Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Markus Bollinger | 8299 | 93.37% | 5 | 10.87% |
Takashi Iwai | 403 | 4.53% | 21 | 45.65% |
Hui Wang | 48 | 0.54% | 1 | 2.17% |
Arnd Bergmann | 30 | 0.34% | 1 | 2.17% |
Aya Mahfouz | 24 | 0.27% | 1 | 2.17% |
Ingo Molnar | 19 | 0.21% | 1 | 2.17% |
Julia Lawall | 16 | 0.18% | 3 | 6.52% |
Clemens Ladisch | 15 | 0.17% | 2 | 4.35% |
Andrew Morton | 8 | 0.09% | 1 | 2.17% |
Benoit Taine | 6 | 0.07% | 1 | 2.17% |
Quentin Lambert | 4 | 0.05% | 1 | 2.17% |
Yang Hongyang | 4 | 0.05% | 1 | 2.17% |
Thomas Gleixner | 3 | 0.03% | 2 | 4.35% |
Tobias Klauser | 3 | 0.03% | 1 | 2.17% |
Dan Carpenter | 2 | 0.02% | 1 | 2.17% |
Rusty Russell | 2 | 0.02% | 1 | 2.17% |
Paul Gortmaker | 1 | 0.01% | 1 | 2.17% |
Bhumika Goyal | 1 | 0.01% | 1 | 2.17% |
Total | 8888 | 46 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Driver for Digigram pcxhr compatible soundcards * * main file with alsa callbacks * * Copyright (c) 2004 by Digigram <alsa@digigram.com> */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/mutex.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/info.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include "pcxhr.h" #include "pcxhr_mixer.h" #include "pcxhr_hwdep.h" #include "pcxhr_core.h" #include "pcxhr_mix22.h" #define DRIVER_NAME "pcxhr" MODULE_AUTHOR("Markus Bollinger <bollinger@digigram.com>, " "Marc Titinger <titinger@digigram.com>"); MODULE_DESCRIPTION("Digigram " DRIVER_NAME " " PCXHR_DRIVER_VERSION_STRING); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */ static bool mono[SNDRV_CARDS]; /* capture mono only */ module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for Digigram " DRIVER_NAME " soundcard"); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for Digigram " DRIVER_NAME " soundcard"); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable Digigram " DRIVER_NAME " soundcard"); module_param_array(mono, bool, NULL, 0444); MODULE_PARM_DESC(mono, "Mono capture mode (default is stereo)"); enum { PCI_ID_VX882HR, PCI_ID_PCX882HR, PCI_ID_VX881HR, PCI_ID_PCX881HR, PCI_ID_VX882E, PCI_ID_PCX882E, PCI_ID_VX881E, PCI_ID_PCX881E, PCI_ID_VX1222HR, PCI_ID_PCX1222HR, PCI_ID_VX1221HR, PCI_ID_PCX1221HR, PCI_ID_VX1222E, PCI_ID_PCX1222E, PCI_ID_VX1221E, PCI_ID_PCX1221E, PCI_ID_VX222HR, PCI_ID_VX222E, PCI_ID_PCX22HR, PCI_ID_PCX22E, PCI_ID_VX222HRMIC, PCI_ID_VX222E_MIC, PCI_ID_PCX924HR, PCI_ID_PCX924E, PCI_ID_PCX924HRMIC, PCI_ID_PCX924E_MIC, PCI_ID_VX442HR, PCI_ID_PCX442HR, PCI_ID_VX442E, PCI_ID_PCX442E, PCI_ID_VX822HR, PCI_ID_PCX822HR, PCI_ID_VX822E, PCI_ID_PCX822E, PCI_ID_LAST }; static const struct pci_device_id pcxhr_ids[] = { { 0x10b5, 0x9656, 0x1369, 0xb001, 0, 0, PCI_ID_VX882HR, }, { 0x10b5, 0x9656, 0x1369, 0xb101, 0, 0, PCI_ID_PCX882HR, }, { 0x10b5, 0x9656, 0x1369, 0xb201, 0, 0, PCI_ID_VX881HR, }, { 0x10b5, 0x9656, 0x1369, 0xb301, 0, 0, PCI_ID_PCX881HR, }, { 0x10b5, 0x9056, 0x1369, 0xb021, 0, 0, PCI_ID_VX882E, }, { 0x10b5, 0x9056, 0x1369, 0xb121, 0, 0, PCI_ID_PCX882E, }, { 0x10b5, 0x9056, 0x1369, 0xb221, 0, 0, PCI_ID_VX881E, }, { 0x10b5, 0x9056, 0x1369, 0xb321, 0, 0, PCI_ID_PCX881E, }, { 0x10b5, 0x9656, 0x1369, 0xb401, 0, 0, PCI_ID_VX1222HR, }, { 0x10b5, 0x9656, 0x1369, 0xb501, 0, 0, PCI_ID_PCX1222HR, }, { 0x10b5, 0x9656, 0x1369, 0xb601, 0, 0, PCI_ID_VX1221HR, }, { 0x10b5, 0x9656, 0x1369, 0xb701, 0, 0, PCI_ID_PCX1221HR, }, { 0x10b5, 0x9056, 0x1369, 0xb421, 0, 0, PCI_ID_VX1222E, }, { 0x10b5, 0x9056, 0x1369, 0xb521, 0, 0, PCI_ID_PCX1222E, }, { 0x10b5, 0x9056, 0x1369, 0xb621, 0, 0, PCI_ID_VX1221E, }, { 0x10b5, 0x9056, 0x1369, 0xb721, 0, 0, PCI_ID_PCX1221E, }, { 0x10b5, 0x9056, 0x1369, 0xba01, 0, 0, PCI_ID_VX222HR, }, { 0x10b5, 0x9056, 0x1369, 0xba21, 0, 0, PCI_ID_VX222E, }, { 0x10b5, 0x9056, 0x1369, 0xbd01, 0, 0, PCI_ID_PCX22HR, }, { 0x10b5, 0x9056, 0x1369, 0xbd21, 0, 0, PCI_ID_PCX22E, }, { 0x10b5, 0x9056, 0x1369, 0xbc01, 0, 0, PCI_ID_VX222HRMIC, }, { 0x10b5, 0x9056, 0x1369, 0xbc21, 0, 0, PCI_ID_VX222E_MIC, }, { 0x10b5, 0x9056, 0x1369, 0xbb01, 0, 0, PCI_ID_PCX924HR, }, { 0x10b5, 0x9056, 0x1369, 0xbb21, 0, 0, PCI_ID_PCX924E, }, { 0x10b5, 0x9056, 0x1369, 0xbf01, 0, 0, PCI_ID_PCX924HRMIC, }, { 0x10b5, 0x9056, 0x1369, 0xbf21, 0, 0, PCI_ID_PCX924E_MIC, }, { 0x10b5, 0x9656, 0x1369, 0xd001, 0, 0, PCI_ID_VX442HR, }, { 0x10b5, 0x9656, 0x1369, 0xd101, 0, 0, PCI_ID_PCX442HR, }, { 0x10b5, 0x9056, 0x1369, 0xd021, 0, 0, PCI_ID_VX442E, }, { 0x10b5, 0x9056, 0x1369, 0xd121, 0, 0, PCI_ID_PCX442E, }, { 0x10b5, 0x9656, 0x1369, 0xd201, 0, 0, PCI_ID_VX822HR, }, { 0x10b5, 0x9656, 0x1369, 0xd301, 0, 0, PCI_ID_PCX822HR, }, { 0x10b5, 0x9056, 0x1369, 0xd221, 0, 0, PCI_ID_VX822E, }, { 0x10b5, 0x9056, 0x1369, 0xd321, 0, 0, PCI_ID_PCX822E, }, { 0, } }; MODULE_DEVICE_TABLE(pci, pcxhr_ids); struct board_parameters { char* board_name; short playback_chips; short capture_chips; short fw_file_set; short firmware_num; }; static const struct board_parameters pcxhr_board_params[] = { [PCI_ID_VX882HR] = { "VX882HR", 4, 4, 0, 41 }, [PCI_ID_PCX882HR] = { "PCX882HR", 4, 4, 0, 41 }, [PCI_ID_VX881HR] = { "VX881HR", 4, 4, 0, 41 }, [PCI_ID_PCX881HR] = { "PCX881HR", 4, 4, 0, 41 }, [PCI_ID_VX882E] = { "VX882e", 4, 4, 1, 41 }, [PCI_ID_PCX882E] = { "PCX882e", 4, 4, 1, 41 }, [PCI_ID_VX881E] = { "VX881e", 4, 4, 1, 41 }, [PCI_ID_PCX881E] = { "PCX881e", 4, 4, 1, 41 }, [PCI_ID_VX1222HR] = { "VX1222HR", 6, 1, 2, 42 }, [PCI_ID_PCX1222HR] = { "PCX1222HR", 6, 1, 2, 42 }, [PCI_ID_VX1221HR] = { "VX1221HR", 6, 1, 2, 42 }, [PCI_ID_PCX1221HR] = { "PCX1221HR", 6, 1, 2, 42 }, [PCI_ID_VX1222E] = { "VX1222e", 6, 1, 3, 42 }, [PCI_ID_PCX1222E] = { "PCX1222e", 6, 1, 3, 42 }, [PCI_ID_VX1221E] = { "VX1221e", 6, 1, 3, 42 }, [PCI_ID_PCX1221E] = { "PCX1221e", 6, 1, 3, 42 }, [PCI_ID_VX222HR] = { "VX222HR", 1, 1, 4, 44 }, [PCI_ID_VX222E] = { "VX222e", 1, 1, 4, 44 }, [PCI_ID_PCX22HR] = { "PCX22HR", 1, 0, 4, 44 }, [PCI_ID_PCX22E] = { "PCX22e", 1, 0, 4, 44 }, [PCI_ID_VX222HRMIC] = { "VX222HR-Mic", 1, 1, 5, 44 }, [PCI_ID_VX222E_MIC] = { "VX222e-Mic", 1, 1, 5, 44 }, [PCI_ID_PCX924HR] = { "PCX924HR", 1, 1, 5, 44 }, [PCI_ID_PCX924E] = { "PCX924e", 1, 1, 5, 44 }, [PCI_ID_PCX924HRMIC] = { "PCX924HR-Mic", 1, 1, 5, 44 }, [PCI_ID_PCX924E_MIC] = { "PCX924e-Mic", 1, 1, 5, 44 }, [PCI_ID_VX442HR] = { "VX442HR", 2, 2, 0, 41 }, [PCI_ID_PCX442HR] = { "PCX442HR", 2, 2, 0, 41 }, [PCI_ID_VX442E] = { "VX442e", 2, 2, 1, 41 }, [PCI_ID_PCX442E] = { "PCX442e", 2, 2, 1, 41 }, [PCI_ID_VX822HR] = { "VX822HR", 4, 1, 2, 42 }, [PCI_ID_PCX822HR] = { "PCX822HR", 4, 1, 2, 42 }, [PCI_ID_VX822E] = { "VX822e", 4, 1, 3, 42 }, [PCI_ID_PCX822E] = { "PCX822e", 4, 1, 3, 42 }, }; /* boards without hw AES1 and SRC onboard are all using fw_file_set==4 */ /* VX222HR, VX222e, PCX22HR and PCX22e */ #define PCXHR_BOARD_HAS_AES1(x) (x->fw_file_set != 4) /* some boards do not support 192kHz on digital AES input plugs */ #define PCXHR_BOARD_AESIN_NO_192K(x) ((x->capture_chips == 0) || \ (x->fw_file_set == 0) || \ (x->fw_file_set == 2)) static int pcxhr_pll_freq_register(unsigned int freq, unsigned int* pllreg, unsigned int* realfreq) { unsigned int reg; if (freq < 6900 || freq > 110000) return -EINVAL; reg = (28224000 * 2) / freq; reg = (reg - 1) / 2; if (reg < 0x200) *pllreg = reg + 0x800; else if (reg < 0x400) *pllreg = reg & 0x1ff; else if (reg < 0x800) { *pllreg = ((reg >> 1) & 0x1ff) + 0x200; reg &= ~1; } else { *pllreg = ((reg >> 2) & 0x1ff) + 0x400; reg &= ~3; } if (realfreq) *realfreq = (28224000 / (reg + 1)); return 0; } #define PCXHR_FREQ_REG_MASK 0x1f #define PCXHR_FREQ_QUARTZ_48000 0x00 #define PCXHR_FREQ_QUARTZ_24000 0x01 #define PCXHR_FREQ_QUARTZ_12000 0x09 #define PCXHR_FREQ_QUARTZ_32000 0x08 #define PCXHR_FREQ_QUARTZ_16000 0x04 #define PCXHR_FREQ_QUARTZ_8000 0x0c #define PCXHR_FREQ_QUARTZ_44100 0x02 #define PCXHR_FREQ_QUARTZ_22050 0x0a #define PCXHR_FREQ_QUARTZ_11025 0x06 #define PCXHR_FREQ_PLL 0x05 #define PCXHR_FREQ_QUARTZ_192000 0x10 #define PCXHR_FREQ_QUARTZ_96000 0x18 #define PCXHR_FREQ_QUARTZ_176400 0x14 #define PCXHR_FREQ_QUARTZ_88200 0x1c #define PCXHR_FREQ_QUARTZ_128000 0x12 #define PCXHR_FREQ_QUARTZ_64000 0x1a #define PCXHR_FREQ_WORD_CLOCK 0x0f #define PCXHR_FREQ_SYNC_AES 0x0e #define PCXHR_FREQ_AES_1 0x07 #define PCXHR_FREQ_AES_2 0x0b #define PCXHR_FREQ_AES_3 0x03 #define PCXHR_FREQ_AES_4 0x0d static int pcxhr_get_clock_reg(struct pcxhr_mgr *mgr, unsigned int rate, unsigned int *reg, unsigned int *freq) { unsigned int val, realfreq, pllreg; struct pcxhr_rmh rmh; int err; realfreq = rate; switch (mgr->use_clock_type) { case PCXHR_CLOCK_TYPE_INTERNAL : /* clock by quartz or pll */ switch (rate) { case 48000 : val = PCXHR_FREQ_QUARTZ_48000; break; case 24000 : val = PCXHR_FREQ_QUARTZ_24000; break; case 12000 : val = PCXHR_FREQ_QUARTZ_12000; break; case 32000 : val = PCXHR_FREQ_QUARTZ_32000; break; case 16000 : val = PCXHR_FREQ_QUARTZ_16000; break; case 8000 : val = PCXHR_FREQ_QUARTZ_8000; break; case 44100 : val = PCXHR_FREQ_QUARTZ_44100; break; case 22050 : val = PCXHR_FREQ_QUARTZ_22050; break; case 11025 : val = PCXHR_FREQ_QUARTZ_11025; break; case 192000 : val = PCXHR_FREQ_QUARTZ_192000; break; case 96000 : val = PCXHR_FREQ_QUARTZ_96000; break; case 176400 : val = PCXHR_FREQ_QUARTZ_176400; break; case 88200 : val = PCXHR_FREQ_QUARTZ_88200; break; case 128000 : val = PCXHR_FREQ_QUARTZ_128000; break; case 64000 : val = PCXHR_FREQ_QUARTZ_64000; break; default : val = PCXHR_FREQ_PLL; /* get the value for the pll register */ err = pcxhr_pll_freq_register(rate, &pllreg, &realfreq); if (err) return err; pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); rmh.cmd[0] |= IO_NUM_REG_GENCLK; rmh.cmd[1] = pllreg & MASK_DSP_WORD; rmh.cmd[2] = pllreg >> 24; rmh.cmd_len = 3; err = pcxhr_send_msg(mgr, &rmh); if (err < 0) { dev_err(&mgr->pci->dev, "error CMD_ACCESS_IO_WRITE " "for PLL register : %x!\n", err); return err; } } break; case PCXHR_CLOCK_TYPE_WORD_CLOCK: val = PCXHR_FREQ_WORD_CLOCK; break; case PCXHR_CLOCK_TYPE_AES_SYNC: val = PCXHR_FREQ_SYNC_AES; break; case PCXHR_CLOCK_TYPE_AES_1: val = PCXHR_FREQ_AES_1; break; case PCXHR_CLOCK_TYPE_AES_2: val = PCXHR_FREQ_AES_2; break; case PCXHR_CLOCK_TYPE_AES_3: val = PCXHR_FREQ_AES_3; break; case PCXHR_CLOCK_TYPE_AES_4: val = PCXHR_FREQ_AES_4; break; default: return -EINVAL; } *reg = val; *freq = realfreq; return 0; } static int pcxhr_sub_set_clock(struct pcxhr_mgr *mgr, unsigned int rate, int *changed) { unsigned int val, realfreq, speed; struct pcxhr_rmh rmh; int err; err = pcxhr_get_clock_reg(mgr, rate, &val, &realfreq); if (err) return err; /* codec speed modes */ if (rate < 55000) speed = 0; /* single speed */ else if (rate < 100000) speed = 1; /* dual speed */ else speed = 2; /* quad speed */ if (mgr->codec_speed != speed) { pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* mute outputs */ rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT; if (DSP_EXT_CMD_SET(mgr)) { rmh.cmd[1] = 1; rmh.cmd_len = 2; } err = pcxhr_send_msg(mgr, &rmh); if (err) return err; pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE); /* set speed ratio */ rmh.cmd[0] |= IO_NUM_SPEED_RATIO; rmh.cmd[1] = speed; rmh.cmd_len = 2; err = pcxhr_send_msg(mgr, &rmh); if (err) return err; } /* set the new frequency */ dev_dbg(&mgr->pci->dev, "clock register : set %x\n", val); err = pcxhr_write_io_num_reg_cont(mgr, PCXHR_FREQ_REG_MASK, val, changed); if (err) return err; mgr->sample_rate_real = realfreq; mgr->cur_clock_type = mgr->use_clock_type; /* unmute after codec speed modes */ if (mgr->codec_speed != speed) { pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); /* unmute outputs */ rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT; if (DSP_EXT_CMD_SET(mgr)) { rmh.cmd[1] = 1; rmh.cmd_len = 2; } err = pcxhr_send_msg(mgr, &rmh); if (err) return err; mgr->codec_speed = speed; /* save new codec speed */ } dev_dbg(&mgr->pci->dev, "%s to %dHz (realfreq=%d)\n", __func__, rate, realfreq); return 0; } #define PCXHR_MODIFY_CLOCK_S_BIT 0x04 #define PCXHR_IRQ_TIMER_FREQ 92000 #define PCXHR_IRQ_TIMER_PERIOD 48 int pcxhr_set_clock(struct pcxhr_mgr *mgr, unsigned int rate) { struct pcxhr_rmh rmh; int err, changed; if (rate == 0) return 0; /* nothing to do */ if (mgr->is_hr_stereo) err = hr222_sub_set_clock(mgr, rate, &changed); else err = pcxhr_sub_set_clock(mgr, rate, &changed); if (err) return err; if (changed) { pcxhr_init_rmh(&rmh, CMD_MODIFY_CLOCK); rmh.cmd[0] |= PCXHR_MODIFY_CLOCK_S_BIT; /* resync fifos */ if (rate < PCXHR_IRQ_TIMER_FREQ) rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD; else rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD * 2; rmh.cmd[2] = rate; rmh.cmd_len = 3; err = pcxhr_send_msg(mgr, &rmh); if (err) return err; } return 0; } static int pcxhr_sub_get_external_clock(struct pcxhr_mgr *mgr, enum pcxhr_clock_type clock_type, int *sample_rate) { struct pcxhr_rmh rmh; unsigned char reg; int err, rate; switch (clock_type) { case PCXHR_CLOCK_TYPE_WORD_CLOCK: reg = REG_STATUS_WORD_CLOCK; break; case PCXHR_CLOCK_TYPE_AES_SYNC: reg = REG_STATUS_AES_SYNC; break; case PCXHR_CLOCK_TYPE_AES_1: reg = REG_STATUS_AES_1; break; case PCXHR_CLOCK_TYPE_AES_2: reg = REG_STATUS_AES_2; break; case PCXHR_CLOCK_TYPE_AES_3: reg = REG_STATUS_AES_3; break; case PCXHR_CLOCK_TYPE_AES_4: reg = REG_STATUS_AES_4; break; default: return -EINVAL; } pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ); rmh.cmd_len = 2; rmh.cmd[0] |= IO_NUM_REG_STATUS; if (mgr->last_reg_stat != reg) { rmh.cmd[1] = reg; err = pcxhr_send_msg(mgr, &rmh); if (err) return err; udelay(100); /* wait minimum 2 sample_frames at 32kHz ! */ mgr->last_reg_stat = reg; } rmh.cmd[1] = REG_STATUS_CURRENT; err = pcxhr_send_msg(mgr, &rmh); if (err) return err; switch (rmh.stat[1] & 0x0f) { case REG_STATUS_SYNC_32000 : rate = 32000; break; case REG_STATUS_SYNC_44100 : rate = 44100; break; case REG_STATUS_SYNC_48000 : rate = 48000; break; case REG_STATUS_SYNC_64000 : rate = 64000; break; case REG_STATUS_SYNC_88200 : rate = 88200; break; case REG_STATUS_SYNC_96000 : rate = 96000; break; case REG_STATUS_SYNC_128000 : rate = 128000; break; case REG_STATUS_SYNC_176400 : rate = 176400; break; case REG_STATUS_SYNC_192000 : rate = 192000; break; default: rate = 0; } dev_dbg(&mgr->pci->dev, "External clock is at %d Hz\n", rate); *sample_rate = rate; return 0; } int pcxhr_get_external_clock(struct pcxhr_mgr *mgr, enum pcxhr_clock_type clock_type, int *sample_rate) { if (mgr->is_hr_stereo) return hr222_get_external_clock(mgr, clock_type, sample_rate); else return pcxhr_sub_get_external_clock(mgr, clock_type, sample_rate); } /* * start or stop playback/capture substream */ static int pcxhr_set_stream_state(struct snd_pcxhr *chip, struct pcxhr_stream *stream) { int err; struct pcxhr_rmh rmh; int stream_mask, start; if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) start = 1; else { if (stream->status != PCXHR_STREAM_STATUS_SCHEDULE_STOP) { dev_err(chip->card->dev, "%s CANNOT be stopped\n", __func__); return -EINVAL; } start = 0; } if (!stream->substream) return -EINVAL; stream->timer_abs_periods = 0; stream->timer_period_frag = 0; /* reset theoretical stream pos */ stream->timer_buf_periods = 0; stream->timer_is_synced = 0; stream_mask = stream->pipe->is_capture ? 1 : 1<<stream->substream->number; pcxhr_init_rmh(&rmh, start ? CMD_START_STREAM : CMD_STOP_STREAM); pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, stream->pipe->first_audio, 0, stream_mask); chip = snd_pcm_substream_chip(stream->substream); err = pcxhr_send_msg(chip->mgr, &rmh); if (err) dev_err(chip->card->dev, "ERROR %s err=%x;\n", __func__, err); stream->status = start ? PCXHR_STREAM_STATUS_STARTED : PCXHR_STREAM_STATUS_STOPPED; return err; } #define HEADER_FMT_BASE_LIN 0xfed00000 #define HEADER_FMT_BASE_FLOAT 0xfad00000 #define HEADER_FMT_INTEL 0x00008000 #define HEADER_FMT_24BITS 0x00004000 #define HEADER_FMT_16BITS 0x00002000 #define HEADER_FMT_UPTO11 0x00000200 #define HEADER_FMT_UPTO32 0x00000100 #define HEADER_FMT_MONO 0x00000080 static int pcxhr_set_format(struct pcxhr_stream *stream) { int err, is_capture, sample_rate, stream_num; struct snd_pcxhr *chip; struct pcxhr_rmh rmh; unsigned int header; chip = snd_pcm_substream_chip(stream->substream); switch (stream->format) { case SNDRV_PCM_FORMAT_U8: header = HEADER_FMT_BASE_LIN; break; case SNDRV_PCM_FORMAT_S16_LE: header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS | HEADER_FMT_INTEL; break; case SNDRV_PCM_FORMAT_S16_BE: header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS; break; case SNDRV_PCM_FORMAT_S24_3LE: header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS | HEADER_FMT_INTEL; break; case SNDRV_PCM_FORMAT_S24_3BE: header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS; break; case SNDRV_PCM_FORMAT_FLOAT_LE: header = HEADER_FMT_BASE_FLOAT | HEADER_FMT_INTEL; break; default: dev_err(chip->card->dev, "error %s() : unknown format\n", __func__); return -EINVAL; } sample_rate = chip->mgr->sample_rate; if (sample_rate <= 32000 && sample_rate !=0) { if (sample_rate <= 11025) header |= HEADER_FMT_UPTO11; else header |= HEADER_FMT_UPTO32; } if (stream->channels == 1) header |= HEADER_FMT_MONO; is_capture = stream->pipe->is_capture; stream_num = is_capture ? 0 : stream->substream->number; pcxhr_init_rmh(&rmh, is_capture ? CMD_FORMAT_STREAM_IN : CMD_FORMAT_STREAM_OUT); pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0); if (is_capture) { /* bug with old dsp versions: */ /* bit 12 also sets the format of the playback stream */ if (DSP_EXT_CMD_SET(chip->mgr)) rmh.cmd[0] |= 1<<10; else rmh.cmd[0] |= 1<<12; } rmh.cmd[1] = 0; rmh.cmd_len = 2; if (DSP_EXT_CMD_SET(chip->mgr)) { /* add channels and set bit 19 if channels>2 */ rmh.cmd[1] = stream->channels; if (!is_capture) { /* playback : add channel mask to command */ rmh.cmd[2] = (stream->channels == 1) ? 0x01 : 0x03; rmh.cmd_len = 3; } } rmh.cmd[rmh.cmd_len++] = header >> 8; rmh.cmd[rmh.cmd_len++] = (header & 0xff) << 16; err = pcxhr_send_msg(chip->mgr, &rmh); if (err) dev_err(chip->card->dev, "ERROR %s err=%x;\n", __func__, err); return err; } static int pcxhr_update_r_buffer(struct pcxhr_stream *stream) { int err, is_capture, stream_num; struct pcxhr_rmh rmh; struct snd_pcm_substream *subs = stream->substream; struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); is_capture = (subs->stream == SNDRV_PCM_STREAM_CAPTURE); stream_num = is_capture ? 0 : subs->number; dev_dbg(chip->card->dev, "%s(pcm%c%d) : addr(%p) bytes(%zx) subs(%d)\n", __func__, is_capture ? 'c' : 'p', chip->chip_idx, (void *)(long)subs->runtime->dma_addr, subs->runtime->dma_bytes, subs->number); pcxhr_init_rmh(&rmh, CMD_UPDATE_R_BUFFERS); pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0); /* max buffer size is 2 MByte */ snd_BUG_ON(subs->runtime->dma_bytes >= 0x200000); /* size in bits */ rmh.cmd[1] = subs->runtime->dma_bytes * 8; /* most significant byte */ rmh.cmd[2] = subs->runtime->dma_addr >> 24; /* this is a circular buffer */ rmh.cmd[2] |= 1<<19; /* least 3 significant bytes */ rmh.cmd[3] = subs->runtime->dma_addr & MASK_DSP_WORD; rmh.cmd_len = 4; err = pcxhr_send_msg(chip->mgr, &rmh); if (err) dev_err(chip->card->dev, "ERROR CMD_UPDATE_R_BUFFERS err=%x;\n", err); return err; } #if 0 static int pcxhr_pipe_sample_count(struct pcxhr_stream *stream, snd_pcm_uframes_t *sample_count) { struct pcxhr_rmh rmh; int err; pcxhr_t *chip = snd_pcm_substream_chip(stream->substream); pcxhr_init_rmh(&rmh, CMD_PIPE_SAMPLE_COUNT); pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 0, 0, 1<<stream->pipe->first_audio); err = pcxhr_send_msg(chip->mgr, &rmh); if (err == 0) { *sample_count = ((snd_pcm_uframes_t)rmh.stat[0]) << 24; *sample_count += (snd_pcm_uframes_t)rmh.stat[1]; } dev_dbg(chip->card->dev, "PIPE_SAMPLE_COUNT = %lx\n", *sample_count); return err; } #endif static inline int pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream *stream, struct pcxhr_pipe **pipe) { if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) { *pipe = stream->pipe; return 1; } return 0; } static void pcxhr_start_linked_stream(struct pcxhr_mgr *mgr) { int i, j, err; struct pcxhr_pipe *pipe; struct snd_pcxhr *chip; int capture_mask = 0; int playback_mask = 0; #ifdef CONFIG_SND_DEBUG_VERBOSE ktime_t start_time, stop_time, diff_time; start_time = ktime_get(); #endif mutex_lock(&mgr->setup_mutex); /* check the pipes concerned and build pipe_array */ for (i = 0; i < mgr->num_cards; i++) { chip = mgr->chip[i]; for (j = 0; j < chip->nb_streams_capt; j++) { if (pcxhr_stream_scheduled_get_pipe(&chip->capture_stream[j], &pipe)) capture_mask |= (1 << pipe->first_audio); } for (j = 0; j < chip->nb_streams_play; j++) { if (pcxhr_stream_scheduled_get_pipe(&chip->playback_stream[j], &pipe)) { playback_mask |= (1 << pipe->first_audio); break; /* add only once, as all playback * streams of one chip use the same pipe */ } } } if (capture_mask == 0 && playback_mask == 0) { mutex_unlock(&mgr->setup_mutex); dev_err(&mgr->pci->dev, "%s : no pipes\n", __func__); return; } dev_dbg(&mgr->pci->dev, "%s : playback_mask=%x capture_mask=%x\n", __func__, playback_mask, capture_mask); /* synchronous stop of all the pipes concerned */ err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 0); if (err) { mutex_unlock(&mgr->setup_mutex); dev_err(&mgr->pci->dev, "%s : " "error stop pipes (P%x C%x)\n", __func__, playback_mask, capture_mask); return; } /* the dsp lost format and buffer info with the stop pipe */ for (i = 0; i < mgr->num_cards; i++) { struct pcxhr_stream *stream; chip = mgr->chip[i]; for (j = 0; j < chip->nb_streams_capt; j++) { stream = &chip->capture_stream[j]; if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) { err = pcxhr_set_format(stream); err = pcxhr_update_r_buffer(stream); } } for (j = 0; j < chip->nb_streams_play; j++) { stream = &chip->playback_stream[j]; if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) { err = pcxhr_set_format(stream); err = pcxhr_update_r_buffer(stream); } } } /* start all the streams */ for (i = 0; i < mgr->num_cards; i++) { struct pcxhr_stream *stream; chip = mgr->chip[i]; for (j = 0; j < chip->nb_streams_capt; j++) { stream = &chip->capture_stream[j]; if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) err = pcxhr_set_stream_state(chip, stream); } for (j = 0; j < chip->nb_streams_play; j++) { stream = &chip->playback_stream[j]; if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) err = pcxhr_set_stream_state(chip, stream); } } /* synchronous start of all the pipes concerned */ err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 1); if (err) { mutex_unlock(&mgr->setup_mutex); dev_err(&mgr->pci->dev, "%s : " "error start pipes (P%x C%x)\n", __func__, playback_mask, capture_mask); return; } /* put the streams into the running state now * (increment pointer by interrupt) */ mutex_lock(&mgr->lock); for ( i =0; i < mgr->num_cards; i++) { struct pcxhr_stream *stream; chip = mgr->chip[i]; for(j = 0; j < chip->nb_streams_capt; j++) { stream = &chip->capture_stream[j]; if(stream->status == PCXHR_STREAM_STATUS_STARTED) stream->status = PCXHR_STREAM_STATUS_RUNNING; } for (j = 0; j < chip->nb_streams_play; j++) { stream = &chip->playback_stream[j]; if (stream->status == PCXHR_STREAM_STATUS_STARTED) { /* playback will already have advanced ! */ stream->timer_period_frag += mgr->granularity; stream->status = PCXHR_STREAM_STATUS_RUNNING; } } } mutex_unlock(&mgr->lock); mutex_unlock(&mgr->setup_mutex); #ifdef CONFIG_SND_DEBUG_VERBOSE stop_time = ktime_get(); diff_time = ktime_sub(stop_time, start_time); dev_dbg(&mgr->pci->dev, "***TRIGGER START*** TIME = %ld (err = %x)\n", (long)(ktime_to_ns(diff_time)), err); #endif } /* * trigger callback */ static int pcxhr_trigger(struct snd_pcm_substream *subs, int cmd) { struct pcxhr_stream *stream; struct snd_pcm_substream *s; struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); switch (cmd) { case SNDRV_PCM_TRIGGER_START: dev_dbg(chip->card->dev, "SNDRV_PCM_TRIGGER_START\n"); if (snd_pcm_stream_linked(subs)) { snd_pcm_group_for_each_entry(s, subs) { if (snd_pcm_substream_chip(s) != chip) continue; stream = s->runtime->private_data; stream->status = PCXHR_STREAM_STATUS_SCHEDULE_RUN; snd_pcm_trigger_done(s, subs); } pcxhr_start_linked_stream(chip->mgr); } else { stream = subs->runtime->private_data; dev_dbg(chip->card->dev, "Only one Substream %c %d\n", stream->pipe->is_capture ? 'C' : 'P', stream->pipe->first_audio); if (pcxhr_set_format(stream)) return -EINVAL; if (pcxhr_update_r_buffer(stream)) return -EINVAL; stream->status = PCXHR_STREAM_STATUS_SCHEDULE_RUN; if (pcxhr_set_stream_state(chip, stream)) return -EINVAL; stream->status = PCXHR_STREAM_STATUS_RUNNING; } break; case SNDRV_PCM_TRIGGER_STOP: dev_dbg(chip->card->dev, "SNDRV_PCM_TRIGGER_STOP\n"); snd_pcm_group_for_each_entry(s, subs) { stream = s->runtime->private_data; stream->status = PCXHR_STREAM_STATUS_SCHEDULE_STOP; if (pcxhr_set_stream_state(chip, stream)) return -EINVAL; snd_pcm_trigger_done(s, subs); } break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: /* TODO */ default: return -EINVAL; } return 0; } static int pcxhr_hardware_timer(struct pcxhr_mgr *mgr, int start) { struct pcxhr_rmh rmh; int err; pcxhr_init_rmh(&rmh, CMD_SET_TIMER_INTERRUPT); if (start) { /* last dsp time invalid */ mgr->dsp_time_last = PCXHR_DSP_TIME_INVALID; rmh.cmd[0] |= mgr->granularity; } err = pcxhr_send_msg(mgr, &rmh); if (err < 0) dev_err(&mgr->pci->dev, "error %s err(%x)\n", __func__, err); return err; } /* * prepare callback for all pcms */ static int pcxhr_prepare(struct snd_pcm_substream *subs) { struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); struct pcxhr_mgr *mgr = chip->mgr; int err = 0; dev_dbg(chip->card->dev, "%s : period_size(%lx) periods(%x) buffer_size(%lx)\n", __func__, subs->runtime->period_size, subs->runtime->periods, subs->runtime->buffer_size); mutex_lock(&mgr->setup_mutex); do { /* only the first stream can choose the sample rate */ /* set the clock only once (first stream) */ if (mgr->sample_rate != subs->runtime->rate) { err = pcxhr_set_clock(mgr, subs->runtime->rate); if (err) break; if (mgr->sample_rate == 0) /* start the DSP-timer */ err = pcxhr_hardware_timer(mgr, 1); mgr->sample_rate = subs->runtime->rate; } } while(0); /* do only once (so we can use break instead of goto) */ mutex_unlock(&mgr->setup_mutex); return err; } /* * HW_PARAMS callback for all pcms */ static int pcxhr_hw_params(struct snd_pcm_substream *subs, struct snd_pcm_hw_params *hw) { struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); struct pcxhr_mgr *mgr = chip->mgr; struct pcxhr_stream *stream = subs->runtime->private_data; mutex_lock(&mgr->setup_mutex); /* set up channels */ stream->channels = params_channels(hw); /* set up format for the stream */ stream->format = params_format(hw); mutex_unlock(&mgr->setup_mutex); return 0; } /* * CONFIGURATION SPACE for all pcms, mono pcm must update channels_max */ static const struct snd_pcm_hardware pcxhr_caps = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START), .formats = (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_FLOAT_LE), .rates = (SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_192000), .rate_min = 8000, .rate_max = 192000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = (32*1024), /* 1 byte == 1 frame U8 mono (PCXHR_GRANULARITY is frames!) */ .period_bytes_min = (2*PCXHR_GRANULARITY), .period_bytes_max = (16*1024), .periods_min = 2, .periods_max = (32*1024/PCXHR_GRANULARITY), }; static int pcxhr_open(struct snd_pcm_substream *subs) { struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); struct pcxhr_mgr *mgr = chip->mgr; struct snd_pcm_runtime *runtime = subs->runtime; struct pcxhr_stream *stream; int err; mutex_lock(&mgr->setup_mutex); /* copy the struct snd_pcm_hardware struct */ runtime->hw = pcxhr_caps; if( subs->stream == SNDRV_PCM_STREAM_PLAYBACK ) { dev_dbg(chip->card->dev, "%s playback chip%d subs%d\n", __func__, chip->chip_idx, subs->number); stream = &chip->playback_stream[subs->number]; } else { dev_dbg(chip->card->dev, "%s capture chip%d subs%d\n", __func__, chip->chip_idx, subs->number); if (mgr->mono_capture) runtime->hw.channels_max = 1; else runtime->hw.channels_min = 2; stream = &chip->capture_stream[subs->number]; } if (stream->status != PCXHR_STREAM_STATUS_FREE){ /* streams in use */ dev_err(chip->card->dev, "%s chip%d subs%d in use\n", __func__, chip->chip_idx, subs->number); mutex_unlock(&mgr->setup_mutex); return -EBUSY; } /* float format support is in some cases buggy on stereo cards */ if (mgr->is_hr_stereo) runtime->hw.formats &= ~SNDRV_PCM_FMTBIT_FLOAT_LE; /* buffer-size should better be multiple of period-size */ err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (err < 0) { mutex_unlock(&mgr->setup_mutex); return err; } /* if a sample rate is already used or fixed by external clock, * the stream cannot change */ if (mgr->sample_rate) runtime->hw.rate_min = runtime->hw.rate_max = mgr->sample_rate; else { if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) { int external_rate; if (pcxhr_get_external_clock(mgr, mgr->use_clock_type, &external_rate) || external_rate == 0) { /* cannot detect the external clock rate */ mutex_unlock(&mgr->setup_mutex); return -EBUSY; } runtime->hw.rate_min = external_rate; runtime->hw.rate_max = external_rate; } } stream->status = PCXHR_STREAM_STATUS_OPEN; stream->substream = subs; stream->channels = 0; /* not configured yet */ runtime->private_data = stream; /* better get a divisor of granularity values (96 or 192) */ snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32); snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32); snd_pcm_set_sync(subs); mgr->ref_count_rate++; mutex_unlock(&mgr->setup_mutex); return 0; } static int pcxhr_close(struct snd_pcm_substream *subs) { struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); struct pcxhr_mgr *mgr = chip->mgr; struct pcxhr_stream *stream = subs->runtime->private_data; mutex_lock(&mgr->setup_mutex); dev_dbg(chip->card->dev, "%s chip%d subs%d\n", __func__, chip->chip_idx, subs->number); /* sample rate released */ if (--mgr->ref_count_rate == 0) { mgr->sample_rate = 0; /* the sample rate is no more locked */ pcxhr_hardware_timer(mgr, 0); /* stop the DSP-timer */ } stream->status = PCXHR_STREAM_STATUS_FREE; stream->substream = NULL; mutex_unlock(&mgr->setup_mutex); return 0; } static snd_pcm_uframes_t pcxhr_stream_pointer(struct snd_pcm_substream *subs) { u_int32_t timer_period_frag; int timer_buf_periods; struct snd_pcxhr *chip = snd_pcm_substream_chip(subs); struct snd_pcm_runtime *runtime = subs->runtime; struct pcxhr_stream *stream = runtime->private_data; mutex_lock(&chip->mgr->lock); /* get the period fragment and the nb of periods in the buffer */ timer_period_frag = stream->timer_period_frag; timer_buf_periods = stream->timer_buf_periods; mutex_unlock(&chip->mgr->lock); return (snd_pcm_uframes_t)((timer_buf_periods * runtime->period_size) + timer_period_frag); } static const struct snd_pcm_ops pcxhr_ops = { .open = pcxhr_open, .close = pcxhr_close, .prepare = pcxhr_prepare, .hw_params = pcxhr_hw_params, .trigger = pcxhr_trigger, .pointer = pcxhr_stream_pointer, }; /* */ int pcxhr_create_pcm(struct snd_pcxhr *chip) { int err; struct snd_pcm *pcm; char name[32]; snprintf(name, sizeof(name), "pcxhr %d", chip->chip_idx); err = snd_pcm_new(chip->card, name, 0, chip->nb_streams_play, chip->nb_streams_capt, &pcm); if (err < 0) { dev_err(chip->card->dev, "cannot create pcm %s\n", name); return err; } pcm->private_data = chip; if (chip->nb_streams_play) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcxhr_ops); if (chip->nb_streams_capt) snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcxhr_ops); pcm->info_flags = 0; pcm->nonatomic = true; strcpy(pcm->name, name); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &chip->mgr->pci->dev, 32*1024, 32*1024); chip->pcm = pcm; return 0; } static int pcxhr_chip_free(struct snd_pcxhr *chip) { kfree(chip); return 0; } static int pcxhr_chip_dev_free(struct snd_device *device) { struct snd_pcxhr *chip = device->device_data; return pcxhr_chip_free(chip); } /* */ static int pcxhr_create(struct pcxhr_mgr *mgr, struct snd_card *card, int idx) { int err; struct snd_pcxhr *chip; static const struct snd_device_ops ops = { .dev_free = pcxhr_chip_dev_free, }; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->card = card; chip->chip_idx = idx; chip->mgr = mgr; card->sync_irq = mgr->irq; if (idx < mgr->playback_chips) /* stereo or mono streams */ chip->nb_streams_play = PCXHR_PLAYBACK_STREAMS; if (idx < mgr->capture_chips) { if (mgr->mono_capture) chip->nb_streams_capt = 2; /* 2 mono streams */ else chip->nb_streams_capt = 1; /* or 1 stereo stream */ } err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); if (err < 0) { pcxhr_chip_free(chip); return err; } mgr->chip[idx] = chip; return 0; } /* proc interface */ static void pcxhr_proc_info(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_pcxhr *chip = entry->private_data; struct pcxhr_mgr *mgr = chip->mgr; snd_iprintf(buffer, "\n%s\n", mgr->name); /* stats available when embedded DSP is running */ if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) { struct pcxhr_rmh rmh; short ver_maj = (mgr->dsp_version >> 16) & 0xff; short ver_min = (mgr->dsp_version >> 8) & 0xff; short ver_build = mgr->dsp_version & 0xff; snd_iprintf(buffer, "module version %s\n", PCXHR_DRIVER_VERSION_STRING); snd_iprintf(buffer, "dsp version %d.%d.%d\n", ver_maj, ver_min, ver_build); if (mgr->board_has_analog) snd_iprintf(buffer, "analog io available\n"); else snd_iprintf(buffer, "digital only board\n"); /* calc cpu load of the dsp */ pcxhr_init_rmh(&rmh, CMD_GET_DSP_RESOURCES); if( ! pcxhr_send_msg(mgr, &rmh) ) { int cur = rmh.stat[0]; int ref = rmh.stat[1]; if (ref > 0) { if (mgr->sample_rate_real != 0 && mgr->sample_rate_real != 48000) { ref = (ref * 48000) / mgr->sample_rate_real; if (mgr->sample_rate_real >= PCXHR_IRQ_TIMER_FREQ) ref *= 2; } cur = 100 - (100 * cur) / ref; snd_iprintf(buffer, "cpu load %d%%\n", cur); snd_iprintf(buffer, "buffer pool %d/%d\n", rmh.stat[2], rmh.stat[3]); } } snd_iprintf(buffer, "dma granularity : %d\n", mgr->granularity); snd_iprintf(buffer, "dsp time errors : %d\n", mgr->dsp_time_err); snd_iprintf(buffer, "dsp async pipe xrun errors : %d\n", mgr->async_err_pipe_xrun); snd_iprintf(buffer, "dsp async stream xrun errors : %d\n", mgr->async_err_stream_xrun); snd_iprintf(buffer, "dsp async last other error : %x\n", mgr->async_err_other_last); /* debug zone dsp */ rmh.cmd[0] = 0x4200 + PCXHR_SIZE_MAX_STATUS; rmh.cmd_len = 1; rmh.stat_len = PCXHR_SIZE_MAX_STATUS; rmh.dsp_stat = 0; rmh.cmd_idx = CMD_LAST_INDEX; if( ! pcxhr_send_msg(mgr, &rmh) ) { int i; if (rmh.stat_len > 8) rmh.stat_len = 8; for (i = 0; i < rmh.stat_len; i++) snd_iprintf(buffer, "debug[%02d] = %06x\n", i, rmh.stat[i]); } } else snd_iprintf(buffer, "no firmware loaded\n"); snd_iprintf(buffer, "\n"); } static void pcxhr_proc_sync(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_pcxhr *chip = entry->private_data; struct pcxhr_mgr *mgr = chip->mgr; static const char *textsHR22[3] = { "Internal", "AES Sync", "AES 1" }; static const char *textsPCXHR[7] = { "Internal", "Word", "AES Sync", "AES 1", "AES 2", "AES 3", "AES 4" }; const char **texts; int max_clock; if (mgr->is_hr_stereo) { texts = textsHR22; max_clock = HR22_CLOCK_TYPE_MAX; } else { texts = textsPCXHR; max_clock = PCXHR_CLOCK_TYPE_MAX; } snd_iprintf(buffer, "\n%s\n", mgr->name); snd_iprintf(buffer, "Current Sample Clock\t: %s\n", texts[mgr->cur_clock_type]); snd_iprintf(buffer, "Current Sample Rate\t= %d\n", mgr->sample_rate_real); /* commands available when embedded DSP is running */ if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) { int i, err, sample_rate; for (i = 1; i <= max_clock; i++) { err = pcxhr_get_external_clock(mgr, i, &sample_rate); if (err) break; snd_iprintf(buffer, "%s Clock\t\t= %d\n", texts[i], sample_rate); } } else snd_iprintf(buffer, "no firmware loaded\n"); snd_iprintf(buffer, "\n"); } static void pcxhr_proc_gpio_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_pcxhr *chip = entry->private_data; struct pcxhr_mgr *mgr = chip->mgr; /* commands available when embedded DSP is running */ if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) { /* gpio ports on stereo boards only available */ int value = 0; hr222_read_gpio(mgr, 1, &value); /* GPI */ snd_iprintf(buffer, "GPI: 0x%x\n", value); hr222_read_gpio(mgr, 0, &value); /* GP0 */ snd_iprintf(buffer, "GPO: 0x%x\n", value); } else snd_iprintf(buffer, "no firmware loaded\n"); snd_iprintf(buffer, "\n"); } static void pcxhr_proc_gpo_write(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_pcxhr *chip = entry->private_data; struct pcxhr_mgr *mgr = chip->mgr; char line[64]; int value; /* commands available when embedded DSP is running */ if (!(mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX))) return; while (!snd_info_get_line(buffer, line, sizeof(line))) { if (sscanf(line, "GPO: 0x%x", &value) != 1) continue; hr222_write_gpo(mgr, value); /* GP0 */ } } /* Access to the results of the CMD_GET_TIME_CODE RMH */ #define TIME_CODE_VALID_MASK 0x00800000 #define TIME_CODE_NEW_MASK 0x00400000 #define TIME_CODE_BACK_MASK 0x00200000 #define TIME_CODE_WAIT_MASK 0x00100000 /* Values for the CMD_MANAGE_SIGNAL RMH */ #define MANAGE_SIGNAL_TIME_CODE 0x01 #define MANAGE_SIGNAL_MIDI 0x02 /* linear time code read proc*/ static void pcxhr_proc_ltc(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_pcxhr *chip = entry->private_data; struct pcxhr_mgr *mgr = chip->mgr; struct pcxhr_rmh rmh; unsigned int ltcHrs, ltcMin, ltcSec, ltcFrm; int err; /* commands available when embedded DSP is running */ if (!(mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX))) { snd_iprintf(buffer, "no firmware loaded\n"); return; } if (!mgr->capture_ltc) { pcxhr_init_rmh(&rmh, CMD_MANAGE_SIGNAL); rmh.cmd[0] |= MANAGE_SIGNAL_TIME_CODE; err = pcxhr_send_msg(mgr, &rmh); if (err) { snd_iprintf(buffer, "ltc not activated (%d)\n", err); return; } if (mgr->is_hr_stereo) hr222_manage_timecode(mgr, 1); else pcxhr_write_io_num_reg_cont(mgr, REG_CONT_VALSMPTE, REG_CONT_VALSMPTE, NULL); mgr->capture_ltc = 1; } pcxhr_init_rmh(&rmh, CMD_GET_TIME_CODE); err = pcxhr_send_msg(mgr, &rmh); if (err) { snd_iprintf(buffer, "ltc read error (err=%d)\n", err); return ; } ltcHrs = 10*((rmh.stat[0] >> 8) & 0x3) + (rmh.stat[0] & 0xf); ltcMin = 10*((rmh.stat[1] >> 16) & 0x7) + ((rmh.stat[1] >> 8) & 0xf); ltcSec = 10*(rmh.stat[1] & 0x7) + ((rmh.stat[2] >> 16) & 0xf); ltcFrm = 10*((rmh.stat[2] >> 8) & 0x3) + (rmh.stat[2] & 0xf); snd_iprintf(buffer, "timecode: %02u:%02u:%02u-%02u\n", ltcHrs, ltcMin, ltcSec, ltcFrm); snd_iprintf(buffer, "raw: 0x%04x%06x%06x\n", rmh.stat[0] & 0x00ffff, rmh.stat[1] & 0xffffff, rmh.stat[2] & 0xffffff); /*snd_iprintf(buffer, "dsp ref time: 0x%06x%06x\n", rmh.stat[3] & 0xffffff, rmh.stat[4] & 0xffffff);*/ if (!(rmh.stat[0] & TIME_CODE_VALID_MASK)) { snd_iprintf(buffer, "warning: linear timecode not valid\n"); } } static void pcxhr_proc_init(struct snd_pcxhr *chip) { snd_card_ro_proc_new(chip->card, "info", chip, pcxhr_proc_info); snd_card_ro_proc_new(chip->card, "sync", chip, pcxhr_proc_sync); /* gpio available on stereo sound cards only */ if (chip->mgr->is_hr_stereo) snd_card_rw_proc_new(chip->card, "gpio", chip, pcxhr_proc_gpio_read, pcxhr_proc_gpo_write); snd_card_ro_proc_new(chip->card, "ltc", chip, pcxhr_proc_ltc); } /* end of proc interface */ /* * release all the cards assigned to a manager instance */ static int pcxhr_free(struct pcxhr_mgr *mgr) { unsigned int i; for (i = 0; i < mgr->num_cards; i++) { if (mgr->chip[i]) snd_card_free(mgr->chip[i]->card); } /* reset board if some firmware was loaded */ if(mgr->dsp_loaded) { pcxhr_reset_board(mgr); dev_dbg(&mgr->pci->dev, "reset pcxhr !\n"); } /* release irq */ if (mgr->irq >= 0) free_irq(mgr->irq, mgr); pci_release_regions(mgr->pci); /* free hostport purgebuffer */ if (mgr->hostport.area) { snd_dma_free_pages(&mgr->hostport); mgr->hostport.area = NULL; } kfree(mgr->prmh); pci_disable_device(mgr->pci); kfree(mgr); return 0; } /* * probe function - creates the card manager */ static int pcxhr_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct pcxhr_mgr *mgr; unsigned int i; int err; size_t size; char *card_name; if (dev >= SNDRV_CARDS) return -ENODEV; if (! enable[dev]) { dev++; return -ENOENT; } /* enable PCI device */ err = pci_enable_device(pci); if (err < 0) return err; pci_set_master(pci); /* check if we can restrict PCI DMA transfers to 32 bits */ if (dma_set_mask(&pci->dev, DMA_BIT_MASK(32)) < 0) { dev_err(&pci->dev, "architecture does not support 32bit PCI busmaster DMA\n"); pci_disable_device(pci); return -ENXIO; } /* alloc card manager */ mgr = kzalloc(sizeof(*mgr), GFP_KERNEL); if (! mgr) { pci_disable_device(pci); return -ENOMEM; } if (snd_BUG_ON(pci_id->driver_data >= PCI_ID_LAST)) { kfree(mgr); pci_disable_device(pci); return -ENODEV; } card_name = pcxhr_board_params[pci_id->driver_data].board_name; mgr->playback_chips = pcxhr_board_params[pci_id->driver_data].playback_chips; mgr->capture_chips = pcxhr_board_params[pci_id->driver_data].capture_chips; mgr->fw_file_set = pcxhr_board_params[pci_id->driver_data].fw_file_set; mgr->firmware_num = pcxhr_board_params[pci_id->driver_data].firmware_num; mgr->mono_capture = mono[dev]; mgr->is_hr_stereo = (mgr->playback_chips == 1); mgr->board_has_aes1 = PCXHR_BOARD_HAS_AES1(mgr); mgr->board_aes_in_192k = !PCXHR_BOARD_AESIN_NO_192K(mgr); if (mgr->is_hr_stereo) mgr->granularity = PCXHR_GRANULARITY_HR22; else mgr->granularity = PCXHR_GRANULARITY; /* resource assignment */ err = pci_request_regions(pci, card_name); if (err < 0) { kfree(mgr); pci_disable_device(pci); return err; } for (i = 0; i < 3; i++) mgr->port[i] = pci_resource_start(pci, i); mgr->pci = pci; mgr->irq = -1; if (request_threaded_irq(pci->irq, pcxhr_interrupt, pcxhr_threaded_irq, IRQF_SHARED, KBUILD_MODNAME, mgr)) { dev_err(&pci->dev, "unable to grab IRQ %d\n", pci->irq); pcxhr_free(mgr); return -EBUSY; } mgr->irq = pci->irq; snprintf(mgr->name, sizeof(mgr->name), "Digigram at 0x%lx & 0x%lx, 0x%lx irq %i", mgr->port[0], mgr->port[1], mgr->port[2], mgr->irq); /* ISR lock */ mutex_init(&mgr->lock); mutex_init(&mgr->msg_lock); /* init setup mutex*/ mutex_init(&mgr->setup_mutex); mgr->prmh = kmalloc(sizeof(*mgr->prmh) + sizeof(u32) * (PCXHR_SIZE_MAX_LONG_STATUS - PCXHR_SIZE_MAX_STATUS), GFP_KERNEL); if (! mgr->prmh) { pcxhr_free(mgr); return -ENOMEM; } for (i=0; i < PCXHR_MAX_CARDS; i++) { struct snd_card *card; char tmpid[16]; int idx; if (i >= max(mgr->playback_chips, mgr->capture_chips)) break; mgr->num_cards++; if (index[dev] < 0) idx = index[dev]; else idx = index[dev] + i; snprintf(tmpid, sizeof(tmpid), "%s-%d", id[dev] ? id[dev] : card_name, i); err = snd_card_new(&pci->dev, idx, tmpid, THIS_MODULE, 0, &card); if (err < 0) { dev_err(&pci->dev, "cannot allocate the card %d\n", i); pcxhr_free(mgr); return err; } strcpy(card->driver, DRIVER_NAME); snprintf(card->shortname, sizeof(card->shortname), "Digigram [PCM #%d]", i); snprintf(card->longname, sizeof(card->longname), "%s [PCM #%d]", mgr->name, i); err = pcxhr_create(mgr, card, i); if (err < 0) { snd_card_free(card); pcxhr_free(mgr); return err; } if (i == 0) /* init proc interface only for chip0 */ pcxhr_proc_init(mgr->chip[i]); err = snd_card_register(card); if (err < 0) { pcxhr_free(mgr); return err; } } /* create hostport purgebuffer */ size = PAGE_ALIGN(sizeof(struct pcxhr_hostport)); if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, &pci->dev, size, &mgr->hostport) < 0) { pcxhr_free(mgr); return -ENOMEM; } /* init purgebuffer */ memset(mgr->hostport.area, 0, size); /* create a DSP loader */ err = pcxhr_setup_firmware(mgr); if (err < 0) { pcxhr_free(mgr); return err; } pci_set_drvdata(pci, mgr); dev++; return 0; } static void pcxhr_remove(struct pci_dev *pci) { pcxhr_free(pci_get_drvdata(pci)); } static struct pci_driver pcxhr_driver = { .name = KBUILD_MODNAME, .id_table = pcxhr_ids, .probe = pcxhr_probe, .remove = pcxhr_remove, }; module_pci_driver(pcxhr_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1