Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jaroslav Kysela | 6628 | 67.70% | 31 | 20.53% |
Oswald Buddenhagen | 2004 | 20.47% | 36 | 23.84% |
Takashi Iwai | 530 | 5.41% | 15 | 9.93% |
Linus Torvalds (pre-git) | 396 | 4.04% | 46 | 30.46% |
James Courtier-Dutton | 73 | 0.75% | 3 | 1.99% |
Clemens Ladisch | 48 | 0.49% | 2 | 1.32% |
Maciej S. Szmigiero | 37 | 0.38% | 1 | 0.66% |
Mihail Zenkov | 13 | 0.13% | 1 | 0.66% |
Pavel Hofman | 12 | 0.12% | 1 | 0.66% |
Linus Torvalds | 10 | 0.10% | 5 | 3.31% |
Lee Revell | 7 | 0.07% | 1 | 0.66% |
Peter Zubaj | 7 | 0.07% | 1 | 0.66% |
Bhumika Goyal | 6 | 0.06% | 2 | 1.32% |
Julia Lawall | 6 | 0.06% | 1 | 0.66% |
Zhouyang Jia | 5 | 0.05% | 1 | 0.66% |
Russell King | 3 | 0.03% | 1 | 0.66% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 0.66% |
Jesper Juhl | 2 | 0.02% | 1 | 0.66% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.66% |
Total | 9790 | 151 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) by Jaroslav Kysela <perex@perex.cz> * Lee Revell <rlrevell@joe-job.com> * James Courtier-Dutton <James@superbug.co.uk> * Oswald Buddenhagen <oswald.buddenhagen@gmx.de> * Creative Labs, Inc. * * Routines for control of EMU10K1 chips / PCM routines */ #include <linux/pci.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/init.h> #include <sound/core.h> #include <sound/emu10k1.h> static void snd_emu10k1_pcm_interrupt(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *voice) { struct snd_emu10k1_pcm *epcm; epcm = voice->epcm; if (!epcm) return; if (epcm->substream == NULL) return; #if 0 dev_dbg(emu->card->dev, "IRQ: position = 0x%x, period = 0x%x, size = 0x%x\n", epcm->substream->runtime->hw->pointer(emu, epcm->substream), snd_pcm_lib_period_bytes(epcm->substream), snd_pcm_lib_buffer_bytes(epcm->substream)); #endif snd_pcm_period_elapsed(epcm->substream); } static void snd_emu10k1_pcm_ac97adc_interrupt(struct snd_emu10k1 *emu, unsigned int status) { #if 0 if (status & IPR_ADCBUFHALFFULL) { if (emu->pcm_capture_substream->runtime->mode == SNDRV_PCM_MODE_FRAME) return; } #endif snd_pcm_period_elapsed(emu->pcm_capture_substream); } static void snd_emu10k1_pcm_ac97mic_interrupt(struct snd_emu10k1 *emu, unsigned int status) { #if 0 if (status & IPR_MICBUFHALFFULL) { if (emu->pcm_capture_mic_substream->runtime->mode == SNDRV_PCM_MODE_FRAME) return; } #endif snd_pcm_period_elapsed(emu->pcm_capture_mic_substream); } static void snd_emu10k1_pcm_efx_interrupt(struct snd_emu10k1 *emu, unsigned int status) { #if 0 if (status & IPR_EFXBUFHALFFULL) { if (emu->pcm_capture_efx_substream->runtime->mode == SNDRV_PCM_MODE_FRAME) return; } #endif snd_pcm_period_elapsed(emu->pcm_capture_efx_substream); } static void snd_emu10k1_pcm_free_voices(struct snd_emu10k1_pcm *epcm) { for (unsigned i = 0; i < ARRAY_SIZE(epcm->voices); i++) { if (epcm->voices[i]) { snd_emu10k1_voice_free(epcm->emu, epcm->voices[i]); epcm->voices[i] = NULL; } } } static int snd_emu10k1_pcm_channel_alloc(struct snd_emu10k1_pcm *epcm, int type, int count, int channels) { int err; snd_emu10k1_pcm_free_voices(epcm); err = snd_emu10k1_voice_alloc(epcm->emu, type, count, channels, epcm, &epcm->voices[0]); if (err < 0) return err; if (epcm->extra == NULL) { // The hardware supports only (half-)loop interrupts, so to support an // arbitrary number of periods per buffer, we use an extra voice with a // period-sized loop as the interrupt source. Additionally, the interrupt // timing of the hardware is "suboptimal" and needs some compensation. err = snd_emu10k1_voice_alloc(epcm->emu, type + 1, 1, 1, epcm, &epcm->extra); if (err < 0) { /* dev_dbg(emu->card->dev, "pcm_channel_alloc: " "failed extra: voices=%d, frame=%d\n", voices, frame); */ snd_emu10k1_pcm_free_voices(epcm); return err; } epcm->extra->interrupt = snd_emu10k1_pcm_interrupt; } return 0; } // Primes 2-7 and 2^n multiples thereof, up to 16. static const unsigned int efx_capture_channels[] = { 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16 }; static const struct snd_pcm_hw_constraint_list hw_constraints_efx_capture_channels = { .count = ARRAY_SIZE(efx_capture_channels), .list = efx_capture_channels, .mask = 0 }; static const unsigned int capture_buffer_sizes[31] = { 384, 448, 512, 640, 384*2, 448*2, 512*2, 640*2, 384*4, 448*4, 512*4, 640*4, 384*8, 448*8, 512*8, 640*8, 384*16, 448*16, 512*16, 640*16, 384*32, 448*32, 512*32, 640*32, 384*64, 448*64, 512*64, 640*64, 384*128,448*128,512*128 }; static const struct snd_pcm_hw_constraint_list hw_constraints_capture_buffer_sizes = { .count = 31, .list = capture_buffer_sizes, .mask = 0 }; static const unsigned int capture_rates[8] = { 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000 }; static const struct snd_pcm_hw_constraint_list hw_constraints_capture_rates = { .count = 8, .list = capture_rates, .mask = 0 }; static unsigned int snd_emu10k1_capture_rate_reg(unsigned int rate) { switch (rate) { case 8000: return ADCCR_SAMPLERATE_8; case 11025: return ADCCR_SAMPLERATE_11; case 16000: return ADCCR_SAMPLERATE_16; case 22050: return ADCCR_SAMPLERATE_22; case 24000: return ADCCR_SAMPLERATE_24; case 32000: return ADCCR_SAMPLERATE_32; case 44100: return ADCCR_SAMPLERATE_44; case 48000: return ADCCR_SAMPLERATE_48; default: snd_BUG(); return ADCCR_SAMPLERATE_8; } } static const unsigned int audigy_capture_rates[9] = { 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000 }; static const struct snd_pcm_hw_constraint_list hw_constraints_audigy_capture_rates = { .count = 9, .list = audigy_capture_rates, .mask = 0 }; static unsigned int snd_emu10k1_audigy_capture_rate_reg(unsigned int rate) { switch (rate) { case 8000: return A_ADCCR_SAMPLERATE_8; case 11025: return A_ADCCR_SAMPLERATE_11; case 12000: return A_ADCCR_SAMPLERATE_12; case 16000: return ADCCR_SAMPLERATE_16; case 22050: return ADCCR_SAMPLERATE_22; case 24000: return ADCCR_SAMPLERATE_24; case 32000: return ADCCR_SAMPLERATE_32; case 44100: return ADCCR_SAMPLERATE_44; case 48000: return ADCCR_SAMPLERATE_48; default: snd_BUG(); return A_ADCCR_SAMPLERATE_8; } } static void snd_emu10k1_constrain_capture_rates(struct snd_emu10k1 *emu, struct snd_pcm_runtime *runtime) { if (emu->card_capabilities->emu_model && emu->emu1010.word_clock == 44100) { // This also sets the rate constraint by deleting SNDRV_PCM_RATE_KNOT runtime->hw.rates = SNDRV_PCM_RATE_11025 | \ SNDRV_PCM_RATE_22050 | \ SNDRV_PCM_RATE_44100; runtime->hw.rate_min = 11025; runtime->hw.rate_max = 44100; return; } snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, emu->audigy ? &hw_constraints_audigy_capture_rates : &hw_constraints_capture_rates); } static void snd_emu1010_constrain_efx_rate(struct snd_emu10k1 *emu, struct snd_pcm_runtime *runtime) { int rate; rate = emu->emu1010.word_clock; runtime->hw.rate_min = runtime->hw.rate_max = rate; runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); } static unsigned int emu10k1_calc_pitch_target(unsigned int rate) { unsigned int pitch_target; pitch_target = (rate << 8) / 375; pitch_target = (pitch_target >> 1) + (pitch_target & 1); return pitch_target; } #define PITCH_48000 0x00004000 #define PITCH_96000 0x00008000 #define PITCH_85000 0x00007155 #define PITCH_80726 0x00006ba2 #define PITCH_67882 0x00005a82 #define PITCH_57081 0x00004c1c static unsigned int emu10k1_select_interprom(unsigned int pitch_target) { if (pitch_target == PITCH_48000) return CCCA_INTERPROM_0; else if (pitch_target < PITCH_48000) return CCCA_INTERPROM_1; else if (pitch_target >= PITCH_96000) return CCCA_INTERPROM_0; else if (pitch_target >= PITCH_85000) return CCCA_INTERPROM_6; else if (pitch_target >= PITCH_80726) return CCCA_INTERPROM_5; else if (pitch_target >= PITCH_67882) return CCCA_INTERPROM_4; else if (pitch_target >= PITCH_57081) return CCCA_INTERPROM_3; else return CCCA_INTERPROM_2; } static u16 emu10k1_send_target_from_amount(u8 amount) { static const u8 shifts[8] = { 4, 4, 5, 6, 7, 8, 9, 10 }; static const u16 offsets[8] = { 0, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000 }; u8 exp; if (amount == 0xff) return 0xffff; exp = amount >> 5; return ((amount & 0x1f) << shifts[exp]) + offsets[exp]; } static void snd_emu10k1_pcm_init_voice(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice, bool w_16, bool stereo, unsigned int start_addr, unsigned int end_addr, const unsigned char *send_routing, const unsigned char *send_amount) { unsigned int silent_page; int voice; voice = evoice->number; silent_page = ((unsigned int)emu->silent_page.addr << emu->address_mode) | (emu->address_mode ? MAP_PTI_MASK1 : MAP_PTI_MASK0); snd_emu10k1_ptr_write_multiple(emu, voice, // Not really necessary for the slave, but it doesn't hurt CPF, stereo ? CPF_STEREO_MASK : 0, // Assumption that PT is already 0 so no harm overwriting PTRX, (send_amount[0] << 8) | send_amount[1], // Stereo slaves don't need to have the addresses set, but it doesn't hurt DSL, end_addr | (send_amount[3] << 24), PSST, start_addr | (send_amount[2] << 24), CCCA, emu10k1_select_interprom(evoice->epcm->pitch_target) | (w_16 ? 0 : CCCA_8BITSELECT), // Clear filter delay memory Z1, 0, Z2, 0, // Invalidate maps MAPA, silent_page, MAPB, silent_page, // Disable filter (in conjunction with CCCA_RESONANCE == 0) VTFT, VTFT_FILTERTARGET_MASK, CVCF, CVCF_CURRENTFILTER_MASK, REGLIST_END); // Setup routing if (emu->audigy) { snd_emu10k1_ptr_write_multiple(emu, voice, A_FXRT1, snd_emu10k1_compose_audigy_fxrt1(send_routing), A_FXRT2, snd_emu10k1_compose_audigy_fxrt2(send_routing), A_SENDAMOUNTS, snd_emu10k1_compose_audigy_sendamounts(send_amount), REGLIST_END); for (int i = 0; i < 4; i++) { u32 aml = emu10k1_send_target_from_amount(send_amount[2 * i]); u32 amh = emu10k1_send_target_from_amount(send_amount[2 * i + 1]); snd_emu10k1_ptr_write(emu, A_CSBA + i, voice, (amh << 16) | aml); } } else { snd_emu10k1_ptr_write(emu, FXRT, voice, snd_emu10k1_compose_send_routing(send_routing)); } emu->voices[voice].dirty = 1; } static void snd_emu10k1_pcm_init_voices(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice, bool w_16, bool stereo, unsigned int start_addr, unsigned int end_addr, struct snd_emu10k1_pcm_mixer *mix) { spin_lock_irq(&emu->reg_lock); snd_emu10k1_pcm_init_voice(emu, evoice, w_16, stereo, start_addr, end_addr, &mix->send_routing[stereo][0], &mix->send_volume[stereo][0]); if (stereo) snd_emu10k1_pcm_init_voice(emu, evoice + 1, w_16, true, start_addr, end_addr, &mix->send_routing[2][0], &mix->send_volume[2][0]); spin_unlock_irq(&emu->reg_lock); } static void snd_emu10k1_pcm_init_extra_voice(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice, bool w_16, unsigned int start_addr, unsigned int end_addr) { static const unsigned char send_routing[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; static const unsigned char send_amount[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; snd_emu10k1_pcm_init_voice(emu, evoice, w_16, false, start_addr, end_addr, send_routing, send_amount); } static int snd_emu10k1_playback_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; size_t alloc_size; int type, channels, count; int err; if (epcm->type == PLAYBACK_EMUVOICE) { type = EMU10K1_PCM; channels = 1; count = params_channels(hw_params); } else { type = EMU10K1_EFX; channels = params_channels(hw_params); count = 1; } err = snd_emu10k1_pcm_channel_alloc(epcm, type, count, channels); if (err < 0) return err; alloc_size = params_buffer_bytes(hw_params); if (emu->iommu_workaround) alloc_size += EMUPAGESIZE; err = snd_pcm_lib_malloc_pages(substream, alloc_size); if (err < 0) return err; if (emu->iommu_workaround && runtime->dma_bytes >= EMUPAGESIZE) runtime->dma_bytes -= EMUPAGESIZE; if (err > 0) { /* change */ int mapped; if (epcm->memblk != NULL) snd_emu10k1_free_pages(emu, epcm->memblk); epcm->memblk = snd_emu10k1_alloc_pages(emu, substream); epcm->start_addr = 0; if (! epcm->memblk) return -ENOMEM; mapped = ((struct snd_emu10k1_memblk *)epcm->memblk)->mapped_page; if (mapped < 0) return -ENOMEM; epcm->start_addr = mapped << PAGE_SHIFT; } return 0; } static int snd_emu10k1_playback_hw_free(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm; if (runtime->private_data == NULL) return 0; epcm = runtime->private_data; if (epcm->extra) { snd_emu10k1_voice_free(epcm->emu, epcm->extra); epcm->extra = NULL; } snd_emu10k1_pcm_free_voices(epcm); if (epcm->memblk) { snd_emu10k1_free_pages(emu, epcm->memblk); epcm->memblk = NULL; epcm->start_addr = 0; } snd_pcm_lib_free_pages(substream); return 0; } static int snd_emu10k1_playback_prepare(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; bool w_16 = snd_pcm_format_width(runtime->format) == 16; bool stereo = runtime->channels == 2; unsigned int start_addr, end_addr; unsigned int rate; rate = runtime->rate; if (emu->card_capabilities->emu_model && emu->emu1010.word_clock == 44100) rate = rate * 480 / 441; epcm->pitch_target = emu10k1_calc_pitch_target(rate); start_addr = epcm->start_addr >> w_16; end_addr = start_addr + runtime->period_size; snd_emu10k1_pcm_init_extra_voice(emu, epcm->extra, w_16, start_addr, end_addr); start_addr >>= stereo; epcm->ccca_start_addr = start_addr; end_addr = start_addr + runtime->buffer_size; snd_emu10k1_pcm_init_voices(emu, epcm->voices[0], w_16, stereo, start_addr, end_addr, &emu->pcm_mixer[substream->number]); return 0; } static int snd_emu10k1_efx_playback_prepare(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; unsigned int start_addr; unsigned int extra_size, channel_size; unsigned int i; epcm->pitch_target = PITCH_48000; start_addr = epcm->start_addr >> 1; // 16-bit voices extra_size = runtime->period_size; channel_size = runtime->buffer_size; snd_emu10k1_pcm_init_extra_voice(emu, epcm->extra, true, start_addr, start_addr + extra_size); epcm->ccca_start_addr = start_addr; for (i = 0; i < runtime->channels; i++) { snd_emu10k1_pcm_init_voices(emu, epcm->voices[i], true, false, start_addr, start_addr + channel_size, &emu->efx_pcm_mixer[i]); start_addr += channel_size; } return 0; } static const struct snd_pcm_hardware snd_emu10k1_efx_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_NONINTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 1, .channels_max = NUM_EFX_PLAYBACK, .buffer_bytes_max = (128*1024), .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0, }; static int snd_emu10k1_capture_prepare(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; int idx; /* zeroing the buffer size will stop capture */ snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, 0); switch (epcm->type) { case CAPTURE_AC97ADC: snd_emu10k1_ptr_write(emu, ADCCR, 0, 0); break; case CAPTURE_EFX: if (emu->card_capabilities->emu_model) { // The upper 32 16-bit capture voices, two for each of the 16 32-bit channels. // The lower voices are occupied by A_EXTOUT_*_CAP*. epcm->capture_cr_val = 0; epcm->capture_cr_val2 = 0xffffffff >> (32 - runtime->channels * 2); } if (emu->audigy) { snd_emu10k1_ptr_write_multiple(emu, 0, A_FXWC1, 0, A_FXWC2, 0, REGLIST_END); } else snd_emu10k1_ptr_write(emu, FXWC, 0, 0); break; default: break; } snd_emu10k1_ptr_write(emu, epcm->capture_ba_reg, 0, runtime->dma_addr); epcm->capture_bufsize = snd_pcm_lib_buffer_bytes(substream); epcm->capture_bs_val = 0; for (idx = 0; idx < 31; idx++) { if (capture_buffer_sizes[idx] == epcm->capture_bufsize) { epcm->capture_bs_val = idx + 1; break; } } if (epcm->capture_bs_val == 0) { snd_BUG(); epcm->capture_bs_val++; } if (epcm->type == CAPTURE_AC97ADC) { unsigned rate = runtime->rate; if (!(runtime->hw.rates & SNDRV_PCM_RATE_48000)) rate = rate * 480 / 441; epcm->capture_cr_val = emu->audigy ? A_ADCCR_LCHANENABLE : ADCCR_LCHANENABLE; if (runtime->channels > 1) epcm->capture_cr_val |= emu->audigy ? A_ADCCR_RCHANENABLE : ADCCR_RCHANENABLE; epcm->capture_cr_val |= emu->audigy ? snd_emu10k1_audigy_capture_rate_reg(rate) : snd_emu10k1_capture_rate_reg(rate); } return 0; } static void snd_emu10k1_playback_fill_cache(struct snd_emu10k1 *emu, unsigned voice, u32 sample, bool stereo) { u32 ccr; // We assume that the cache is resting at this point (i.e., // CCR_CACHEINVALIDSIZE is very small). // Clear leading frames. For simplicitly, this does too much, // except for 16-bit stereo. And the interpolator will actually // access them at all only when we're pitch-shifting. for (int i = 0; i < 3; i++) snd_emu10k1_ptr_write(emu, CD0 + i, voice, sample); // Fill cache ccr = (64 - 3) << REG_SHIFT(CCR_CACHEINVALIDSIZE); if (stereo) { // The engine goes haywire if CCR_READADDRESS is out of sync snd_emu10k1_ptr_write(emu, CCR, voice + 1, ccr); } snd_emu10k1_ptr_write(emu, CCR, voice, ccr); } static void snd_emu10k1_playback_prepare_voices(struct snd_emu10k1 *emu, struct snd_emu10k1_pcm *epcm, bool w_16, bool stereo, int channels) { struct snd_pcm_substream *substream = epcm->substream; struct snd_pcm_runtime *runtime = substream->runtime; unsigned eloop_start = epcm->start_addr >> w_16; unsigned loop_start = eloop_start >> stereo; unsigned eloop_size = runtime->period_size; unsigned loop_size = runtime->buffer_size; u32 sample = w_16 ? 0 : 0x80808080; // To make the playback actually start at the 1st frame, // we need to compensate for two circumstances: // - The actual position is delayed by the cache size (64 frames) // - The interpolator is centered around the 4th frame loop_start += (epcm->resume_pos + 64 - 3) % loop_size; for (int i = 0; i < channels; i++) { unsigned voice = epcm->voices[i]->number; snd_emu10k1_ptr_write(emu, CCCA_CURRADDR, voice, loop_start); loop_start += loop_size; snd_emu10k1_playback_fill_cache(emu, voice, sample, stereo); } // The interrupt is triggered when CCCA_CURRADDR (CA) wraps around, // which is ahead of the actual playback position, so the interrupt // source needs to be delayed. // // In principle, this wouldn't need to be the cache's entire size - in // practice, CCR_CACHEINVALIDSIZE (CIS) > `fetch threshold` has never // been observed, and assuming 40 _bytes_ should be safe. // // The cache fills are somewhat random, which makes it impossible to // align them with the interrupts. This makes a non-delayed interrupt // source not practical, as the interrupt handler would have to wait // for (CA - CIS) >= period_boundary for every channel in the stream. // // This is why all other (open) drivers for these chips use timer-based // interrupts. // eloop_start += (epcm->resume_pos + eloop_size - 3) % eloop_size; snd_emu10k1_ptr_write(emu, CCCA_CURRADDR, epcm->extra->number, eloop_start); // It takes a moment until the cache fills complete, // but the unmuting takes long enough for that. } static void snd_emu10k1_playback_commit_volume(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice, unsigned int vattn) { snd_emu10k1_ptr_write_multiple(emu, evoice->number, VTFT, vattn | VTFT_FILTERTARGET_MASK, CVCF, vattn | CVCF_CURRENTFILTER_MASK, REGLIST_END); } static void snd_emu10k1_playback_unmute_voice(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice, bool stereo, bool master, struct snd_emu10k1_pcm_mixer *mix) { unsigned int vattn; unsigned int tmp; tmp = stereo ? (master ? 1 : 2) : 0; vattn = mix->attn[tmp] << 16; snd_emu10k1_playback_commit_volume(emu, evoice, vattn); } static void snd_emu10k1_playback_unmute_voices(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice, bool stereo, struct snd_emu10k1_pcm_mixer *mix) { snd_emu10k1_playback_unmute_voice(emu, evoice, stereo, true, mix); if (stereo) snd_emu10k1_playback_unmute_voice(emu, evoice + 1, true, false, mix); } static void snd_emu10k1_playback_mute_voice(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice) { snd_emu10k1_playback_commit_volume(emu, evoice, 0); } static void snd_emu10k1_playback_mute_voices(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice, bool stereo) { snd_emu10k1_playback_mute_voice(emu, evoice); if (stereo) snd_emu10k1_playback_mute_voice(emu, evoice + 1); } static void snd_emu10k1_playback_commit_pitch(struct snd_emu10k1 *emu, u32 voice, u32 pitch_target) { u32 ptrx = snd_emu10k1_ptr_read(emu, PTRX, voice); u32 cpf = snd_emu10k1_ptr_read(emu, CPF, voice); snd_emu10k1_ptr_write_multiple(emu, voice, PTRX, (ptrx & ~PTRX_PITCHTARGET_MASK) | pitch_target, CPF, (cpf & ~(CPF_CURRENTPITCH_MASK | CPF_FRACADDRESS_MASK)) | pitch_target, REGLIST_END); } static void snd_emu10k1_playback_trigger_voice(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice) { unsigned int voice; voice = evoice->number; snd_emu10k1_playback_commit_pitch(emu, voice, evoice->epcm->pitch_target << 16); } static void snd_emu10k1_playback_stop_voice(struct snd_emu10k1 *emu, struct snd_emu10k1_voice *evoice) { unsigned int voice; voice = evoice->number; snd_emu10k1_playback_commit_pitch(emu, voice, 0); } static void snd_emu10k1_playback_set_running(struct snd_emu10k1 *emu, struct snd_emu10k1_pcm *epcm) { epcm->running = 1; snd_emu10k1_voice_intr_enable(emu, epcm->extra->number); } static void snd_emu10k1_playback_set_stopped(struct snd_emu10k1 *emu, struct snd_emu10k1_pcm *epcm) { snd_emu10k1_voice_intr_disable(emu, epcm->extra->number); epcm->running = 0; } static int snd_emu10k1_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; struct snd_emu10k1_pcm_mixer *mix; bool w_16 = snd_pcm_format_width(runtime->format) == 16; bool stereo = runtime->channels == 2; int result = 0; /* dev_dbg(emu->card->dev, "trigger - emu10k1 = 0x%x, cmd = %i, pointer = %i\n", (int)emu, cmd, substream->ops->pointer(substream)) */ spin_lock(&emu->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: snd_emu10k1_playback_prepare_voices(emu, epcm, w_16, stereo, 1); fallthrough; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: mix = &emu->pcm_mixer[substream->number]; snd_emu10k1_playback_unmute_voices(emu, epcm->voices[0], stereo, mix); snd_emu10k1_playback_set_running(emu, epcm); snd_emu10k1_playback_trigger_voice(emu, epcm->voices[0]); snd_emu10k1_playback_trigger_voice(emu, epcm->extra); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: snd_emu10k1_playback_stop_voice(emu, epcm->voices[0]); snd_emu10k1_playback_stop_voice(emu, epcm->extra); snd_emu10k1_playback_set_stopped(emu, epcm); snd_emu10k1_playback_mute_voices(emu, epcm->voices[0], stereo); break; default: result = -EINVAL; break; } spin_unlock(&emu->reg_lock); return result; } static int snd_emu10k1_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; int result = 0; spin_lock(&emu->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: /* hmm this should cause full and half full interrupt to be raised? */ outl(epcm->capture_ipr, emu->port + IPR); snd_emu10k1_intr_enable(emu, epcm->capture_inte); /* dev_dbg(emu->card->dev, "adccr = 0x%x, adcbs = 0x%x\n", epcm->adccr, epcm->adcbs); */ switch (epcm->type) { case CAPTURE_AC97ADC: snd_emu10k1_ptr_write(emu, ADCCR, 0, epcm->capture_cr_val); break; case CAPTURE_EFX: if (emu->audigy) { snd_emu10k1_ptr_write_multiple(emu, 0, A_FXWC1, epcm->capture_cr_val, A_FXWC2, epcm->capture_cr_val2, REGLIST_END); dev_dbg(emu->card->dev, "cr_val=0x%x, cr_val2=0x%x\n", epcm->capture_cr_val, epcm->capture_cr_val2); } else snd_emu10k1_ptr_write(emu, FXWC, 0, epcm->capture_cr_val); break; default: break; } snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, epcm->capture_bs_val); epcm->running = 1; epcm->first_ptr = 1; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: epcm->running = 0; snd_emu10k1_intr_disable(emu, epcm->capture_inte); outl(epcm->capture_ipr, emu->port + IPR); snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, 0); switch (epcm->type) { case CAPTURE_AC97ADC: snd_emu10k1_ptr_write(emu, ADCCR, 0, 0); break; case CAPTURE_EFX: if (emu->audigy) { snd_emu10k1_ptr_write_multiple(emu, 0, A_FXWC1, 0, A_FXWC2, 0, REGLIST_END); } else snd_emu10k1_ptr_write(emu, FXWC, 0, 0); break; default: break; } break; default: result = -EINVAL; } spin_unlock(&emu->reg_lock); return result; } static snd_pcm_uframes_t snd_emu10k1_playback_pointer(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; int ptr; if (!epcm->running) return 0; ptr = snd_emu10k1_ptr_read(emu, CCCA, epcm->voices[0]->number) & 0x00ffffff; ptr -= epcm->ccca_start_addr; // This is the size of the whole cache minus the interpolator read-ahead, // which leads us to the actual playback position. // // The cache is constantly kept mostly filled, so in principle we could // return a more advanced position representing how far the hardware has // already read the buffer, and set runtime->delay accordingly. However, // this would be slightly different for every channel (and remarkably slow // to obtain), so only a fixed worst-case value would be practical. // ptr -= 64 - 3; if (ptr < 0) ptr += runtime->buffer_size; /* dev_dbg(emu->card->dev, "ptr = 0x%lx, buffer_size = 0x%lx, period_size = 0x%lx\n", (long)ptr, (long)runtime->buffer_size, (long)runtime->period_size); */ return ptr; } static u64 snd_emu10k1_efx_playback_voice_mask(struct snd_emu10k1_pcm *epcm, int channels) { u64 mask = 0; for (int i = 0; i < channels; i++) { int voice = epcm->voices[i]->number; mask |= 1ULL << voice; } return mask; } static void snd_emu10k1_efx_playback_freeze_voices(struct snd_emu10k1 *emu, struct snd_emu10k1_pcm *epcm, int channels) { for (int i = 0; i < channels; i++) { int voice = epcm->voices[i]->number; snd_emu10k1_ptr_write(emu, CPF_STOP, voice, 1); snd_emu10k1_playback_commit_pitch(emu, voice, PITCH_48000 << 16); } } static void snd_emu10k1_efx_playback_unmute_voices(struct snd_emu10k1 *emu, struct snd_emu10k1_pcm *epcm, int channels) { for (int i = 0; i < channels; i++) snd_emu10k1_playback_unmute_voice(emu, epcm->voices[i], false, true, &emu->efx_pcm_mixer[i]); } static void snd_emu10k1_efx_playback_stop_voices(struct snd_emu10k1 *emu, struct snd_emu10k1_pcm *epcm, int channels) { for (int i = 0; i < channels; i++) snd_emu10k1_playback_stop_voice(emu, epcm->voices[i]); snd_emu10k1_playback_set_stopped(emu, epcm); for (int i = 0; i < channels; i++) snd_emu10k1_playback_mute_voice(emu, epcm->voices[i]); } static int snd_emu10k1_efx_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; u64 mask; int result = 0; spin_lock(&emu->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: mask = snd_emu10k1_efx_playback_voice_mask( epcm, runtime->channels); for (int i = 0; i < 10; i++) { // Note that the freeze is not interruptible, so we make no // effort to reset the bits outside the error handling here. snd_emu10k1_voice_set_loop_stop_multiple(emu, mask); snd_emu10k1_efx_playback_freeze_voices( emu, epcm, runtime->channels); snd_emu10k1_playback_prepare_voices( emu, epcm, true, false, runtime->channels); // It might seem to make more sense to unmute the voices only after // they have been started, to potentially avoid torturing the speakers // if something goes wrong. However, we cannot unmute atomically, // which means that we'd get some mild artifacts in the regular case. snd_emu10k1_efx_playback_unmute_voices(emu, epcm, runtime->channels); snd_emu10k1_playback_set_running(emu, epcm); result = snd_emu10k1_voice_clear_loop_stop_multiple_atomic(emu, mask); if (result == 0) { // The extra voice is allowed to lag a bit snd_emu10k1_playback_trigger_voice(emu, epcm->extra); goto leave; } snd_emu10k1_efx_playback_stop_voices( emu, epcm, runtime->channels); if (result != -EAGAIN) break; // The sync start can legitimately fail due to NMIs, etc. } snd_emu10k1_voice_clear_loop_stop_multiple(emu, mask); break; case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: snd_emu10k1_playback_stop_voice(emu, epcm->extra); snd_emu10k1_efx_playback_stop_voices( emu, epcm, runtime->channels); epcm->resume_pos = snd_emu10k1_playback_pointer(substream); break; default: result = -EINVAL; break; } leave: spin_unlock(&emu->reg_lock); return result; } static snd_pcm_uframes_t snd_emu10k1_capture_pointer(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm = runtime->private_data; unsigned int ptr; if (!epcm->running) return 0; if (epcm->first_ptr) { udelay(50); /* hack, it takes awhile until capture is started */ epcm->first_ptr = 0; } ptr = snd_emu10k1_ptr_read(emu, epcm->capture_idx_reg, 0) & 0x0000ffff; return bytes_to_frames(runtime, ptr); } /* * Playback support device description */ static const struct snd_pcm_hardware snd_emu10k1_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_96000, .rate_min = 4000, .rate_max = 96000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (128*1024), .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0, }; /* * Capture support device description */ static const struct snd_pcm_hardware snd_emu10k1_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT, .rate_min = 8000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (64*1024), .period_bytes_min = 384, .period_bytes_max = (64*1024), .periods_min = 2, .periods_max = 2, .fifo_size = 0, }; static const struct snd_pcm_hardware snd_emu10k1_capture_efx = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 1, .channels_max = 16, .buffer_bytes_max = (64*1024), .period_bytes_min = 384, .period_bytes_max = (64*1024), .periods_min = 2, .periods_max = 2, .fifo_size = 0, }; /* * */ static void snd_emu10k1_pcm_mixer_notify1(struct snd_emu10k1 *emu, struct snd_kcontrol *kctl, int idx, int activate) { struct snd_ctl_elem_id id; if (! kctl) return; if (activate) kctl->vd[idx].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; else kctl->vd[idx].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(emu->card, SNDRV_CTL_EVENT_MASK_VALUE | SNDRV_CTL_EVENT_MASK_INFO, snd_ctl_build_ioff(&id, kctl, idx)); } static void snd_emu10k1_pcm_mixer_notify(struct snd_emu10k1 *emu, int idx, int activate) { snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_send_routing, idx, activate); snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_send_volume, idx, activate); snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_attn, idx, activate); } static void snd_emu10k1_pcm_efx_mixer_notify(struct snd_emu10k1 *emu, int idx, int activate) { snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_send_routing, idx, activate); snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_send_volume, idx, activate); snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_attn, idx, activate); } static void snd_emu10k1_pcm_free_substream(struct snd_pcm_runtime *runtime) { kfree(runtime->private_data); } static int snd_emu10k1_efx_playback_close(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_pcm_mixer *mix; int i; for (i = 0; i < NUM_EFX_PLAYBACK; i++) { mix = &emu->efx_pcm_mixer[i]; mix->epcm = NULL; snd_emu10k1_pcm_efx_mixer_notify(emu, i, 0); } return 0; } static int snd_emu10k1_playback_set_constraints(struct snd_pcm_runtime *runtime) { int err; // The buffer size must be a multiple of the period size, to avoid a // mismatch between the extra voice and the regular voices. err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) return err; // The hardware is typically the cache's size of 64 frames ahead. // Leave enough time for actually filling up the buffer. err = snd_pcm_hw_constraint_minmax( runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 128, UINT_MAX); return err; } static int snd_emu10k1_efx_playback_open(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_pcm *epcm; struct snd_emu10k1_pcm_mixer *mix; struct snd_pcm_runtime *runtime = substream->runtime; int i, j, err; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); if (epcm == NULL) return -ENOMEM; epcm->emu = emu; epcm->type = PLAYBACK_EFX; epcm->substream = substream; runtime->private_data = epcm; runtime->private_free = snd_emu10k1_pcm_free_substream; runtime->hw = snd_emu10k1_efx_playback; if (emu->card_capabilities->emu_model) snd_emu1010_constrain_efx_rate(emu, runtime); err = snd_emu10k1_playback_set_constraints(runtime); if (err < 0) { kfree(epcm); return err; } for (i = 0; i < NUM_EFX_PLAYBACK; i++) { mix = &emu->efx_pcm_mixer[i]; for (j = 0; j < 8; j++) mix->send_routing[0][j] = i + j; memset(&mix->send_volume, 0, sizeof(mix->send_volume)); mix->send_volume[0][0] = 255; mix->attn[0] = 0x8000; mix->epcm = epcm; snd_emu10k1_pcm_efx_mixer_notify(emu, i, 1); } return 0; } static int snd_emu10k1_playback_open(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_pcm *epcm; struct snd_emu10k1_pcm_mixer *mix; struct snd_pcm_runtime *runtime = substream->runtime; int i, err, sample_rate; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); if (epcm == NULL) return -ENOMEM; epcm->emu = emu; epcm->type = PLAYBACK_EMUVOICE; epcm->substream = substream; runtime->private_data = epcm; runtime->private_free = snd_emu10k1_pcm_free_substream; runtime->hw = snd_emu10k1_playback; err = snd_emu10k1_playback_set_constraints(runtime); if (err < 0) { kfree(epcm); return err; } if (emu->card_capabilities->emu_model) sample_rate = emu->emu1010.word_clock; else sample_rate = 48000; err = snd_pcm_hw_rule_noresample(runtime, sample_rate); if (err < 0) { kfree(epcm); return err; } mix = &emu->pcm_mixer[substream->number]; for (i = 0; i < 8; i++) mix->send_routing[0][i] = mix->send_routing[1][i] = mix->send_routing[2][i] = i; memset(&mix->send_volume, 0, sizeof(mix->send_volume)); mix->send_volume[0][0] = mix->send_volume[0][1] = mix->send_volume[1][0] = mix->send_volume[2][1] = 255; mix->attn[0] = mix->attn[1] = mix->attn[2] = 0x8000; mix->epcm = epcm; snd_emu10k1_pcm_mixer_notify(emu, substream->number, 1); return 0; } static int snd_emu10k1_playback_close(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_pcm_mixer *mix = &emu->pcm_mixer[substream->number]; mix->epcm = NULL; snd_emu10k1_pcm_mixer_notify(emu, substream->number, 0); return 0; } static int snd_emu10k1_capture_open(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_pcm *epcm; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); if (epcm == NULL) return -ENOMEM; epcm->emu = emu; epcm->type = CAPTURE_AC97ADC; epcm->substream = substream; epcm->capture_ipr = IPR_ADCBUFFULL|IPR_ADCBUFHALFFULL; epcm->capture_inte = INTE_ADCBUFENABLE; epcm->capture_ba_reg = ADCBA; epcm->capture_bs_reg = ADCBS; epcm->capture_idx_reg = emu->audigy ? A_ADCIDX : ADCIDX; runtime->private_data = epcm; runtime->private_free = snd_emu10k1_pcm_free_substream; runtime->hw = snd_emu10k1_capture; snd_emu10k1_constrain_capture_rates(emu, runtime); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, &hw_constraints_capture_buffer_sizes); emu->capture_interrupt = snd_emu10k1_pcm_ac97adc_interrupt; emu->pcm_capture_substream = substream; return 0; } static int snd_emu10k1_capture_close(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); emu->capture_interrupt = NULL; emu->pcm_capture_substream = NULL; return 0; } static int snd_emu10k1_capture_mic_open(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_pcm *epcm; struct snd_pcm_runtime *runtime = substream->runtime; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); if (epcm == NULL) return -ENOMEM; epcm->emu = emu; epcm->type = CAPTURE_AC97MIC; epcm->substream = substream; epcm->capture_ipr = IPR_MICBUFFULL|IPR_MICBUFHALFFULL; epcm->capture_inte = INTE_MICBUFENABLE; epcm->capture_ba_reg = MICBA; epcm->capture_bs_reg = MICBS; epcm->capture_idx_reg = emu->audigy ? A_MICIDX : MICIDX; substream->runtime->private_data = epcm; substream->runtime->private_free = snd_emu10k1_pcm_free_substream; runtime->hw = snd_emu10k1_capture; runtime->hw.rates = SNDRV_PCM_RATE_8000; runtime->hw.rate_min = runtime->hw.rate_max = 8000; snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, &hw_constraints_capture_buffer_sizes); emu->capture_mic_interrupt = snd_emu10k1_pcm_ac97mic_interrupt; emu->pcm_capture_mic_substream = substream; return 0; } static int snd_emu10k1_capture_mic_close(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); emu->capture_mic_interrupt = NULL; emu->pcm_capture_mic_substream = NULL; return 0; } static int snd_emu10k1_capture_efx_open(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_pcm *epcm; struct snd_pcm_runtime *runtime = substream->runtime; int nefx = emu->audigy ? 64 : 32; int idx, err; epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); if (epcm == NULL) return -ENOMEM; epcm->emu = emu; epcm->type = CAPTURE_EFX; epcm->substream = substream; epcm->capture_ipr = IPR_EFXBUFFULL|IPR_EFXBUFHALFFULL; epcm->capture_inte = INTE_EFXBUFENABLE; epcm->capture_ba_reg = FXBA; epcm->capture_bs_reg = FXBS; epcm->capture_idx_reg = FXIDX; substream->runtime->private_data = epcm; substream->runtime->private_free = snd_emu10k1_pcm_free_substream; runtime->hw = snd_emu10k1_capture_efx; if (emu->card_capabilities->emu_model) { snd_emu1010_constrain_efx_rate(emu, runtime); /* * There are 32 mono channels of 16bits each. * 24bit Audio uses 2x channels over 16bit, * 96kHz uses 2x channels over 48kHz, * 192kHz uses 4x channels over 48kHz. * So, for 48kHz 24bit, one has 16 channels, * for 96kHz 24bit, one has 8 channels, * for 192kHz 24bit, one has 4 channels. * 1010rev2 and 1616(m) cards have double that, * but we don't exceed 16 channels anyway. */ #if 0 /* For 96kHz */ runtime->hw.channels_min = runtime->hw.channels_max = 4; #endif #if 0 /* For 192kHz */ runtime->hw.channels_min = runtime->hw.channels_max = 2; #endif runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE; } else { spin_lock_irq(&emu->reg_lock); runtime->hw.channels_min = runtime->hw.channels_max = 0; for (idx = 0; idx < nefx; idx++) { if (emu->efx_voices_mask[idx/32] & (1 << (idx%32))) { runtime->hw.channels_min++; runtime->hw.channels_max++; } } epcm->capture_cr_val = emu->efx_voices_mask[0]; epcm->capture_cr_val2 = emu->efx_voices_mask[1]; spin_unlock_irq(&emu->reg_lock); } err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_efx_capture_channels); if (err < 0) { kfree(epcm); return err; } snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, &hw_constraints_capture_buffer_sizes); emu->capture_efx_interrupt = snd_emu10k1_pcm_efx_interrupt; emu->pcm_capture_efx_substream = substream; return 0; } static int snd_emu10k1_capture_efx_close(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); emu->capture_efx_interrupt = NULL; emu->pcm_capture_efx_substream = NULL; return 0; } static const struct snd_pcm_ops snd_emu10k1_playback_ops = { .open = snd_emu10k1_playback_open, .close = snd_emu10k1_playback_close, .hw_params = snd_emu10k1_playback_hw_params, .hw_free = snd_emu10k1_playback_hw_free, .prepare = snd_emu10k1_playback_prepare, .trigger = snd_emu10k1_playback_trigger, .pointer = snd_emu10k1_playback_pointer, }; static const struct snd_pcm_ops snd_emu10k1_capture_ops = { .open = snd_emu10k1_capture_open, .close = snd_emu10k1_capture_close, .prepare = snd_emu10k1_capture_prepare, .trigger = snd_emu10k1_capture_trigger, .pointer = snd_emu10k1_capture_pointer, }; /* EFX playback */ static const struct snd_pcm_ops snd_emu10k1_efx_playback_ops = { .open = snd_emu10k1_efx_playback_open, .close = snd_emu10k1_efx_playback_close, .hw_params = snd_emu10k1_playback_hw_params, .hw_free = snd_emu10k1_playback_hw_free, .prepare = snd_emu10k1_efx_playback_prepare, .trigger = snd_emu10k1_efx_playback_trigger, .pointer = snd_emu10k1_playback_pointer, }; int snd_emu10k1_pcm(struct snd_emu10k1 *emu, int device) { struct snd_pcm *pcm; struct snd_pcm_substream *substream; int err; err = snd_pcm_new(emu->card, "emu10k1", device, 32, 1, &pcm); if (err < 0) return err; pcm->private_data = emu; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_ops); pcm->info_flags = 0; pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX; strcpy(pcm->name, "ADC Capture/Standard PCM Playback"); emu->pcm = pcm; /* playback substream can't use managed buffers due to alignment */ for (substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next) snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV_SG, &emu->pci->dev, 64*1024, 64*1024); for (substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; substream; substream = substream->next) snd_pcm_set_managed_buffer(substream, SNDRV_DMA_TYPE_DEV, &emu->pci->dev, 64*1024, 64*1024); return 0; } int snd_emu10k1_pcm_multi(struct snd_emu10k1 *emu, int device) { struct snd_pcm *pcm; struct snd_pcm_substream *substream; int err; err = snd_pcm_new(emu->card, "emu10k1", device, 1, 0, &pcm); if (err < 0) return err; pcm->private_data = emu; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_efx_playback_ops); pcm->info_flags = 0; pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX; strcpy(pcm->name, "Multichannel Playback"); emu->pcm_multi = pcm; for (substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next) snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV_SG, &emu->pci->dev, 64*1024, 64*1024); return 0; } static const struct snd_pcm_ops snd_emu10k1_capture_mic_ops = { .open = snd_emu10k1_capture_mic_open, .close = snd_emu10k1_capture_mic_close, .prepare = snd_emu10k1_capture_prepare, .trigger = snd_emu10k1_capture_trigger, .pointer = snd_emu10k1_capture_pointer, }; int snd_emu10k1_pcm_mic(struct snd_emu10k1 *emu, int device) { struct snd_pcm *pcm; int err; err = snd_pcm_new(emu->card, "emu10k1 mic", device, 0, 1, &pcm); if (err < 0) return err; pcm->private_data = emu; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_mic_ops); pcm->info_flags = 0; strcpy(pcm->name, "Mic Capture"); emu->pcm_mic = pcm; snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &emu->pci->dev, 64*1024, 64*1024); return 0; } static int snd_emu10k1_pcm_efx_voices_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); int nefx = emu->audigy ? 64 : 32; uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = nefx; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } static int snd_emu10k1_pcm_efx_voices_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); int nefx = emu->audigy ? 64 : 32; int idx; for (idx = 0; idx < nefx; idx++) ucontrol->value.integer.value[idx] = (emu->efx_voices_mask[idx / 32] & (1 << (idx % 32))) ? 1 : 0; return 0; } static int snd_emu10k1_pcm_efx_voices_mask_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); unsigned int nval[2], bits; int nefx = emu->audigy ? 64 : 32; int change, idx; nval[0] = nval[1] = 0; for (idx = 0, bits = 0; idx < nefx; idx++) if (ucontrol->value.integer.value[idx]) { nval[idx / 32] |= 1 << (idx % 32); bits++; } if (bits == 9 || bits == 11 || bits == 13 || bits == 15 || bits > 16) return -EINVAL; spin_lock_irq(&emu->reg_lock); change = (nval[0] != emu->efx_voices_mask[0]) || (nval[1] != emu->efx_voices_mask[1]); emu->efx_voices_mask[0] = nval[0]; emu->efx_voices_mask[1] = nval[1]; spin_unlock_irq(&emu->reg_lock); return change; } static const struct snd_kcontrol_new snd_emu10k1_pcm_efx_voices_mask = { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "Captured FX8010 Outputs", .info = snd_emu10k1_pcm_efx_voices_mask_info, .get = snd_emu10k1_pcm_efx_voices_mask_get, .put = snd_emu10k1_pcm_efx_voices_mask_put }; static const struct snd_pcm_ops snd_emu10k1_capture_efx_ops = { .open = snd_emu10k1_capture_efx_open, .close = snd_emu10k1_capture_efx_close, .prepare = snd_emu10k1_capture_prepare, .trigger = snd_emu10k1_capture_trigger, .pointer = snd_emu10k1_capture_pointer, }; /* EFX playback */ #define INITIAL_TRAM_SHIFT 14 #define INITIAL_TRAM_POS(size) ((((size) / 2) - INITIAL_TRAM_SHIFT) - 1) static void snd_emu10k1_fx8010_playback_irq(struct snd_emu10k1 *emu, void *private_data) { struct snd_pcm_substream *substream = private_data; snd_pcm_period_elapsed(substream); } static void snd_emu10k1_fx8010_playback_tram_poke1(unsigned short *dst_left, unsigned short *dst_right, unsigned short *src, unsigned int count, unsigned int tram_shift) { /* dev_dbg(emu->card->dev, "tram_poke1: dst_left = 0x%p, dst_right = 0x%p, " "src = 0x%p, count = 0x%x\n", dst_left, dst_right, src, count); */ if ((tram_shift & 1) == 0) { while (count--) { *dst_left-- = *src++; *dst_right-- = *src++; } } else { while (count--) { *dst_right-- = *src++; *dst_left-- = *src++; } } } static void fx8010_pb_trans_copy(struct snd_pcm_substream *substream, struct snd_pcm_indirect *rec, size_t bytes) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; unsigned int tram_size = pcm->buffer_size; unsigned short *src = (unsigned short *)(substream->runtime->dma_area + rec->sw_data); unsigned int frames = bytes >> 2, count; unsigned int tram_pos = pcm->tram_pos; unsigned int tram_shift = pcm->tram_shift; while (frames > tram_pos) { count = tram_pos + 1; snd_emu10k1_fx8010_playback_tram_poke1((unsigned short *)emu->fx8010.etram_pages.area + tram_pos, (unsigned short *)emu->fx8010.etram_pages.area + tram_pos + tram_size / 2, src, count, tram_shift); src += count * 2; frames -= count; tram_pos = (tram_size / 2) - 1; tram_shift++; } snd_emu10k1_fx8010_playback_tram_poke1((unsigned short *)emu->fx8010.etram_pages.area + tram_pos, (unsigned short *)emu->fx8010.etram_pages.area + tram_pos + tram_size / 2, src, frames, tram_shift); tram_pos -= frames; pcm->tram_pos = tram_pos; pcm->tram_shift = tram_shift; } static int snd_emu10k1_fx8010_playback_transfer(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; return snd_pcm_indirect_playback_transfer(substream, &pcm->pcm_rec, fx8010_pb_trans_copy); } static int snd_emu10k1_fx8010_playback_hw_free(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; unsigned int i; for (i = 0; i < pcm->channels; i++) snd_emu10k1_ptr_write(emu, TANKMEMADDRREGBASE + 0x80 + pcm->etram[i], 0, 0); return 0; } static int snd_emu10k1_fx8010_playback_prepare(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; unsigned int i; /* dev_dbg(emu->card->dev, "prepare: etram_pages = 0x%p, dma_area = 0x%x, " "buffer_size = 0x%x (0x%x)\n", emu->fx8010.etram_pages, runtime->dma_area, runtime->buffer_size, runtime->buffer_size << 2); */ memset(&pcm->pcm_rec, 0, sizeof(pcm->pcm_rec)); pcm->pcm_rec.hw_buffer_size = pcm->buffer_size * 2; /* byte size */ pcm->pcm_rec.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); pcm->tram_pos = INITIAL_TRAM_POS(pcm->buffer_size); pcm->tram_shift = 0; snd_emu10k1_ptr_write_multiple(emu, 0, emu->gpr_base + pcm->gpr_running, 0, /* reset */ emu->gpr_base + pcm->gpr_trigger, 0, /* reset */ emu->gpr_base + pcm->gpr_size, runtime->buffer_size, emu->gpr_base + pcm->gpr_ptr, 0, /* reset ptr number */ emu->gpr_base + pcm->gpr_count, runtime->period_size, emu->gpr_base + pcm->gpr_tmpcount, runtime->period_size, REGLIST_END); for (i = 0; i < pcm->channels; i++) snd_emu10k1_ptr_write(emu, TANKMEMADDRREGBASE + 0x80 + pcm->etram[i], 0, (TANKMEMADDRREG_READ|TANKMEMADDRREG_ALIGN) + i * (runtime->buffer_size / pcm->channels)); return 0; } static int snd_emu10k1_fx8010_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; int result = 0; spin_lock(&emu->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: /* follow thru */ case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: #ifdef EMU10K1_SET_AC3_IEC958 { int i; for (i = 0; i < 3; i++) { unsigned int bits; bits = SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 | SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC | SPCS_GENERATIONSTATUS | 0x00001200 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT | SPCS_NOTAUDIODATA; snd_emu10k1_ptr_write(emu, SPCS0 + i, 0, bits); } } #endif result = snd_emu10k1_fx8010_register_irq_handler(emu, snd_emu10k1_fx8010_playback_irq, pcm->gpr_running, substream, &pcm->irq); if (result < 0) goto __err; snd_emu10k1_fx8010_playback_transfer(substream); /* roll the ball */ snd_emu10k1_ptr_write(emu, emu->gpr_base + pcm->gpr_trigger, 0, 1); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: snd_emu10k1_fx8010_unregister_irq_handler(emu, &pcm->irq); snd_emu10k1_ptr_write(emu, emu->gpr_base + pcm->gpr_trigger, 0, 0); pcm->tram_pos = INITIAL_TRAM_POS(pcm->buffer_size); pcm->tram_shift = 0; break; default: result = -EINVAL; break; } __err: spin_unlock(&emu->reg_lock); return result; } static snd_pcm_uframes_t snd_emu10k1_fx8010_playback_pointer(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; size_t ptr; /* byte pointer */ if (!snd_emu10k1_ptr_read(emu, emu->gpr_base + pcm->gpr_trigger, 0)) return 0; ptr = snd_emu10k1_ptr_read(emu, emu->gpr_base + pcm->gpr_ptr, 0) << 2; return snd_pcm_indirect_playback_pointer(substream, &pcm->pcm_rec, ptr); } static const struct snd_pcm_hardware snd_emu10k1_fx8010_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_RESUME | /* SNDRV_PCM_INFO_MMAP_VALID | */ SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_APPLPTR), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_48000, .rate_min = 48000, .rate_max = 48000, .channels_min = 1, .channels_max = 1, .buffer_bytes_max = (128*1024), .period_bytes_min = 1024, .period_bytes_max = (128*1024), .periods_min = 2, .periods_max = 1024, .fifo_size = 0, }; static int snd_emu10k1_fx8010_playback_open(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; runtime->hw = snd_emu10k1_fx8010_playback; runtime->hw.channels_min = runtime->hw.channels_max = pcm->channels; runtime->hw.period_bytes_max = (pcm->buffer_size * 2) / 2; spin_lock_irq(&emu->reg_lock); if (pcm->valid == 0) { spin_unlock_irq(&emu->reg_lock); return -ENODEV; } pcm->opened = 1; spin_unlock_irq(&emu->reg_lock); return 0; } static int snd_emu10k1_fx8010_playback_close(struct snd_pcm_substream *substream) { struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; spin_lock_irq(&emu->reg_lock); pcm->opened = 0; spin_unlock_irq(&emu->reg_lock); return 0; } static const struct snd_pcm_ops snd_emu10k1_fx8010_playback_ops = { .open = snd_emu10k1_fx8010_playback_open, .close = snd_emu10k1_fx8010_playback_close, .hw_free = snd_emu10k1_fx8010_playback_hw_free, .prepare = snd_emu10k1_fx8010_playback_prepare, .trigger = snd_emu10k1_fx8010_playback_trigger, .pointer = snd_emu10k1_fx8010_playback_pointer, .ack = snd_emu10k1_fx8010_playback_transfer, }; int snd_emu10k1_pcm_efx(struct snd_emu10k1 *emu, int device) { struct snd_pcm *pcm; struct snd_kcontrol *kctl; int err; err = snd_pcm_new(emu->card, "emu10k1 efx", device, emu->audigy ? 0 : 8, 1, &pcm); if (err < 0) return err; pcm->private_data = emu; if (!emu->audigy) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_fx8010_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_efx_ops); pcm->info_flags = 0; if (emu->audigy) strcpy(pcm->name, "Multichannel Capture"); else strcpy(pcm->name, "Multichannel Capture/PT Playback"); emu->pcm_efx = pcm; if (!emu->card_capabilities->emu_model) { // On Sound Blasters, the DSP code copies the EXTINs to FXBUS2. // The mask determines which of these and the EXTOUTs the multi- // channel capture actually records (the channel order is fixed). if (emu->audigy) { emu->efx_voices_mask[0] = 0; emu->efx_voices_mask[1] = 0xffff; } else { emu->efx_voices_mask[0] = 0xffff0000; emu->efx_voices_mask[1] = 0; } kctl = snd_ctl_new1(&snd_emu10k1_pcm_efx_voices_mask, emu); if (!kctl) return -ENOMEM; kctl->id.device = device; err = snd_ctl_add(emu->card, kctl); if (err < 0) return err; } else { // On E-MU cards, the DSP code copies the P16VINs/EMU32INs to // FXBUS2. These are already selected & routed by the FPGA, // so there is no need to apply additional masking. } snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &emu->pci->dev, 64*1024, 64*1024); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1