct hpi_control_res); switch (pC->u.i.control_type) { case HPI_CONTROL_METER: if (phm->u.c.attribute == HPI_METER_PEAK) { phr->u.c.an_log_value[0] = pC->u.meter.an_log_peak[0]; phr->u.c.an_log_value[1] = pC->u.meter.an_log_peak[1]; } else if (phm->u.c.attribute == HPI_METER_RMS) { if (pC->u.meter.an_logRMS[0] == HPI_CACHE_INVALID_SHORT) { phr->error = HPI_ERROR_INVALID_CONTROL_ATTRIBUTE; phr->u.c.an_log_value[0] = HPI_METER_MINIMUM; phr->u.c.an_log_value[1] = HPI_METER_MINIMUM; } else { phr->u.c.an_log_value[0] = pC->u.meter.an_logRMS[0]; phr->u.c.an_log_value[1] = pC->u.meter.an_logRMS[1]; } } else found = 0; break; case HPI_CONTROL_VOLUME: if (phm->u.c.attribute == HPI_VOLUME_GAIN) { phr->u.c.an_log_value[0] = pC->u.vol.an_log[0]; phr->u.c.an_log_value[1] = pC->u.vol.an_log[1]; } else if (phm->u.c.attribute == HPI_VOLUME_MUTE) { if (pC->u.vol.flags & HPI_VOLUME_FLAG_HAS_MUTE) { if (pC->u.vol.flags & HPI_VOLUME_FLAG_MUTED) phr->u.c.param1 = HPI_BITMASK_ALL_CHANNELS; else phr->u.c.param1 = 0; } else { phr->error = HPI_ERROR_INVALID_CONTROL_ATTRIBUTE; phr->u.c.param1 = 0; } } else { found = 0; } break; case HPI_CONTROL_MULTIPLEXER: if (phm->u.c.attribute == HPI_MULTIPLEXER_SOURCE) { phr->u.c.param1 = pC->u.mux.source_node_type; phr->u.c.param2 = pC->u.mux.source_node_index; } else { found = 0; } break; case HPI_CONTROL_CHANNEL_MODE: if (phm->u.c.attribute == HPI_CHANNEL_MODE_MODE) phr->u.c.param1 = pC->u.mode.mode; else found = 0; break; case HPI_CONTROL_LEVEL: if (phm->u.c.attribute == HPI_LEVEL_GAIN) { phr->u.c.an_log_value[0] = pC->u.level.an_log[0]; phr->u.c.an_log_value[1] = pC->u.level.an_log[1]; } else found = 0; break; case HPI_CONTROL_TUNER: if (phm->u.c.attribute == HPI_TUNER_FREQ) phr->u.c.param1 = pC->u.tuner.freq_ink_hz; else if (phm->u.c.attribute == HPI_TUNER_BAND) phr->u.c.param1 = pC->u.tuner.band; else if (phm->u.c.attribute == HPI_TUNER_LEVEL_AVG) if (pC->u.tuner.s_level_avg == HPI_CACHE_INVALID_SHORT) { phr->u.cu.tuner.s_level = 0; phr->error = HPI_ERROR_INVALID_CONTROL_ATTRIBUTE; } else phr->u.cu.tuner.s_level = pC->u.tuner.s_level_avg; else found = 0; break; case HPI_CONTROL_AESEBU_RECEIVER: if (phm->u.c.attribute == HPI_AESEBURX_ERRORSTATUS) phr->u.c.param1 = pC->u.aes3rx.error_status; else if (phm->u.c.attribute == HPI_AESEBURX_FORMAT) phr->u.c.param1 = pC->u.aes3rx.format; else found = 0; break; case HPI_CONTROL_AESEBU_TRANSMITTER: if (phm->u.c.attribute == HPI_AESEBUTX_FORMAT) phr->u.c.param1 = pC->u.aes3tx.format; else found = 0; break; case HPI_CONTROL_TONEDETECTOR: if (phm->u.c.attribute == HPI_TONEDETECTOR_STATE) phr->u.c.param1 = pC->u.tone.state; else found = 0; break; case HPI_CONTROL_SILENCEDETECTOR: if (phm->u.c.attribute == HPI_SILENCEDETECTOR_STATE) { phr->u.c.param1 = pC->u.silence.state; } else found = 0; break; case HPI_CONTROL_MICROPHONE: if (phm->u.c.attribute == HPI_MICROPHONE_PHANTOM_POWER) phr->u.c.param1 = pC->u.microphone.phantom_state; else found = 0; break; case HPI_CONTROL_SAMPLECLOCK: if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE) phr->u.c.param1 = pC->u.clk.source; else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE_INDEX) { if (pC->u.clk.source_index == HPI_CACHE_INVALID_UINT16) { phr->u.c.param1 = 0; phr->error = HPI_ERROR_INVALID_CONTROL_ATTRIBUTE; } else phr->u.c.param1 = pC->u.clk.source_index; } else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SAMPLERATE) phr->u.c.param1 = pC->u.clk.sample_rate; else found = 0; break; case HPI_CONTROL_PAD:{ struct hpi_control_cache_pad *p_pad; p_pad = (struct hpi_control_cache_pad *)pC; if (!(p_pad->field_valid_flags & (1 << HPI_CTL_ATTR_INDEX(phm->u.c. attribute)))) { phr->error = HPI_ERROR_INVALID_CONTROL_ATTRIBUTE; break; } if (phm->u.c.attribute == HPI_PAD_PROGRAM_ID) phr->u.c.param1 = p_pad->pI; else if (phm->u.c.attribute == HPI_PAD_PROGRAM_TYPE) phr->u.c.param1 = p_pad->pTY; else { unsigned int index = HPI_CTL_ATTR_INDEX(phm->u.c. attribute) - 1; unsigned int offset = phm->u.c.param1; unsigned int pad_string_len, field_size; char *pad_string; unsigned int tocopy; if (index > ARRAY_SIZE(pad_desc) - 1) { phr->error = HPI_ERROR_INVALID_CONTROL_ATTRIBUTE; break; } pad_string = ((char *)p_pad) + pad_desc[index].offset; field_size = pad_desc[index].field_size; /* Ensure null terminator */ pad_string[field_size - 1] = 0; pad_string_len = strlen(pad_string) + 1; if (offset > pad_string_len) { phr->error = HPI_ERROR_INVALID_CONTROL_VALUE; break; } tocopy = pad_string_len - offset; if (tocopy > sizeof(phr->u.cu.chars8.sz_data)) tocopy = sizeof(phr->u.cu.chars8. sz_data); memcpy(phr->u.cu.chars8.sz_data, &pad_string[offset], tocopy); phr->u.cu.chars8.remaining_chars = pad_string_len - offset - tocopy; } } break; default: found = 0; break; } HPI_DEBUG_LOG(VERBOSE, "%s Adap %d, Ctl %d, Type %d, Attr %d\n", found ? "Cached" : "Uncached", phm->adapter_index, pC->u.i.control_index, pC->u.i.control_type, phm->u.c.attribute); if (found) { phr->size = (u16)response_size; phr->type = HPI_TYPE_RESPONSE; phr->object = phm->object; phr->function = phm->function; } return found; } short hpi_check_control_cache(struct hpi_control_cache *p_cache, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_control_cache_info *pI; if (!find_control(phm->obj_index, p_cache, &pI)) { HPI_DEBUG_LOG(VERBOSE, "HPICMN find_control() failed for adap %d\n", phm->adapter_index); return 0; } phr->error = 0; phr->specific_error = 0; phr->version = 0; return hpi_check_control_cache_single((struct hpi_control_cache_single *)pI, phm, phr); } /** Updates the cache with Set values. Only update if no error. Volume and Level return the limited values in the response, so use these Multiplexer does so use sent values */ void hpi_cmn_control_cache_sync_to_msg_single(struct hpi_control_cache_single *pC, struct hpi_message *phm, struct hpi_response *phr) { switch (pC->u.i.control_type) { case HPI_CONTROL_VOLUME: if (phm->u.c.attribute == HPI_VOLUME_GAIN) { pC->u.vol.an_log[0] = phr->u.c.an_log_value[0]; pC->u.vol.an_log[1] = phr->u.c.an_log_value[1]; } else if (phm->u.c.attribute == HPI_VOLUME_MUTE) { if (phm->u.c.param1) pC->u.vol.flags |= HPI_VOLUME_FLAG_MUTED; else pC->u.vol.flags &= ~HPI_VOLUME_FLAG_MUTED; } break; case HPI_CONTROL_MULTIPLEXER: /* mux does not return its setting on Set command. */ if (phm->u.c.attribute == HPI_MULTIPLEXER_SOURCE) { pC->u.mux.source_node_type = (u16)phm->u.c.param1; pC->u.mux.source_node_index = (u16)phm->u.c.param2; } break; case HPI_CONTROL_CHANNEL_MODE: /* mode does not return its setting on Set command. */ if (phm->u.c.attribute == HPI_CHANNEL_MODE_MODE) pC->u.mode.mode = (u16)phm->u.c.param1; break; case HPI_CONTROL_LEVEL: if (phm->u.c.attribute == HPI_LEVEL_GAIN) { pC->u.vol.an_log[0] = phr->u.c.an_log_value[0]; pC->u.vol.an_log[1] = phr->u.c.an_log_value[1]; } break; case HPI_CONTROL_MICROPHONE: if (phm->u.c.attribute == HPI_MICROPHONE_PHANTOM_POWER) pC->u.microphone.phantom_state = (u16)phm->u.c.param1; break; case HPI_CONTROL_AESEBU_TRANSMITTER: if (phm->u.c.attribute == HPI_AESEBUTX_FORMAT) pC->u.aes3tx.format = phm->u.c.param1; break; case HPI_CONTROL_AESEBU_RECEIVER: if (phm->u.c.attribute == HPI_AESEBURX_FORMAT) pC->u.aes3rx.format = phm->u.c.param1; break; case HPI_CONTROL_SAMPLECLOCK: if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE) pC->u.clk.source = (u16)phm->u.c.param1; else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SOURCE_INDEX) pC->u.clk.source_index = (u16)phm->u.c.param1; else if (phm->u.c.attribute == HPI_SAMPLECLOCK_SAMPLERATE) pC->u.clk.sample_rate = phm->u.c.param1; break; default: break; } } void hpi_cmn_control_cache_sync_to_msg(struct hpi_control_cache *p_cache, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_control_cache_single *pC; struct hpi_control_cache_info *pI; if (phr->error) return; if (!find_control(phm->obj_index, p_cache, &pI)) { HPI_DEBUG_LOG(VERBOSE, "HPICMN find_control() failed for adap %d\n", phm->adapter_index); return; } /* pC is the default cached control strucure. May be cast to something else in the following switch statement. */ pC = (struct hpi_control_cache_single *)pI; hpi_cmn_control_cache_sync_to_msg_single(pC, phm, phr); } /** Allocate control cache. \return Cache pointer, or NULL if allocation fails. */ struct hpi_control_cache *hpi_alloc_control_cache(const u32 control_count, const u32 size_in_bytes, u8 *p_dsp_control_buffer) { struct hpi_control_cache *p_cache = kmalloc(sizeof(*p_cache), GFP_KERNEL); if (!p_cache) return NULL; p_cache->p_info = kcalloc(control_count, sizeof(*p_cache->p_info), GFP_KERNEL); if (!p_cache->p_info) { kfree(p_cache); return NULL; } p_cache->cache_size_in_bytes = size_in_bytes; p_cache->control_count = control_count; p_cache->p_cache = p_dsp_control_buffer; p_cache->init = 0; return p_cache; } void hpi_free_control_cache(struct hpi_control_cache *p_cache) { if (p_cache) { kfree(p_cache->p_info); kfree(p_cache); } } static void subsys_message(struct hpi_message *phm, struct hpi_response *phr) { hpi_init_response(phr, HPI_OBJ_SUBSYSTEM, phm->function, 0); switch (phm->function) { case HPI_SUBSYS_OPEN: case HPI_SUBSYS_CLOSE: case HPI_SUBSYS_DRIVER_UNLOAD: break; case HPI_SUBSYS_DRIVER_LOAD: wipe_adapter_list(); hpios_alistlock_init(&adapters); break; case HPI_SUBSYS_GET_ADAPTER: subsys_get_adapter(phm, phr); break; case HPI_SUBSYS_GET_NUM_ADAPTERS: phr->u.s.num_adapters = adapters.gw_num_adapters; break; case HPI_SUBSYS_CREATE_ADAPTER: break; default: phr->error = HPI_ERROR_INVALID_FUNC; break; } } void HPI_COMMON(struct hpi_message *phm, struct hpi_response *phr) { switch (phm->type) { case HPI_TYPE_REQUEST: switch (phm->object) { case HPI_OBJ_SUBSYSTEM: subsys_message(phm, phr); break; } break; default: phr->error = HPI_ERROR_INVALID_TYPE; break; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1