Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Handrigan | 5733 | 96.79% | 1 | 6.25% |
Kuninori Morimoto | 144 | 2.43% | 3 | 18.75% |
Charles Keepax | 21 | 0.35% | 1 | 6.25% |
David Frey | 6 | 0.10% | 1 | 6.25% |
Axel Lin | 5 | 0.08% | 2 | 12.50% |
Dan Carpenter | 5 | 0.08% | 1 | 6.25% |
Arnd Bergmann | 2 | 0.03% | 1 | 6.25% |
Thomas Gleixner | 2 | 0.03% | 1 | 6.25% |
Uwe Kleine-König | 2 | 0.03% | 2 | 12.50% |
Linus Walleij | 1 | 0.02% | 1 | 6.25% |
Bhumika Goyal | 1 | 0.02% | 1 | 6.25% |
Mark Brown | 1 | 0.02% | 1 | 6.25% |
Total | 5923 | 16 |
// SPDX-License-Identifier: GPL-2.0-only /* * cs35l33.c -- CS35L33 ALSA SoC audio driver * * Copyright 2016 Cirrus Logic, Inc. * * Author: Paul Handrigan <paul.handrigan@cirrus.com> */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/slab.h> #include <linux/workqueue.h> #include <linux/platform_device.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/initval.h> #include <sound/tlv.h> #include <linux/gpio/consumer.h> #include <sound/cs35l33.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/regulator/machine.h> #include <linux/of.h> #include "cs35l33.h" #include "cirrus_legacy.h" #define CS35L33_BOOT_DELAY 50 struct cs35l33_private { struct snd_soc_component *component; struct cs35l33_pdata pdata; struct regmap *regmap; struct gpio_desc *reset_gpio; bool amp_cal; int mclk_int; struct regulator_bulk_data core_supplies[2]; int num_core_supplies; bool is_tdm_mode; bool enable_soft_ramp; }; static const struct reg_default cs35l33_reg[] = { {CS35L33_PWRCTL1, 0x85}, {CS35L33_PWRCTL2, 0xFE}, {CS35L33_CLK_CTL, 0x0C}, {CS35L33_BST_PEAK_CTL, 0x90}, {CS35L33_PROTECT_CTL, 0x55}, {CS35L33_BST_CTL1, 0x00}, {CS35L33_BST_CTL2, 0x01}, {CS35L33_ADSP_CTL, 0x00}, {CS35L33_ADC_CTL, 0xC8}, {CS35L33_DAC_CTL, 0x14}, {CS35L33_DIG_VOL_CTL, 0x00}, {CS35L33_CLASSD_CTL, 0x04}, {CS35L33_AMP_CTL, 0x90}, {CS35L33_INT_MASK_1, 0xFF}, {CS35L33_INT_MASK_2, 0xFF}, {CS35L33_DIAG_LOCK, 0x00}, {CS35L33_DIAG_CTRL_1, 0x40}, {CS35L33_DIAG_CTRL_2, 0x00}, {CS35L33_HG_MEMLDO_CTL, 0x62}, {CS35L33_HG_REL_RATE, 0x03}, {CS35L33_LDO_DEL, 0x12}, {CS35L33_HG_HEAD, 0x0A}, {CS35L33_HG_EN, 0x05}, {CS35L33_TX_VMON, 0x00}, {CS35L33_TX_IMON, 0x03}, {CS35L33_TX_VPMON, 0x02}, {CS35L33_TX_VBSTMON, 0x05}, {CS35L33_TX_FLAG, 0x06}, {CS35L33_TX_EN1, 0x00}, {CS35L33_TX_EN2, 0x00}, {CS35L33_TX_EN3, 0x00}, {CS35L33_TX_EN4, 0x00}, {CS35L33_RX_AUD, 0x40}, {CS35L33_RX_SPLY, 0x03}, {CS35L33_RX_ALIVE, 0x04}, {CS35L33_BST_CTL4, 0x63}, }; static const struct reg_sequence cs35l33_patch[] = { { 0x00, 0x99, 0 }, { 0x59, 0x02, 0 }, { 0x52, 0x30, 0 }, { 0x39, 0x45, 0 }, { 0x57, 0x30, 0 }, { 0x2C, 0x68, 0 }, { 0x00, 0x00, 0 }, }; static bool cs35l33_volatile_register(struct device *dev, unsigned int reg) { switch (reg) { case CS35L33_DEVID_AB: case CS35L33_DEVID_CD: case CS35L33_DEVID_E: case CS35L33_REV_ID: case CS35L33_INT_STATUS_1: case CS35L33_INT_STATUS_2: case CS35L33_HG_STATUS: return true; default: return false; } } static bool cs35l33_writeable_register(struct device *dev, unsigned int reg) { switch (reg) { /* these are read only registers */ case CS35L33_DEVID_AB: case CS35L33_DEVID_CD: case CS35L33_DEVID_E: case CS35L33_REV_ID: case CS35L33_INT_STATUS_1: case CS35L33_INT_STATUS_2: case CS35L33_HG_STATUS: return false; default: return true; } } static bool cs35l33_readable_register(struct device *dev, unsigned int reg) { switch (reg) { case CS35L33_DEVID_AB: case CS35L33_DEVID_CD: case CS35L33_DEVID_E: case CS35L33_REV_ID: case CS35L33_PWRCTL1: case CS35L33_PWRCTL2: case CS35L33_CLK_CTL: case CS35L33_BST_PEAK_CTL: case CS35L33_PROTECT_CTL: case CS35L33_BST_CTL1: case CS35L33_BST_CTL2: case CS35L33_ADSP_CTL: case CS35L33_ADC_CTL: case CS35L33_DAC_CTL: case CS35L33_DIG_VOL_CTL: case CS35L33_CLASSD_CTL: case CS35L33_AMP_CTL: case CS35L33_INT_MASK_1: case CS35L33_INT_MASK_2: case CS35L33_INT_STATUS_1: case CS35L33_INT_STATUS_2: case CS35L33_DIAG_LOCK: case CS35L33_DIAG_CTRL_1: case CS35L33_DIAG_CTRL_2: case CS35L33_HG_MEMLDO_CTL: case CS35L33_HG_REL_RATE: case CS35L33_LDO_DEL: case CS35L33_HG_HEAD: case CS35L33_HG_EN: case CS35L33_TX_VMON: case CS35L33_TX_IMON: case CS35L33_TX_VPMON: case CS35L33_TX_VBSTMON: case CS35L33_TX_FLAG: case CS35L33_TX_EN1: case CS35L33_TX_EN2: case CS35L33_TX_EN3: case CS35L33_TX_EN4: case CS35L33_RX_AUD: case CS35L33_RX_SPLY: case CS35L33_RX_ALIVE: case CS35L33_BST_CTL4: return true; default: return false; } } static DECLARE_TLV_DB_SCALE(classd_ctl_tlv, 900, 100, 0); static DECLARE_TLV_DB_SCALE(dac_tlv, -10200, 50, 0); static const struct snd_kcontrol_new cs35l33_snd_controls[] = { SOC_SINGLE_TLV("SPK Amp Volume", CS35L33_AMP_CTL, 4, 0x09, 0, classd_ctl_tlv), SOC_SINGLE_SX_TLV("DAC Volume", CS35L33_DIG_VOL_CTL, 0, 0x34, 0xE4, dac_tlv), }; static int cs35l33_spkrdrv_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct cs35l33_private *priv = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: if (!priv->amp_cal) { usleep_range(8000, 9000); priv->amp_cal = true; regmap_update_bits(priv->regmap, CS35L33_CLASSD_CTL, CS35L33_AMP_CAL, 0); dev_dbg(component->dev, "Amp calibration done\n"); } dev_dbg(component->dev, "Amp turned on\n"); break; case SND_SOC_DAPM_POST_PMD: dev_dbg(component->dev, "Amp turned off\n"); break; default: dev_err(component->dev, "Invalid event = 0x%x\n", event); break; } return 0; } static int cs35l33_sdin_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct cs35l33_private *priv = snd_soc_component_get_drvdata(component); unsigned int val; switch (event) { case SND_SOC_DAPM_PRE_PMU: regmap_update_bits(priv->regmap, CS35L33_PWRCTL1, CS35L33_PDN_BST, 0); val = priv->is_tdm_mode ? 0 : CS35L33_PDN_TDM; regmap_update_bits(priv->regmap, CS35L33_PWRCTL2, CS35L33_PDN_TDM, val); dev_dbg(component->dev, "BST turned on\n"); break; case SND_SOC_DAPM_POST_PMU: dev_dbg(component->dev, "SDIN turned on\n"); if (!priv->amp_cal) { regmap_update_bits(priv->regmap, CS35L33_CLASSD_CTL, CS35L33_AMP_CAL, CS35L33_AMP_CAL); dev_dbg(component->dev, "Amp calibration started\n"); usleep_range(10000, 11000); } break; case SND_SOC_DAPM_POST_PMD: regmap_update_bits(priv->regmap, CS35L33_PWRCTL2, CS35L33_PDN_TDM, CS35L33_PDN_TDM); usleep_range(4000, 4100); regmap_update_bits(priv->regmap, CS35L33_PWRCTL1, CS35L33_PDN_BST, CS35L33_PDN_BST); dev_dbg(component->dev, "BST and SDIN turned off\n"); break; default: dev_err(component->dev, "Invalid event = 0x%x\n", event); } return 0; } static int cs35l33_sdout_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct cs35l33_private *priv = snd_soc_component_get_drvdata(component); unsigned int mask = CS35L33_SDOUT_3ST_I2S | CS35L33_PDN_TDM; unsigned int mask2 = CS35L33_SDOUT_3ST_TDM; unsigned int val, val2; switch (event) { case SND_SOC_DAPM_PRE_PMU: if (priv->is_tdm_mode) { /* set sdout_3st_i2s and reset pdn_tdm */ val = CS35L33_SDOUT_3ST_I2S; /* reset sdout_3st_tdm */ val2 = 0; } else { /* reset sdout_3st_i2s and set pdn_tdm */ val = CS35L33_PDN_TDM; /* set sdout_3st_tdm */ val2 = CS35L33_SDOUT_3ST_TDM; } dev_dbg(component->dev, "SDOUT turned on\n"); break; case SND_SOC_DAPM_PRE_PMD: val = CS35L33_SDOUT_3ST_I2S | CS35L33_PDN_TDM; val2 = CS35L33_SDOUT_3ST_TDM; dev_dbg(component->dev, "SDOUT turned off\n"); break; default: dev_err(component->dev, "Invalid event = 0x%x\n", event); return 0; } regmap_update_bits(priv->regmap, CS35L33_PWRCTL2, mask, val); regmap_update_bits(priv->regmap, CS35L33_CLK_CTL, mask2, val2); return 0; } static const struct snd_soc_dapm_widget cs35l33_dapm_widgets[] = { SND_SOC_DAPM_OUTPUT("SPK"), SND_SOC_DAPM_OUT_DRV_E("SPKDRV", CS35L33_PWRCTL1, 7, 1, NULL, 0, cs35l33_spkrdrv_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN_E("SDIN", NULL, 0, CS35L33_PWRCTL2, 2, 1, cs35l33_sdin_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_INPUT("MON"), SND_SOC_DAPM_ADC("VMON", NULL, CS35L33_PWRCTL2, CS35L33_PDN_VMON_SHIFT, 1), SND_SOC_DAPM_ADC("IMON", NULL, CS35L33_PWRCTL2, CS35L33_PDN_IMON_SHIFT, 1), SND_SOC_DAPM_ADC("VPMON", NULL, CS35L33_PWRCTL2, CS35L33_PDN_VPMON_SHIFT, 1), SND_SOC_DAPM_ADC("VBSTMON", NULL, CS35L33_PWRCTL2, CS35L33_PDN_VBSTMON_SHIFT, 1), SND_SOC_DAPM_AIF_OUT_E("SDOUT", NULL, 0, SND_SOC_NOPM, 0, 0, cs35l33_sdout_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_PRE_PMD), }; static const struct snd_soc_dapm_route cs35l33_audio_map[] = { {"SDIN", NULL, "CS35L33 Playback"}, {"SPKDRV", NULL, "SDIN"}, {"SPK", NULL, "SPKDRV"}, {"VMON", NULL, "MON"}, {"IMON", NULL, "MON"}, {"SDOUT", NULL, "VMON"}, {"SDOUT", NULL, "IMON"}, {"CS35L33 Capture", NULL, "SDOUT"}, }; static const struct snd_soc_dapm_route cs35l33_vphg_auto_route[] = { {"SPKDRV", NULL, "VPMON"}, {"VPMON", NULL, "CS35L33 Playback"}, }; static const struct snd_soc_dapm_route cs35l33_vp_vbst_mon_route[] = { {"SDOUT", NULL, "VPMON"}, {"VPMON", NULL, "MON"}, {"SDOUT", NULL, "VBSTMON"}, {"VBSTMON", NULL, "MON"}, }; static int cs35l33_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { unsigned int val; struct cs35l33_private *priv = snd_soc_component_get_drvdata(component); switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: regmap_update_bits(priv->regmap, CS35L33_PWRCTL1, CS35L33_PDN_ALL, 0); regmap_update_bits(priv->regmap, CS35L33_CLK_CTL, CS35L33_MCLKDIS, 0); break; case SND_SOC_BIAS_STANDBY: regmap_update_bits(priv->regmap, CS35L33_PWRCTL1, CS35L33_PDN_ALL, CS35L33_PDN_ALL); regmap_read(priv->regmap, CS35L33_INT_STATUS_2, &val); usleep_range(1000, 1100); if (val & CS35L33_PDN_DONE) regmap_update_bits(priv->regmap, CS35L33_CLK_CTL, CS35L33_MCLKDIS, CS35L33_MCLKDIS); break; case SND_SOC_BIAS_OFF: break; default: return -EINVAL; } return 0; } struct cs35l33_mclk_div { int mclk; int srate; u8 adsp_rate; u8 int_fs_ratio; }; static const struct cs35l33_mclk_div cs35l33_mclk_coeffs[] = { /* MCLK, Sample Rate, adsp_rate, int_fs_ratio */ {5644800, 11025, 0x4, CS35L33_INT_FS_RATE}, {5644800, 22050, 0x8, CS35L33_INT_FS_RATE}, {5644800, 44100, 0xC, CS35L33_INT_FS_RATE}, {6000000, 8000, 0x1, 0}, {6000000, 11025, 0x2, 0}, {6000000, 11029, 0x3, 0}, {6000000, 12000, 0x4, 0}, {6000000, 16000, 0x5, 0}, {6000000, 22050, 0x6, 0}, {6000000, 22059, 0x7, 0}, {6000000, 24000, 0x8, 0}, {6000000, 32000, 0x9, 0}, {6000000, 44100, 0xA, 0}, {6000000, 44118, 0xB, 0}, {6000000, 48000, 0xC, 0}, {6144000, 8000, 0x1, CS35L33_INT_FS_RATE}, {6144000, 12000, 0x4, CS35L33_INT_FS_RATE}, {6144000, 16000, 0x5, CS35L33_INT_FS_RATE}, {6144000, 24000, 0x8, CS35L33_INT_FS_RATE}, {6144000, 32000, 0x9, CS35L33_INT_FS_RATE}, {6144000, 48000, 0xC, CS35L33_INT_FS_RATE}, }; static int cs35l33_get_mclk_coeff(int mclk, int srate) { int i; for (i = 0; i < ARRAY_SIZE(cs35l33_mclk_coeffs); i++) { if (cs35l33_mclk_coeffs[i].mclk == mclk && cs35l33_mclk_coeffs[i].srate == srate) return i; } return -EINVAL; } static int cs35l33_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct cs35l33_private *priv = snd_soc_component_get_drvdata(component); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: regmap_update_bits(priv->regmap, CS35L33_ADSP_CTL, CS35L33_MS_MASK, CS35L33_MS_MASK); dev_dbg(component->dev, "Audio port in master mode\n"); break; case SND_SOC_DAIFMT_CBS_CFS: regmap_update_bits(priv->regmap, CS35L33_ADSP_CTL, CS35L33_MS_MASK, 0); dev_dbg(component->dev, "Audio port in slave mode\n"); break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: /* * tdm mode in cs35l33 resembles dsp-a mode very * closely, it is dsp-a with fsync shifted left by half bclk */ priv->is_tdm_mode = true; dev_dbg(component->dev, "Audio port in TDM mode\n"); break; case SND_SOC_DAIFMT_I2S: priv->is_tdm_mode = false; dev_dbg(component->dev, "Audio port in I2S mode\n"); break; default: return -EINVAL; } return 0; } static int cs35l33_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct cs35l33_private *priv = snd_soc_component_get_drvdata(component); int sample_size = params_width(params); int coeff = cs35l33_get_mclk_coeff(priv->mclk_int, params_rate(params)); if (coeff < 0) return coeff; regmap_update_bits(priv->regmap, CS35L33_CLK_CTL, CS35L33_ADSP_FS | CS35L33_INT_FS_RATE, cs35l33_mclk_coeffs[coeff].int_fs_ratio | cs35l33_mclk_coeffs[coeff].adsp_rate); if (priv->is_tdm_mode) { sample_size = (sample_size / 8) - 1; if (sample_size > 2) sample_size = 2; regmap_update_bits(priv->regmap, CS35L33_RX_AUD, CS35L33_AUDIN_RX_DEPTH, sample_size << CS35L33_AUDIN_RX_DEPTH_SHIFT); } dev_dbg(component->dev, "sample rate=%d, bits per sample=%d\n", params_rate(params), params_width(params)); return 0; } static const unsigned int cs35l33_src_rates[] = { 8000, 11025, 11029, 12000, 16000, 22050, 22059, 24000, 32000, 44100, 44118, 48000 }; static const struct snd_pcm_hw_constraint_list cs35l33_constraints = { .count = ARRAY_SIZE(cs35l33_src_rates), .list = cs35l33_src_rates, }; static int cs35l33_pcm_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &cs35l33_constraints); return 0; } static int cs35l33_set_tristate(struct snd_soc_dai *dai, int tristate) { struct snd_soc_component *component = dai->component; struct cs35l33_private *priv = snd_soc_component_get_drvdata(component); if (tristate) { regmap_update_bits(priv->regmap, CS35L33_PWRCTL2, CS35L33_SDOUT_3ST_I2S, CS35L33_SDOUT_3ST_I2S); regmap_update_bits(priv->regmap, CS35L33_CLK_CTL, CS35L33_SDOUT_3ST_TDM, CS35L33_SDOUT_3ST_TDM); } else { regmap_update_bits(priv->regmap, CS35L33_PWRCTL2, CS35L33_SDOUT_3ST_I2S, 0); regmap_update_bits(priv->regmap, CS35L33_CLK_CTL, CS35L33_SDOUT_3ST_TDM, 0); } return 0; } static int cs35l33_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = dai->component; struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct cs35l33_private *priv = snd_soc_component_get_drvdata(component); unsigned int reg, bit_pos, i; int slot, slot_num; if (slot_width != 8) return -EINVAL; /* scan rx_mask for aud slot */ slot = ffs(rx_mask) - 1; if (slot >= 0) { regmap_update_bits(priv->regmap, CS35L33_RX_AUD, CS35L33_X_LOC, slot); dev_dbg(component->dev, "Audio starts from slots %d", slot); } /* * scan tx_mask: vmon(2 slots); imon (2 slots); * vpmon (1 slot) vbstmon (1 slot) */ slot = ffs(tx_mask) - 1; slot_num = 0; for (i = 0; i < 2 ; i++) { /* disable vpmon/vbstmon: enable later if set in tx_mask */ regmap_update_bits(priv->regmap, CS35L33_TX_VPMON + i, CS35L33_X_STATE | CS35L33_X_LOC, CS35L33_X_STATE | CS35L33_X_LOC); } /* disconnect {vp,vbst}_mon routes: eanble later if set in tx_mask*/ snd_soc_dapm_del_routes(dapm, cs35l33_vp_vbst_mon_route, ARRAY_SIZE(cs35l33_vp_vbst_mon_route)); while (slot >= 0) { /* configure VMON_TX_LOC */ if (slot_num == 0) { regmap_update_bits(priv->regmap, CS35L33_TX_VMON, CS35L33_X_STATE | CS35L33_X_LOC, slot); dev_dbg(component->dev, "VMON enabled in slots %d-%d", slot, slot + 1); } /* configure IMON_TX_LOC */ if (slot_num == 3) { regmap_update_bits(priv->regmap, CS35L33_TX_IMON, CS35L33_X_STATE | CS35L33_X_LOC, slot); dev_dbg(component->dev, "IMON enabled in slots %d-%d", slot, slot + 1); } /* configure VPMON_TX_LOC */ if (slot_num == 4) { regmap_update_bits(priv->regmap, CS35L33_TX_VPMON, CS35L33_X_STATE | CS35L33_X_LOC, slot); snd_soc_dapm_add_routes(dapm, &cs35l33_vp_vbst_mon_route[0], 2); dev_dbg(component->dev, "VPMON enabled in slots %d", slot); } /* configure VBSTMON_TX_LOC */ if (slot_num == 5) { regmap_update_bits(priv->regmap, CS35L33_TX_VBSTMON, CS35L33_X_STATE | CS35L33_X_LOC, slot); snd_soc_dapm_add_routes(dapm, &cs35l33_vp_vbst_mon_route[2], 2); dev_dbg(component->dev, "VBSTMON enabled in slots %d", slot); } /* Enable the relevant tx slot */ reg = CS35L33_TX_EN4 - (slot/8); bit_pos = slot - ((slot / 8) * (8)); regmap_update_bits(priv->regmap, reg, 1 << bit_pos, 1 << bit_pos); tx_mask &= ~(1 << slot); slot = ffs(tx_mask) - 1; slot_num++; } return 0; } static int cs35l33_component_set_sysclk(struct snd_soc_component *component, int clk_id, int source, unsigned int freq, int dir) { struct cs35l33_private *cs35l33 = snd_soc_component_get_drvdata(component); switch (freq) { case CS35L33_MCLK_5644: case CS35L33_MCLK_6: case CS35L33_MCLK_6144: regmap_update_bits(cs35l33->regmap, CS35L33_CLK_CTL, CS35L33_MCLKDIV2, 0); cs35l33->mclk_int = freq; break; case CS35L33_MCLK_11289: case CS35L33_MCLK_12: case CS35L33_MCLK_12288: regmap_update_bits(cs35l33->regmap, CS35L33_CLK_CTL, CS35L33_MCLKDIV2, CS35L33_MCLKDIV2); cs35l33->mclk_int = freq/2; break; default: cs35l33->mclk_int = 0; return -EINVAL; } dev_dbg(component->dev, "external mclk freq=%d, internal mclk freq=%d\n", freq, cs35l33->mclk_int); return 0; } static const struct snd_soc_dai_ops cs35l33_ops = { .startup = cs35l33_pcm_startup, .set_tristate = cs35l33_set_tristate, .set_fmt = cs35l33_set_dai_fmt, .hw_params = cs35l33_pcm_hw_params, .set_tdm_slot = cs35l33_set_tdm_slot, }; static struct snd_soc_dai_driver cs35l33_dai = { .name = "cs35l33-dai", .id = 0, .playback = { .stream_name = "CS35L33 Playback", .channels_min = 1, .channels_max = 1, .rates = CS35L33_RATES, .formats = CS35L33_FORMATS, }, .capture = { .stream_name = "CS35L33 Capture", .channels_min = 2, .channels_max = 2, .rates = CS35L33_RATES, .formats = CS35L33_FORMATS, }, .ops = &cs35l33_ops, .symmetric_rate = 1, }; static int cs35l33_set_hg_data(struct snd_soc_component *component, struct cs35l33_pdata *pdata) { struct cs35l33_hg *hg_config = &pdata->hg_config; struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct cs35l33_private *priv = snd_soc_component_get_drvdata(component); if (hg_config->enable_hg_algo) { regmap_update_bits(priv->regmap, CS35L33_HG_MEMLDO_CTL, CS35L33_MEM_DEPTH_MASK, hg_config->mem_depth << CS35L33_MEM_DEPTH_SHIFT); regmap_write(priv->regmap, CS35L33_HG_REL_RATE, hg_config->release_rate); regmap_update_bits(priv->regmap, CS35L33_HG_HEAD, CS35L33_HD_RM_MASK, hg_config->hd_rm << CS35L33_HD_RM_SHIFT); regmap_update_bits(priv->regmap, CS35L33_HG_MEMLDO_CTL, CS35L33_LDO_THLD_MASK, hg_config->ldo_thld << CS35L33_LDO_THLD_SHIFT); regmap_update_bits(priv->regmap, CS35L33_HG_MEMLDO_CTL, CS35L33_LDO_DISABLE_MASK, hg_config->ldo_path_disable << CS35L33_LDO_DISABLE_SHIFT); regmap_update_bits(priv->regmap, CS35L33_LDO_DEL, CS35L33_LDO_ENTRY_DELAY_MASK, hg_config->ldo_entry_delay << CS35L33_LDO_ENTRY_DELAY_SHIFT); if (hg_config->vp_hg_auto) { regmap_update_bits(priv->regmap, CS35L33_HG_EN, CS35L33_VP_HG_AUTO_MASK, CS35L33_VP_HG_AUTO_MASK); snd_soc_dapm_add_routes(dapm, cs35l33_vphg_auto_route, ARRAY_SIZE(cs35l33_vphg_auto_route)); } regmap_update_bits(priv->regmap, CS35L33_HG_EN, CS35L33_VP_HG_MASK, hg_config->vp_hg << CS35L33_VP_HG_SHIFT); regmap_update_bits(priv->regmap, CS35L33_LDO_DEL, CS35L33_VP_HG_RATE_MASK, hg_config->vp_hg_rate << CS35L33_VP_HG_RATE_SHIFT); regmap_update_bits(priv->regmap, CS35L33_LDO_DEL, CS35L33_VP_HG_VA_MASK, hg_config->vp_hg_va << CS35L33_VP_HG_VA_SHIFT); regmap_update_bits(priv->regmap, CS35L33_HG_EN, CS35L33_CLASS_HG_EN_MASK, CS35L33_CLASS_HG_EN_MASK); } return 0; } static int cs35l33_set_bst_ipk(struct snd_soc_component *component, unsigned int bst) { struct cs35l33_private *cs35l33 = snd_soc_component_get_drvdata(component); int ret = 0, steps = 0; /* Boost current in uA */ if (bst > 3600000 || bst < 1850000) { dev_err(component->dev, "Invalid boost current %d\n", bst); ret = -EINVAL; goto err; } if (bst % 15625) { dev_err(component->dev, "Current not a multiple of 15625uA (%d)\n", bst); ret = -EINVAL; goto err; } while (bst > 1850000) { bst -= 15625; steps++; } regmap_write(cs35l33->regmap, CS35L33_BST_PEAK_CTL, steps+0x70); err: return ret; } static int cs35l33_probe(struct snd_soc_component *component) { struct cs35l33_private *cs35l33 = snd_soc_component_get_drvdata(component); cs35l33->component = component; pm_runtime_get_sync(component->dev); regmap_update_bits(cs35l33->regmap, CS35L33_PROTECT_CTL, CS35L33_ALIVE_WD_DIS, 0x8); regmap_update_bits(cs35l33->regmap, CS35L33_BST_CTL2, CS35L33_ALIVE_WD_DIS2, CS35L33_ALIVE_WD_DIS2); /* Set Platform Data */ regmap_update_bits(cs35l33->regmap, CS35L33_BST_CTL1, CS35L33_BST_CTL_MASK, cs35l33->pdata.boost_ctl); regmap_update_bits(cs35l33->regmap, CS35L33_CLASSD_CTL, CS35L33_AMP_DRV_SEL_MASK, cs35l33->pdata.amp_drv_sel << CS35L33_AMP_DRV_SEL_SHIFT); if (cs35l33->pdata.boost_ipk) cs35l33_set_bst_ipk(component, cs35l33->pdata.boost_ipk); if (cs35l33->enable_soft_ramp) { snd_soc_component_update_bits(component, CS35L33_DAC_CTL, CS35L33_DIGSFT, CS35L33_DIGSFT); snd_soc_component_update_bits(component, CS35L33_DAC_CTL, CS35L33_DSR_RATE, cs35l33->pdata.ramp_rate); } else { snd_soc_component_update_bits(component, CS35L33_DAC_CTL, CS35L33_DIGSFT, 0); } /* update IMON scaling rate if different from default of 0x8 */ if (cs35l33->pdata.imon_adc_scale != 0x8) snd_soc_component_update_bits(component, CS35L33_ADC_CTL, CS35L33_IMON_SCALE, cs35l33->pdata.imon_adc_scale); cs35l33_set_hg_data(component, &(cs35l33->pdata)); /* * unmask important interrupts that causes the chip to enter * speaker safe mode and hence deserves user attention */ regmap_update_bits(cs35l33->regmap, CS35L33_INT_MASK_1, CS35L33_M_OTE | CS35L33_M_OTW | CS35L33_M_AMP_SHORT | CS35L33_M_CAL_ERR, 0); pm_runtime_put_sync(component->dev); return 0; } static const struct snd_soc_component_driver soc_component_dev_cs35l33 = { .probe = cs35l33_probe, .set_bias_level = cs35l33_set_bias_level, .set_sysclk = cs35l33_component_set_sysclk, .controls = cs35l33_snd_controls, .num_controls = ARRAY_SIZE(cs35l33_snd_controls), .dapm_widgets = cs35l33_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cs35l33_dapm_widgets), .dapm_routes = cs35l33_audio_map, .num_dapm_routes = ARRAY_SIZE(cs35l33_audio_map), .use_pmdown_time = 1, .endianness = 1, }; static const struct regmap_config cs35l33_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = CS35L33_MAX_REGISTER, .reg_defaults = cs35l33_reg, .num_reg_defaults = ARRAY_SIZE(cs35l33_reg), .volatile_reg = cs35l33_volatile_register, .readable_reg = cs35l33_readable_register, .writeable_reg = cs35l33_writeable_register, .cache_type = REGCACHE_MAPLE, .use_single_read = true, .use_single_write = true, }; static int __maybe_unused cs35l33_runtime_resume(struct device *dev) { struct cs35l33_private *cs35l33 = dev_get_drvdata(dev); int ret; dev_dbg(dev, "%s\n", __func__); gpiod_set_value_cansleep(cs35l33->reset_gpio, 0); ret = regulator_bulk_enable(cs35l33->num_core_supplies, cs35l33->core_supplies); if (ret != 0) { dev_err(dev, "Failed to enable core supplies: %d\n", ret); return ret; } regcache_cache_only(cs35l33->regmap, false); gpiod_set_value_cansleep(cs35l33->reset_gpio, 1); msleep(CS35L33_BOOT_DELAY); ret = regcache_sync(cs35l33->regmap); if (ret != 0) { dev_err(dev, "Failed to restore register cache\n"); goto err; } return 0; err: regcache_cache_only(cs35l33->regmap, true); regulator_bulk_disable(cs35l33->num_core_supplies, cs35l33->core_supplies); return ret; } static int __maybe_unused cs35l33_runtime_suspend(struct device *dev) { struct cs35l33_private *cs35l33 = dev_get_drvdata(dev); dev_dbg(dev, "%s\n", __func__); /* redo the calibration in next power up */ cs35l33->amp_cal = false; regcache_cache_only(cs35l33->regmap, true); regcache_mark_dirty(cs35l33->regmap); regulator_bulk_disable(cs35l33->num_core_supplies, cs35l33->core_supplies); return 0; } static const struct dev_pm_ops cs35l33_pm_ops = { SET_RUNTIME_PM_OPS(cs35l33_runtime_suspend, cs35l33_runtime_resume, NULL) }; static int cs35l33_get_hg_data(const struct device_node *np, struct cs35l33_pdata *pdata) { struct device_node *hg; struct cs35l33_hg *hg_config = &pdata->hg_config; u32 val32; hg = of_get_child_by_name(np, "cirrus,hg-algo"); hg_config->enable_hg_algo = hg ? true : false; if (hg_config->enable_hg_algo) { if (of_property_read_u32(hg, "cirrus,mem-depth", &val32) >= 0) hg_config->mem_depth = val32; if (of_property_read_u32(hg, "cirrus,release-rate", &val32) >= 0) hg_config->release_rate = val32; if (of_property_read_u32(hg, "cirrus,ldo-thld", &val32) >= 0) hg_config->ldo_thld = val32; if (of_property_read_u32(hg, "cirrus,ldo-path-disable", &val32) >= 0) hg_config->ldo_path_disable = val32; if (of_property_read_u32(hg, "cirrus,ldo-entry-delay", &val32) >= 0) hg_config->ldo_entry_delay = val32; hg_config->vp_hg_auto = of_property_read_bool(hg, "cirrus,vp-hg-auto"); if (of_property_read_u32(hg, "cirrus,vp-hg", &val32) >= 0) hg_config->vp_hg = val32; if (of_property_read_u32(hg, "cirrus,vp-hg-rate", &val32) >= 0) hg_config->vp_hg_rate = val32; if (of_property_read_u32(hg, "cirrus,vp-hg-va", &val32) >= 0) hg_config->vp_hg_va = val32; } of_node_put(hg); return 0; } static irqreturn_t cs35l33_irq_thread(int irq, void *data) { struct cs35l33_private *cs35l33 = data; struct snd_soc_component *component = cs35l33->component; unsigned int sticky_val1, sticky_val2, current_val, mask1, mask2; regmap_read(cs35l33->regmap, CS35L33_INT_STATUS_2, &sticky_val2); regmap_read(cs35l33->regmap, CS35L33_INT_STATUS_1, &sticky_val1); regmap_read(cs35l33->regmap, CS35L33_INT_MASK_2, &mask2); regmap_read(cs35l33->regmap, CS35L33_INT_MASK_1, &mask1); /* Check to see if the unmasked bits are active, * if not then exit. */ if (!(sticky_val1 & ~mask1) && !(sticky_val2 & ~mask2)) return IRQ_NONE; regmap_read(cs35l33->regmap, CS35L33_INT_STATUS_1, ¤t_val); /* handle the interrupts */ if (sticky_val1 & CS35L33_AMP_SHORT) { dev_crit(component->dev, "Amp short error\n"); if (!(current_val & CS35L33_AMP_SHORT)) { dev_dbg(component->dev, "Amp short error release\n"); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_AMP_SHORT_RLS, 0); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_AMP_SHORT_RLS, CS35L33_AMP_SHORT_RLS); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_AMP_SHORT_RLS, 0); } } if (sticky_val1 & CS35L33_CAL_ERR) { dev_err(component->dev, "Cal error\n"); /* redo the calibration in next power up */ cs35l33->amp_cal = false; if (!(current_val & CS35L33_CAL_ERR)) { dev_dbg(component->dev, "Cal error release\n"); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_CAL_ERR_RLS, 0); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_CAL_ERR_RLS, CS35L33_CAL_ERR_RLS); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_CAL_ERR_RLS, 0); } } if (sticky_val1 & CS35L33_OTE) { dev_crit(component->dev, "Over temperature error\n"); if (!(current_val & CS35L33_OTE)) { dev_dbg(component->dev, "Over temperature error release\n"); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_OTE_RLS, 0); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_OTE_RLS, CS35L33_OTE_RLS); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_OTE_RLS, 0); } } if (sticky_val1 & CS35L33_OTW) { dev_err(component->dev, "Over temperature warning\n"); if (!(current_val & CS35L33_OTW)) { dev_dbg(component->dev, "Over temperature warning release\n"); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_OTW_RLS, 0); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_OTW_RLS, CS35L33_OTW_RLS); regmap_update_bits(cs35l33->regmap, CS35L33_AMP_CTL, CS35L33_OTW_RLS, 0); } } if (CS35L33_ALIVE_ERR & sticky_val1) dev_err(component->dev, "ERROR: ADSPCLK Interrupt\n"); if (CS35L33_MCLK_ERR & sticky_val1) dev_err(component->dev, "ERROR: MCLK Interrupt\n"); if (CS35L33_VMON_OVFL & sticky_val2) dev_err(component->dev, "ERROR: VMON Overflow Interrupt\n"); if (CS35L33_IMON_OVFL & sticky_val2) dev_err(component->dev, "ERROR: IMON Overflow Interrupt\n"); if (CS35L33_VPMON_OVFL & sticky_val2) dev_err(component->dev, "ERROR: VPMON Overflow Interrupt\n"); return IRQ_HANDLED; } static const char * const cs35l33_core_supplies[] = { "VA", "VP", }; static int cs35l33_of_get_pdata(struct device *dev, struct cs35l33_private *cs35l33) { struct device_node *np = dev->of_node; struct cs35l33_pdata *pdata = &cs35l33->pdata; u32 val32; if (!np) return 0; if (of_property_read_u32(np, "cirrus,boost-ctl", &val32) >= 0) { pdata->boost_ctl = val32; pdata->amp_drv_sel = 1; } if (of_property_read_u32(np, "cirrus,ramp-rate", &val32) >= 0) { pdata->ramp_rate = val32; cs35l33->enable_soft_ramp = true; } if (of_property_read_u32(np, "cirrus,boost-ipk", &val32) >= 0) pdata->boost_ipk = val32; if (of_property_read_u32(np, "cirrus,imon-adc-scale", &val32) >= 0) { if ((val32 == 0x0) || (val32 == 0x7) || (val32 == 0x6)) pdata->imon_adc_scale = val32; else /* use default value */ pdata->imon_adc_scale = 0x8; } else { /* use default value */ pdata->imon_adc_scale = 0x8; } cs35l33_get_hg_data(np, pdata); return 0; } static int cs35l33_i2c_probe(struct i2c_client *i2c_client) { struct cs35l33_private *cs35l33; struct cs35l33_pdata *pdata = dev_get_platdata(&i2c_client->dev); int ret, devid, i; unsigned int reg; cs35l33 = devm_kzalloc(&i2c_client->dev, sizeof(struct cs35l33_private), GFP_KERNEL); if (!cs35l33) return -ENOMEM; i2c_set_clientdata(i2c_client, cs35l33); cs35l33->regmap = devm_regmap_init_i2c(i2c_client, &cs35l33_regmap); if (IS_ERR(cs35l33->regmap)) { ret = PTR_ERR(cs35l33->regmap); dev_err(&i2c_client->dev, "regmap_init() failed: %d\n", ret); return ret; } regcache_cache_only(cs35l33->regmap, true); for (i = 0; i < ARRAY_SIZE(cs35l33_core_supplies); i++) cs35l33->core_supplies[i].supply = cs35l33_core_supplies[i]; cs35l33->num_core_supplies = ARRAY_SIZE(cs35l33_core_supplies); ret = devm_regulator_bulk_get(&i2c_client->dev, cs35l33->num_core_supplies, cs35l33->core_supplies); if (ret != 0) { dev_err(&i2c_client->dev, "Failed to request core supplies: %d\n", ret); return ret; } if (pdata) { cs35l33->pdata = *pdata; } else { cs35l33_of_get_pdata(&i2c_client->dev, cs35l33); pdata = &cs35l33->pdata; } ret = devm_request_threaded_irq(&i2c_client->dev, i2c_client->irq, NULL, cs35l33_irq_thread, IRQF_ONESHOT | IRQF_TRIGGER_LOW, "cs35l33", cs35l33); if (ret != 0) dev_warn(&i2c_client->dev, "Failed to request IRQ: %d\n", ret); /* We could issue !RST or skip it based on AMP topology */ cs35l33->reset_gpio = devm_gpiod_get_optional(&i2c_client->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(cs35l33->reset_gpio)) { dev_err(&i2c_client->dev, "%s ERROR: Can't get reset GPIO\n", __func__); return PTR_ERR(cs35l33->reset_gpio); } ret = regulator_bulk_enable(cs35l33->num_core_supplies, cs35l33->core_supplies); if (ret != 0) { dev_err(&i2c_client->dev, "Failed to enable core supplies: %d\n", ret); return ret; } gpiod_set_value_cansleep(cs35l33->reset_gpio, 1); msleep(CS35L33_BOOT_DELAY); regcache_cache_only(cs35l33->regmap, false); /* initialize codec */ devid = cirrus_read_device_id(cs35l33->regmap, CS35L33_DEVID_AB); if (devid < 0) { ret = devid; dev_err(&i2c_client->dev, "Failed to read device ID: %d\n", ret); goto err_enable; } if (devid != CS35L33_CHIP_ID) { dev_err(&i2c_client->dev, "CS35L33 Device ID (%X). Expected ID %X\n", devid, CS35L33_CHIP_ID); ret = -EINVAL; goto err_enable; } ret = regmap_read(cs35l33->regmap, CS35L33_REV_ID, ®); if (ret < 0) { dev_err(&i2c_client->dev, "Get Revision ID failed\n"); goto err_enable; } dev_info(&i2c_client->dev, "Cirrus Logic CS35L33, Revision: %02X\n", reg & 0xFF); ret = regmap_register_patch(cs35l33->regmap, cs35l33_patch, ARRAY_SIZE(cs35l33_patch)); if (ret < 0) { dev_err(&i2c_client->dev, "Error in applying regmap patch: %d\n", ret); goto err_enable; } /* disable mclk and tdm */ regmap_update_bits(cs35l33->regmap, CS35L33_CLK_CTL, CS35L33_MCLKDIS | CS35L33_SDOUT_3ST_TDM, CS35L33_MCLKDIS | CS35L33_SDOUT_3ST_TDM); pm_runtime_set_autosuspend_delay(&i2c_client->dev, 100); pm_runtime_use_autosuspend(&i2c_client->dev); pm_runtime_set_active(&i2c_client->dev); pm_runtime_enable(&i2c_client->dev); ret = devm_snd_soc_register_component(&i2c_client->dev, &soc_component_dev_cs35l33, &cs35l33_dai, 1); if (ret < 0) { dev_err(&i2c_client->dev, "%s: Register component failed\n", __func__); goto err_enable; } return 0; err_enable: gpiod_set_value_cansleep(cs35l33->reset_gpio, 0); regulator_bulk_disable(cs35l33->num_core_supplies, cs35l33->core_supplies); return ret; } static void cs35l33_i2c_remove(struct i2c_client *client) { struct cs35l33_private *cs35l33 = i2c_get_clientdata(client); gpiod_set_value_cansleep(cs35l33->reset_gpio, 0); pm_runtime_disable(&client->dev); regulator_bulk_disable(cs35l33->num_core_supplies, cs35l33->core_supplies); } static const struct of_device_id cs35l33_of_match[] = { { .compatible = "cirrus,cs35l33", }, {}, }; MODULE_DEVICE_TABLE(of, cs35l33_of_match); static const struct i2c_device_id cs35l33_id[] = { {"cs35l33"}, {} }; MODULE_DEVICE_TABLE(i2c, cs35l33_id); static struct i2c_driver cs35l33_i2c_driver = { .driver = { .name = "cs35l33", .pm = &cs35l33_pm_ops, .of_match_table = cs35l33_of_match, }, .id_table = cs35l33_id, .probe = cs35l33_i2c_probe, .remove = cs35l33_i2c_remove, }; module_i2c_driver(cs35l33_i2c_driver); MODULE_DESCRIPTION("ASoC CS35L33 driver"); MODULE_AUTHOR("Paul Handrigan, Cirrus Logic Inc, <paul.handrigan@cirrus.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1