Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Simon Ho | 8027 | 99.64% | 1 | 7.14% |
Mark Brown | 7 | 0.09% | 1 | 7.14% |
Charles Keepax | 5 | 0.06% | 1 | 7.14% |
Kuninori Morimoto | 5 | 0.06% | 2 | 14.29% |
Colin Ian King | 3 | 0.04% | 2 | 14.29% |
Ye Bin | 2 | 0.02% | 1 | 7.14% |
Uwe Kleine-König | 2 | 0.02% | 2 | 14.29% |
Takashi Iwai | 2 | 0.02% | 1 | 7.14% |
Pierre-Louis Bossart | 1 | 0.01% | 1 | 7.14% |
Arnd Bergmann | 1 | 0.01% | 1 | 7.14% |
Geert Uytterhoeven | 1 | 0.01% | 1 | 7.14% |
Total | 8056 | 14 |
// SPDX-License-Identifier: GPL-2.0 // // ALSA SoC CX20721/CX20723 codec driver // // Copyright: (C) 2017 Conexant Systems, Inc. // Author: Simon Ho, <Simon.ho@conexant.com> // // TODO: add support for TDM mode. // #include <linux/acpi.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/gpio.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/tlv.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include "cx2072x.h" #define PLL_OUT_HZ_48 (1024 * 3 * 48000) #define BITS_PER_SLOT 8 /* codec private data */ struct cx2072x_priv { struct regmap *regmap; struct clk *mclk; unsigned int mclk_rate; struct device *dev; struct snd_soc_component *codec; struct snd_soc_jack_gpio jack_gpio; struct mutex lock; unsigned int bclk_ratio; bool pll_changed; bool i2spcm_changed; int sample_size; int frame_size; int sample_rate; unsigned int dai_fmt; bool en_aec_ref; }; /* * DAC/ADC Volume * * max : 74 : 0 dB * ( in 1 dB step ) * min : 0 : -74 dB */ static const DECLARE_TLV_DB_SCALE(adc_tlv, -7400, 100, 0); static const DECLARE_TLV_DB_SCALE(dac_tlv, -7400, 100, 0); static const DECLARE_TLV_DB_SCALE(boost_tlv, 0, 1200, 0); static const DECLARE_TLV_DB_RANGE(hpf_tlv, 0, 0, TLV_DB_SCALE_ITEM(120, 0, 0), 1, 63, TLV_DB_SCALE_ITEM(30, 30, 0) ); /* Lookup table for PRE_DIV */ static const struct { unsigned int mclk; unsigned int div; } mclk_pre_div[] = { { 6144000, 1 }, { 12288000, 2 }, { 19200000, 3 }, { 26000000, 4 }, { 28224000, 5 }, { 36864000, 6 }, { 36864000, 7 }, { 48000000, 8 }, { 49152000, 8 }, }; /* * cx2072x register cache. */ static const struct reg_default cx2072x_reg_defaults[] = { { CX2072X_AFG_POWER_STATE, 0x00000003 }, { CX2072X_UM_RESPONSE, 0x00000000 }, { CX2072X_GPIO_DATA, 0x00000000 }, { CX2072X_GPIO_ENABLE, 0x00000000 }, { CX2072X_GPIO_DIRECTION, 0x00000000 }, { CX2072X_GPIO_WAKE, 0x00000000 }, { CX2072X_GPIO_UM_ENABLE, 0x00000000 }, { CX2072X_GPIO_STICKY_MASK, 0x00000000 }, { CX2072X_DAC1_CONVERTER_FORMAT, 0x00000031 }, { CX2072X_DAC1_AMP_GAIN_RIGHT, 0x0000004a }, { CX2072X_DAC1_AMP_GAIN_LEFT, 0x0000004a }, { CX2072X_DAC1_POWER_STATE, 0x00000433 }, { CX2072X_DAC1_CONVERTER_STREAM_CHANNEL, 0x00000000 }, { CX2072X_DAC1_EAPD_ENABLE, 0x00000000 }, { CX2072X_DAC2_CONVERTER_FORMAT, 0x00000031 }, { CX2072X_DAC2_AMP_GAIN_RIGHT, 0x0000004a }, { CX2072X_DAC2_AMP_GAIN_LEFT, 0x0000004a }, { CX2072X_DAC2_POWER_STATE, 0x00000433 }, { CX2072X_DAC2_CONVERTER_STREAM_CHANNEL, 0x00000000 }, { CX2072X_ADC1_CONVERTER_FORMAT, 0x00000031 }, { CX2072X_ADC1_AMP_GAIN_RIGHT_0, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_LEFT_0, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_RIGHT_1, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_LEFT_1, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_RIGHT_2, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_LEFT_2, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_RIGHT_3, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_LEFT_3, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_RIGHT_4, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_LEFT_4, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_RIGHT_5, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_LEFT_5, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_RIGHT_6, 0x0000004a }, { CX2072X_ADC1_AMP_GAIN_LEFT_6, 0x0000004a }, { CX2072X_ADC1_CONNECTION_SELECT_CONTROL, 0x00000000 }, { CX2072X_ADC1_POWER_STATE, 0x00000433 }, { CX2072X_ADC1_CONVERTER_STREAM_CHANNEL, 0x00000000 }, { CX2072X_ADC2_CONVERTER_FORMAT, 0x00000031 }, { CX2072X_ADC2_AMP_GAIN_RIGHT_0, 0x0000004a }, { CX2072X_ADC2_AMP_GAIN_LEFT_0, 0x0000004a }, { CX2072X_ADC2_AMP_GAIN_RIGHT_1, 0x0000004a }, { CX2072X_ADC2_AMP_GAIN_LEFT_1, 0x0000004a }, { CX2072X_ADC2_AMP_GAIN_RIGHT_2, 0x0000004a }, { CX2072X_ADC2_AMP_GAIN_LEFT_2, 0x0000004a }, { CX2072X_ADC2_CONNECTION_SELECT_CONTROL, 0x00000000 }, { CX2072X_ADC2_POWER_STATE, 0x00000433 }, { CX2072X_ADC2_CONVERTER_STREAM_CHANNEL, 0x00000000 }, { CX2072X_PORTA_CONNECTION_SELECT_CTRL, 0x00000000 }, { CX2072X_PORTA_POWER_STATE, 0x00000433 }, { CX2072X_PORTA_PIN_CTRL, 0x000000c0 }, { CX2072X_PORTA_UNSOLICITED_RESPONSE, 0x00000000 }, { CX2072X_PORTA_PIN_SENSE, 0x00000000 }, { CX2072X_PORTA_EAPD_BTL, 0x00000002 }, { CX2072X_PORTB_POWER_STATE, 0x00000433 }, { CX2072X_PORTB_PIN_CTRL, 0x00000000 }, { CX2072X_PORTB_UNSOLICITED_RESPONSE, 0x00000000 }, { CX2072X_PORTB_PIN_SENSE, 0x00000000 }, { CX2072X_PORTB_EAPD_BTL, 0x00000002 }, { CX2072X_PORTB_GAIN_RIGHT, 0x00000000 }, { CX2072X_PORTB_GAIN_LEFT, 0x00000000 }, { CX2072X_PORTC_POWER_STATE, 0x00000433 }, { CX2072X_PORTC_PIN_CTRL, 0x00000000 }, { CX2072X_PORTC_GAIN_RIGHT, 0x00000000 }, { CX2072X_PORTC_GAIN_LEFT, 0x00000000 }, { CX2072X_PORTD_POWER_STATE, 0x00000433 }, { CX2072X_PORTD_PIN_CTRL, 0x00000020 }, { CX2072X_PORTD_UNSOLICITED_RESPONSE, 0x00000000 }, { CX2072X_PORTD_PIN_SENSE, 0x00000000 }, { CX2072X_PORTD_GAIN_RIGHT, 0x00000000 }, { CX2072X_PORTD_GAIN_LEFT, 0x00000000 }, { CX2072X_PORTE_CONNECTION_SELECT_CTRL, 0x00000000 }, { CX2072X_PORTE_POWER_STATE, 0x00000433 }, { CX2072X_PORTE_PIN_CTRL, 0x00000040 }, { CX2072X_PORTE_UNSOLICITED_RESPONSE, 0x00000000 }, { CX2072X_PORTE_PIN_SENSE, 0x00000000 }, { CX2072X_PORTE_EAPD_BTL, 0x00000002 }, { CX2072X_PORTE_GAIN_RIGHT, 0x00000000 }, { CX2072X_PORTE_GAIN_LEFT, 0x00000000 }, { CX2072X_PORTF_POWER_STATE, 0x00000433 }, { CX2072X_PORTF_PIN_CTRL, 0x00000000 }, { CX2072X_PORTF_UNSOLICITED_RESPONSE, 0x00000000 }, { CX2072X_PORTF_PIN_SENSE, 0x00000000 }, { CX2072X_PORTF_GAIN_RIGHT, 0x00000000 }, { CX2072X_PORTF_GAIN_LEFT, 0x00000000 }, { CX2072X_PORTG_POWER_STATE, 0x00000433 }, { CX2072X_PORTG_PIN_CTRL, 0x00000040 }, { CX2072X_PORTG_CONNECTION_SELECT_CTRL, 0x00000000 }, { CX2072X_PORTG_EAPD_BTL, 0x00000002 }, { CX2072X_PORTM_POWER_STATE, 0x00000433 }, { CX2072X_PORTM_PIN_CTRL, 0x00000000 }, { CX2072X_PORTM_CONNECTION_SELECT_CTRL, 0x00000000 }, { CX2072X_PORTM_EAPD_BTL, 0x00000002 }, { CX2072X_MIXER_POWER_STATE, 0x00000433 }, { CX2072X_MIXER_GAIN_RIGHT_0, 0x0000004a }, { CX2072X_MIXER_GAIN_LEFT_0, 0x0000004a }, { CX2072X_MIXER_GAIN_RIGHT_1, 0x0000004a }, { CX2072X_MIXER_GAIN_LEFT_1, 0x0000004a }, { CX2072X_SPKR_DRC_ENABLE_STEP, 0x040065a4 }, { CX2072X_SPKR_DRC_CONTROL, 0x007b0024 }, { CX2072X_SPKR_DRC_TEST, 0x00000000 }, { CX2072X_DIGITAL_BIOS_TEST0, 0x001f008a }, { CX2072X_DIGITAL_BIOS_TEST2, 0x00990026 }, { CX2072X_I2SPCM_CONTROL1, 0x00010001 }, { CX2072X_I2SPCM_CONTROL2, 0x00000000 }, { CX2072X_I2SPCM_CONTROL3, 0x00000000 }, { CX2072X_I2SPCM_CONTROL4, 0x00000000 }, { CX2072X_I2SPCM_CONTROL5, 0x00000000 }, { CX2072X_I2SPCM_CONTROL6, 0x00000000 }, { CX2072X_UM_INTERRUPT_CRTL_E, 0x00000000 }, { CX2072X_CODEC_TEST2, 0x00000000 }, { CX2072X_CODEC_TEST9, 0x00000004 }, { CX2072X_CODEC_TEST20, 0x00000600 }, { CX2072X_CODEC_TEST26, 0x00000208 }, { CX2072X_ANALOG_TEST4, 0x00000000 }, { CX2072X_ANALOG_TEST5, 0x00000000 }, { CX2072X_ANALOG_TEST6, 0x0000059a }, { CX2072X_ANALOG_TEST7, 0x000000a7 }, { CX2072X_ANALOG_TEST8, 0x00000017 }, { CX2072X_ANALOG_TEST9, 0x00000000 }, { CX2072X_ANALOG_TEST10, 0x00000285 }, { CX2072X_ANALOG_TEST11, 0x00000000 }, { CX2072X_ANALOG_TEST12, 0x00000000 }, { CX2072X_ANALOG_TEST13, 0x00000000 }, { CX2072X_DIGITAL_TEST1, 0x00000242 }, { CX2072X_DIGITAL_TEST11, 0x00000000 }, { CX2072X_DIGITAL_TEST12, 0x00000084 }, { CX2072X_DIGITAL_TEST15, 0x00000077 }, { CX2072X_DIGITAL_TEST16, 0x00000021 }, { CX2072X_DIGITAL_TEST17, 0x00000018 }, { CX2072X_DIGITAL_TEST18, 0x00000024 }, { CX2072X_DIGITAL_TEST19, 0x00000001 }, { CX2072X_DIGITAL_TEST20, 0x00000002 }, }; /* * register initialization */ static const struct reg_sequence cx2072x_reg_init[] = { { CX2072X_ANALOG_TEST9, 0x080 }, /* DC offset Calibration */ { CX2072X_CODEC_TEST26, 0x65f }, /* Disable the PA */ { CX2072X_ANALOG_TEST10, 0x289 }, /* Set the speaker output gain */ { CX2072X_CODEC_TEST20, 0xf05 }, { CX2072X_CODEC_TESTXX, 0x380 }, { CX2072X_CODEC_TEST26, 0xb90 }, { CX2072X_CODEC_TEST9, 0x001 }, /* Enable 30 Hz High pass filter */ { CX2072X_ANALOG_TEST3, 0x300 }, /* Disable PCBEEP pad */ { CX2072X_CODEC_TEST24, 0x100 }, /* Disable SnM mode */ { CX2072X_PORTD_PIN_CTRL, 0x020 }, /* Enable PortD input */ { CX2072X_GPIO_ENABLE, 0x040 }, /* Enable GPIO7 pin for button */ { CX2072X_GPIO_UM_ENABLE, 0x040 }, /* Enable UM for GPIO7 */ { CX2072X_UM_RESPONSE, 0x080 }, /* Enable button response */ { CX2072X_DIGITAL_TEST12, 0x0c4 }, /* Enable headset button */ { CX2072X_DIGITAL_TEST0, 0x415 }, /* Power down class-D during idle */ { CX2072X_I2SPCM_CONTROL2, 0x00f }, /* Enable I2S TX */ { CX2072X_I2SPCM_CONTROL3, 0x00f }, /* Enable I2S RX */ }; static unsigned int cx2072x_register_size(unsigned int reg) { switch (reg) { case CX2072X_VENDOR_ID: case CX2072X_REVISION_ID: case CX2072X_PORTA_PIN_SENSE: case CX2072X_PORTB_PIN_SENSE: case CX2072X_PORTD_PIN_SENSE: case CX2072X_PORTE_PIN_SENSE: case CX2072X_PORTF_PIN_SENSE: case CX2072X_I2SPCM_CONTROL1: case CX2072X_I2SPCM_CONTROL2: case CX2072X_I2SPCM_CONTROL3: case CX2072X_I2SPCM_CONTROL4: case CX2072X_I2SPCM_CONTROL5: case CX2072X_I2SPCM_CONTROL6: case CX2072X_UM_INTERRUPT_CRTL_E: case CX2072X_EQ_G_COEFF: case CX2072X_SPKR_DRC_CONTROL: case CX2072X_SPKR_DRC_TEST: case CX2072X_DIGITAL_BIOS_TEST0: case CX2072X_DIGITAL_BIOS_TEST2: return 4; case CX2072X_EQ_ENABLE_BYPASS: case CX2072X_EQ_B0_COEFF: case CX2072X_EQ_B1_COEFF: case CX2072X_EQ_B2_COEFF: case CX2072X_EQ_A1_COEFF: case CX2072X_EQ_A2_COEFF: case CX2072X_DAC1_CONVERTER_FORMAT: case CX2072X_DAC2_CONVERTER_FORMAT: case CX2072X_ADC1_CONVERTER_FORMAT: case CX2072X_ADC2_CONVERTER_FORMAT: case CX2072X_CODEC_TEST2: case CX2072X_CODEC_TEST9: case CX2072X_CODEC_TEST20: case CX2072X_CODEC_TEST26: case CX2072X_ANALOG_TEST3: case CX2072X_ANALOG_TEST4: case CX2072X_ANALOG_TEST5: case CX2072X_ANALOG_TEST6: case CX2072X_ANALOG_TEST7: case CX2072X_ANALOG_TEST8: case CX2072X_ANALOG_TEST9: case CX2072X_ANALOG_TEST10: case CX2072X_ANALOG_TEST11: case CX2072X_ANALOG_TEST12: case CX2072X_ANALOG_TEST13: case CX2072X_DIGITAL_TEST0: case CX2072X_DIGITAL_TEST1: case CX2072X_DIGITAL_TEST11: case CX2072X_DIGITAL_TEST12: case CX2072X_DIGITAL_TEST15: case CX2072X_DIGITAL_TEST16: case CX2072X_DIGITAL_TEST17: case CX2072X_DIGITAL_TEST18: case CX2072X_DIGITAL_TEST19: case CX2072X_DIGITAL_TEST20: return 2; default: return 1; } } static bool cx2072x_readable_register(struct device *dev, unsigned int reg) { switch (reg) { case CX2072X_VENDOR_ID: case CX2072X_REVISION_ID: case CX2072X_CURRENT_BCLK_FREQUENCY: case CX2072X_AFG_POWER_STATE: case CX2072X_UM_RESPONSE: case CX2072X_GPIO_DATA: case CX2072X_GPIO_ENABLE: case CX2072X_GPIO_DIRECTION: case CX2072X_GPIO_WAKE: case CX2072X_GPIO_UM_ENABLE: case CX2072X_GPIO_STICKY_MASK: case CX2072X_DAC1_CONVERTER_FORMAT: case CX2072X_DAC1_AMP_GAIN_RIGHT: case CX2072X_DAC1_AMP_GAIN_LEFT: case CX2072X_DAC1_POWER_STATE: case CX2072X_DAC1_CONVERTER_STREAM_CHANNEL: case CX2072X_DAC1_EAPD_ENABLE: case CX2072X_DAC2_CONVERTER_FORMAT: case CX2072X_DAC2_AMP_GAIN_RIGHT: case CX2072X_DAC2_AMP_GAIN_LEFT: case CX2072X_DAC2_POWER_STATE: case CX2072X_DAC2_CONVERTER_STREAM_CHANNEL: case CX2072X_ADC1_CONVERTER_FORMAT: case CX2072X_ADC1_AMP_GAIN_RIGHT_0: case CX2072X_ADC1_AMP_GAIN_LEFT_0: case CX2072X_ADC1_AMP_GAIN_RIGHT_1: case CX2072X_ADC1_AMP_GAIN_LEFT_1: case CX2072X_ADC1_AMP_GAIN_RIGHT_2: case CX2072X_ADC1_AMP_GAIN_LEFT_2: case CX2072X_ADC1_AMP_GAIN_RIGHT_3: case CX2072X_ADC1_AMP_GAIN_LEFT_3: case CX2072X_ADC1_AMP_GAIN_RIGHT_4: case CX2072X_ADC1_AMP_GAIN_LEFT_4: case CX2072X_ADC1_AMP_GAIN_RIGHT_5: case CX2072X_ADC1_AMP_GAIN_LEFT_5: case CX2072X_ADC1_AMP_GAIN_RIGHT_6: case CX2072X_ADC1_AMP_GAIN_LEFT_6: case CX2072X_ADC1_CONNECTION_SELECT_CONTROL: case CX2072X_ADC1_POWER_STATE: case CX2072X_ADC1_CONVERTER_STREAM_CHANNEL: case CX2072X_ADC2_CONVERTER_FORMAT: case CX2072X_ADC2_AMP_GAIN_RIGHT_0: case CX2072X_ADC2_AMP_GAIN_LEFT_0: case CX2072X_ADC2_AMP_GAIN_RIGHT_1: case CX2072X_ADC2_AMP_GAIN_LEFT_1: case CX2072X_ADC2_AMP_GAIN_RIGHT_2: case CX2072X_ADC2_AMP_GAIN_LEFT_2: case CX2072X_ADC2_CONNECTION_SELECT_CONTROL: case CX2072X_ADC2_POWER_STATE: case CX2072X_ADC2_CONVERTER_STREAM_CHANNEL: case CX2072X_PORTA_CONNECTION_SELECT_CTRL: case CX2072X_PORTA_POWER_STATE: case CX2072X_PORTA_PIN_CTRL: case CX2072X_PORTA_UNSOLICITED_RESPONSE: case CX2072X_PORTA_PIN_SENSE: case CX2072X_PORTA_EAPD_BTL: case CX2072X_PORTB_POWER_STATE: case CX2072X_PORTB_PIN_CTRL: case CX2072X_PORTB_UNSOLICITED_RESPONSE: case CX2072X_PORTB_PIN_SENSE: case CX2072X_PORTB_EAPD_BTL: case CX2072X_PORTB_GAIN_RIGHT: case CX2072X_PORTB_GAIN_LEFT: case CX2072X_PORTC_POWER_STATE: case CX2072X_PORTC_PIN_CTRL: case CX2072X_PORTC_GAIN_RIGHT: case CX2072X_PORTC_GAIN_LEFT: case CX2072X_PORTD_POWER_STATE: case CX2072X_PORTD_PIN_CTRL: case CX2072X_PORTD_UNSOLICITED_RESPONSE: case CX2072X_PORTD_PIN_SENSE: case CX2072X_PORTD_GAIN_RIGHT: case CX2072X_PORTD_GAIN_LEFT: case CX2072X_PORTE_CONNECTION_SELECT_CTRL: case CX2072X_PORTE_POWER_STATE: case CX2072X_PORTE_PIN_CTRL: case CX2072X_PORTE_UNSOLICITED_RESPONSE: case CX2072X_PORTE_PIN_SENSE: case CX2072X_PORTE_EAPD_BTL: case CX2072X_PORTE_GAIN_RIGHT: case CX2072X_PORTE_GAIN_LEFT: case CX2072X_PORTF_POWER_STATE: case CX2072X_PORTF_PIN_CTRL: case CX2072X_PORTF_UNSOLICITED_RESPONSE: case CX2072X_PORTF_PIN_SENSE: case CX2072X_PORTF_GAIN_RIGHT: case CX2072X_PORTF_GAIN_LEFT: case CX2072X_PORTG_POWER_STATE: case CX2072X_PORTG_PIN_CTRL: case CX2072X_PORTG_CONNECTION_SELECT_CTRL: case CX2072X_PORTG_EAPD_BTL: case CX2072X_PORTM_POWER_STATE: case CX2072X_PORTM_PIN_CTRL: case CX2072X_PORTM_CONNECTION_SELECT_CTRL: case CX2072X_PORTM_EAPD_BTL: case CX2072X_MIXER_POWER_STATE: case CX2072X_MIXER_GAIN_RIGHT_0: case CX2072X_MIXER_GAIN_LEFT_0: case CX2072X_MIXER_GAIN_RIGHT_1: case CX2072X_MIXER_GAIN_LEFT_1: case CX2072X_EQ_ENABLE_BYPASS: case CX2072X_EQ_B0_COEFF: case CX2072X_EQ_B1_COEFF: case CX2072X_EQ_B2_COEFF: case CX2072X_EQ_A1_COEFF: case CX2072X_EQ_A2_COEFF: case CX2072X_EQ_G_COEFF: case CX2072X_SPKR_DRC_ENABLE_STEP: case CX2072X_SPKR_DRC_CONTROL: case CX2072X_SPKR_DRC_TEST: case CX2072X_DIGITAL_BIOS_TEST0: case CX2072X_DIGITAL_BIOS_TEST2: case CX2072X_I2SPCM_CONTROL1: case CX2072X_I2SPCM_CONTROL2: case CX2072X_I2SPCM_CONTROL3: case CX2072X_I2SPCM_CONTROL4: case CX2072X_I2SPCM_CONTROL5: case CX2072X_I2SPCM_CONTROL6: case CX2072X_UM_INTERRUPT_CRTL_E: case CX2072X_CODEC_TEST2: case CX2072X_CODEC_TEST9: case CX2072X_CODEC_TEST20: case CX2072X_CODEC_TEST26: case CX2072X_ANALOG_TEST4: case CX2072X_ANALOG_TEST5: case CX2072X_ANALOG_TEST6: case CX2072X_ANALOG_TEST7: case CX2072X_ANALOG_TEST8: case CX2072X_ANALOG_TEST9: case CX2072X_ANALOG_TEST10: case CX2072X_ANALOG_TEST11: case CX2072X_ANALOG_TEST12: case CX2072X_ANALOG_TEST13: case CX2072X_DIGITAL_TEST0: case CX2072X_DIGITAL_TEST1: case CX2072X_DIGITAL_TEST11: case CX2072X_DIGITAL_TEST12: case CX2072X_DIGITAL_TEST15: case CX2072X_DIGITAL_TEST16: case CX2072X_DIGITAL_TEST17: case CX2072X_DIGITAL_TEST18: case CX2072X_DIGITAL_TEST19: case CX2072X_DIGITAL_TEST20: return true; default: return false; } } static bool cx2072x_volatile_register(struct device *dev, unsigned int reg) { switch (reg) { case CX2072X_VENDOR_ID: case CX2072X_REVISION_ID: case CX2072X_UM_INTERRUPT_CRTL_E: case CX2072X_DIGITAL_TEST11: case CX2072X_PORTA_PIN_SENSE: case CX2072X_PORTB_PIN_SENSE: case CX2072X_PORTD_PIN_SENSE: case CX2072X_PORTE_PIN_SENSE: case CX2072X_PORTF_PIN_SENSE: case CX2072X_EQ_G_COEFF: case CX2072X_EQ_BAND: return true; default: return false; } } static int cx2072x_reg_raw_write(struct i2c_client *client, unsigned int reg, const void *val, size_t val_count) { struct device *dev = &client->dev; u8 buf[2 + CX2072X_MAX_EQ_COEFF]; int ret; if (WARN_ON(val_count + 2 > sizeof(buf))) return -EINVAL; buf[0] = reg >> 8; buf[1] = reg & 0xff; memcpy(buf + 2, val, val_count); ret = i2c_master_send(client, buf, val_count + 2); if (ret != val_count + 2) { dev_err(dev, "I2C write failed, ret = %d\n", ret); return ret < 0 ? ret : -EIO; } return 0; } static int cx2072x_reg_write(void *context, unsigned int reg, unsigned int value) { __le32 raw_value; unsigned int size; size = cx2072x_register_size(reg); if (reg == CX2072X_UM_INTERRUPT_CRTL_E) { /* Update the MSB byte only */ reg += 3; size = 1; value >>= 24; } raw_value = cpu_to_le32(value); return cx2072x_reg_raw_write(context, reg, &raw_value, size); } static int cx2072x_reg_read(void *context, unsigned int reg, unsigned int *value) { struct i2c_client *client = context; struct device *dev = &client->dev; __le32 recv_buf = 0; struct i2c_msg msgs[2]; unsigned int size; u8 send_buf[2]; int ret; size = cx2072x_register_size(reg); send_buf[0] = reg >> 8; send_buf[1] = reg & 0xff; msgs[0].addr = client->addr; msgs[0].len = sizeof(send_buf); msgs[0].buf = send_buf; msgs[0].flags = 0; msgs[1].addr = client->addr; msgs[1].len = size; msgs[1].buf = (u8 *)&recv_buf; msgs[1].flags = I2C_M_RD; ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret != ARRAY_SIZE(msgs)) { dev_err(dev, "Failed to read register, ret = %d\n", ret); return ret < 0 ? ret : -EIO; } *value = le32_to_cpu(recv_buf); return 0; } /* get suggested pre_div valuce from mclk frequency */ static unsigned int get_div_from_mclk(unsigned int mclk) { unsigned int div = 8; int i; for (i = 0; i < ARRAY_SIZE(mclk_pre_div); i++) { if (mclk <= mclk_pre_div[i].mclk) { div = mclk_pre_div[i].div; break; } } return div; } static int cx2072x_config_pll(struct cx2072x_priv *cx2072x) { struct device *dev = cx2072x->dev; unsigned int pre_div; unsigned int pre_div_val; unsigned int pll_input; unsigned int pll_output; unsigned int int_div; unsigned int frac_div; u64 frac_num; unsigned int frac; unsigned int sample_rate = cx2072x->sample_rate; int pt_sample_per_sync = 2; int pt_clock_per_sample = 96; switch (sample_rate) { case 48000: case 32000: case 24000: case 16000: break; case 96000: pt_sample_per_sync = 1; pt_clock_per_sample = 48; break; case 192000: pt_sample_per_sync = 0; pt_clock_per_sample = 24; break; default: dev_err(dev, "Unsupported sample rate %d\n", sample_rate); return -EINVAL; } /* Configure PLL settings */ pre_div = get_div_from_mclk(cx2072x->mclk_rate); pll_input = cx2072x->mclk_rate / pre_div; pll_output = sample_rate * 3072; int_div = pll_output / pll_input; frac_div = pll_output - (int_div * pll_input); if (frac_div) { frac_div *= 1000; frac_div /= pll_input; frac_num = (u64)(4000 + frac_div) * ((1 << 20) - 4); do_div(frac_num, 7); frac = ((u32)frac_num + 499) / 1000; } pre_div_val = (pre_div - 1) * 2; regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST4, 0x40 | (pre_div_val << 8)); if (frac_div == 0) { /* Int mode */ regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST7, 0x100); } else { /* frac mode */ regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST6, frac & 0xfff); regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST7, (u8)(frac >> 12)); } int_div--; regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST8, int_div); /* configure PLL tracking */ if (frac_div == 0) { /* disable PLL tracking */ regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST16, 0x00); } else { /* configure and enable PLL tracking */ regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST16, (pt_sample_per_sync << 4) & 0xf0); regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST17, pt_clock_per_sample); regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST18, pt_clock_per_sample * 3 / 2); regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST19, 0x01); regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST20, 0x02); regmap_update_bits(cx2072x->regmap, CX2072X_DIGITAL_TEST16, 0x01, 0x01); } return 0; } static int cx2072x_config_i2spcm(struct cx2072x_priv *cx2072x) { struct device *dev = cx2072x->dev; unsigned int bclk_rate = 0; int is_i2s = 0; int has_one_bit_delay = 0; int is_frame_inv = 0; int is_bclk_inv = 0; int pulse_len; int frame_len = cx2072x->frame_size; int sample_size = cx2072x->sample_size; int i2s_right_slot; int i2s_right_pause_interval = 0; int i2s_right_pause_pos; int is_big_endian = 1; u64 div; unsigned int mod; union cx2072x_reg_i2spcm_ctrl_reg1 reg1; union cx2072x_reg_i2spcm_ctrl_reg2 reg2; union cx2072x_reg_i2spcm_ctrl_reg3 reg3; union cx2072x_reg_i2spcm_ctrl_reg4 reg4; union cx2072x_reg_i2spcm_ctrl_reg5 reg5; union cx2072x_reg_i2spcm_ctrl_reg6 reg6; union cx2072x_reg_digital_bios_test2 regdbt2; const unsigned int fmt = cx2072x->dai_fmt; if (frame_len <= 0) { dev_err(dev, "Incorrect frame len %d\n", frame_len); return -EINVAL; } if (sample_size <= 0) { dev_err(dev, "Incorrect sample size %d\n", sample_size); return -EINVAL; } dev_dbg(dev, "config_i2spcm set_dai_fmt- %08x\n", fmt); regdbt2.ulval = 0xac; switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_CBP_CFP: reg2.r.tx_master = 1; reg3.r.rx_master = 1; break; case SND_SOC_DAIFMT_CBC_CFC: reg2.r.tx_master = 0; reg3.r.rx_master = 0; break; default: dev_err(dev, "Unsupported DAI clocking mode\n"); return -EINVAL; } /* set format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: is_i2s = 1; has_one_bit_delay = 1; pulse_len = frame_len / 2; break; case SND_SOC_DAIFMT_RIGHT_J: is_i2s = 1; pulse_len = frame_len / 2; break; case SND_SOC_DAIFMT_LEFT_J: is_i2s = 1; pulse_len = frame_len / 2; break; default: dev_err(dev, "Unsupported DAI format\n"); return -EINVAL; } /* clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: is_frame_inv = is_i2s; is_bclk_inv = is_i2s; break; case SND_SOC_DAIFMT_IB_IF: is_frame_inv = !is_i2s; is_bclk_inv = !is_i2s; break; case SND_SOC_DAIFMT_IB_NF: is_frame_inv = is_i2s; is_bclk_inv = !is_i2s; break; case SND_SOC_DAIFMT_NB_IF: is_frame_inv = !is_i2s; is_bclk_inv = is_i2s; break; default: dev_err(dev, "Unsupported DAI clock inversion\n"); return -EINVAL; } reg1.r.rx_data_one_line = 1; reg1.r.tx_data_one_line = 1; if (is_i2s) { i2s_right_slot = (frame_len / 2) / BITS_PER_SLOT; i2s_right_pause_interval = (frame_len / 2) % BITS_PER_SLOT; i2s_right_pause_pos = i2s_right_slot * BITS_PER_SLOT; } reg1.r.rx_ws_pol = is_frame_inv; reg1.r.rx_ws_wid = pulse_len - 1; reg1.r.rx_frm_len = frame_len / BITS_PER_SLOT - 1; reg1.r.rx_sa_size = (sample_size / BITS_PER_SLOT) - 1; reg1.r.tx_ws_pol = reg1.r.rx_ws_pol; reg1.r.tx_ws_wid = pulse_len - 1; reg1.r.tx_frm_len = reg1.r.rx_frm_len; reg1.r.tx_sa_size = reg1.r.rx_sa_size; reg2.r.tx_endian_sel = !is_big_endian; reg2.r.tx_dstart_dly = has_one_bit_delay; if (cx2072x->en_aec_ref) reg2.r.tx_dstart_dly = 0; reg3.r.rx_endian_sel = !is_big_endian; reg3.r.rx_dstart_dly = has_one_bit_delay; reg4.ulval = 0; if (is_i2s) { reg2.r.tx_slot_1 = 0; reg2.r.tx_slot_2 = i2s_right_slot; reg3.r.rx_slot_1 = 0; if (cx2072x->en_aec_ref) reg3.r.rx_slot_2 = 0; else reg3.r.rx_slot_2 = i2s_right_slot; reg6.r.rx_pause_start_pos = i2s_right_pause_pos; reg6.r.rx_pause_cycles = i2s_right_pause_interval; reg6.r.tx_pause_start_pos = i2s_right_pause_pos; reg6.r.tx_pause_cycles = i2s_right_pause_interval; } else { dev_err(dev, "TDM mode is not implemented yet\n"); return -EINVAL; } regdbt2.r.i2s_bclk_invert = is_bclk_inv; /* Configures the BCLK output */ bclk_rate = cx2072x->sample_rate * frame_len; reg5.r.i2s_pcm_clk_div_chan_en = 0; /* Disables bclk output before setting new value */ regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL5, 0); if (reg2.r.tx_master) { /* Configures BCLK rate */ div = PLL_OUT_HZ_48; mod = do_div(div, bclk_rate); if (mod) { dev_err(dev, "Unsupported BCLK %dHz\n", bclk_rate); return -EINVAL; } dev_dbg(dev, "enables BCLK %dHz output\n", bclk_rate); reg5.r.i2s_pcm_clk_div = (u32)div - 1; reg5.r.i2s_pcm_clk_div_chan_en = 1; } regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL1, reg1.ulval); regmap_update_bits(cx2072x->regmap, CX2072X_I2SPCM_CONTROL2, 0xffffffc0, reg2.ulval); regmap_update_bits(cx2072x->regmap, CX2072X_I2SPCM_CONTROL3, 0xffffffc0, reg3.ulval); regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL4, reg4.ulval); regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL6, reg6.ulval); regmap_write(cx2072x->regmap, CX2072X_I2SPCM_CONTROL5, reg5.ulval); regmap_write(cx2072x->regmap, CX2072X_DIGITAL_BIOS_TEST2, regdbt2.ulval); return 0; } static int afg_power_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *codec = snd_soc_dapm_to_component(w->dapm); struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); switch (event) { case SND_SOC_DAPM_POST_PMU: regmap_update_bits(cx2072x->regmap, CX2072X_DIGITAL_BIOS_TEST0, 0x00, 0x10); break; case SND_SOC_DAPM_PRE_PMD: regmap_update_bits(cx2072x->regmap, CX2072X_DIGITAL_BIOS_TEST0, 0x10, 0x10); break; } return 0; } static const struct snd_kcontrol_new cx2072x_snd_controls[] = { SOC_DOUBLE_R_TLV("PortD Boost Volume", CX2072X_PORTD_GAIN_LEFT, CX2072X_PORTD_GAIN_RIGHT, 0, 3, 0, boost_tlv), SOC_DOUBLE_R_TLV("PortC Boost Volume", CX2072X_PORTC_GAIN_LEFT, CX2072X_PORTC_GAIN_RIGHT, 0, 3, 0, boost_tlv), SOC_DOUBLE_R_TLV("PortB Boost Volume", CX2072X_PORTB_GAIN_LEFT, CX2072X_PORTB_GAIN_RIGHT, 0, 3, 0, boost_tlv), SOC_DOUBLE_R_TLV("PortD ADC1 Volume", CX2072X_ADC1_AMP_GAIN_LEFT_1, CX2072X_ADC1_AMP_GAIN_RIGHT_1, 0, 0x4a, 0, adc_tlv), SOC_DOUBLE_R_TLV("PortC ADC1 Volume", CX2072X_ADC1_AMP_GAIN_LEFT_2, CX2072X_ADC1_AMP_GAIN_RIGHT_2, 0, 0x4a, 0, adc_tlv), SOC_DOUBLE_R_TLV("PortB ADC1 Volume", CX2072X_ADC1_AMP_GAIN_LEFT_0, CX2072X_ADC1_AMP_GAIN_RIGHT_0, 0, 0x4a, 0, adc_tlv), SOC_DOUBLE_R_TLV("DAC1 Volume", CX2072X_DAC1_AMP_GAIN_LEFT, CX2072X_DAC1_AMP_GAIN_RIGHT, 0, 0x4a, 0, dac_tlv), SOC_DOUBLE_R("DAC1 Switch", CX2072X_DAC1_AMP_GAIN_LEFT, CX2072X_DAC1_AMP_GAIN_RIGHT, 7, 1, 0), SOC_DOUBLE_R_TLV("DAC2 Volume", CX2072X_DAC2_AMP_GAIN_LEFT, CX2072X_DAC2_AMP_GAIN_RIGHT, 0, 0x4a, 0, dac_tlv), SOC_SINGLE_TLV("HPF Freq", CX2072X_CODEC_TEST9, 0, 0x3f, 0, hpf_tlv), SOC_DOUBLE("HPF Switch", CX2072X_CODEC_TEST9, 8, 9, 1, 1), SOC_SINGLE("PortA HP Amp Switch", CX2072X_PORTA_PIN_CTRL, 7, 1, 0), }; static int cx2072x_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *codec = dai->component; struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); struct device *dev = codec->dev; const unsigned int sample_rate = params_rate(params); int sample_size, frame_size; /* Data sizes if not using TDM */ sample_size = params_width(params); if (sample_size < 0) return sample_size; frame_size = snd_soc_params_to_frame_size(params); if (frame_size < 0) return frame_size; if (cx2072x->mclk_rate == 0) { dev_err(dev, "Master clock rate is not configured\n"); return -EINVAL; } if (cx2072x->bclk_ratio) frame_size = cx2072x->bclk_ratio; switch (sample_rate) { case 48000: case 32000: case 24000: case 16000: case 96000: case 192000: break; default: dev_err(dev, "Unsupported sample rate %d\n", sample_rate); return -EINVAL; } dev_dbg(dev, "Sample size %d bits, frame = %d bits, rate = %d Hz\n", sample_size, frame_size, sample_rate); cx2072x->frame_size = frame_size; cx2072x->sample_size = sample_size; cx2072x->sample_rate = sample_rate; if (dai->id == CX2072X_DAI_DSP) { cx2072x->en_aec_ref = true; dev_dbg(cx2072x->dev, "enables aec reference\n"); regmap_write(cx2072x->regmap, CX2072X_ADC1_CONNECTION_SELECT_CONTROL, 3); } if (cx2072x->pll_changed) { cx2072x_config_pll(cx2072x); cx2072x->pll_changed = false; } if (cx2072x->i2spcm_changed) { cx2072x_config_i2spcm(cx2072x); cx2072x->i2spcm_changed = false; } return 0; } static int cx2072x_set_dai_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio) { struct snd_soc_component *codec = dai->component; struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); cx2072x->bclk_ratio = ratio; return 0; } static int cx2072x_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *codec = dai->component; struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); if (clk_set_rate(cx2072x->mclk, freq)) { dev_err(codec->dev, "set clk rate failed\n"); return -EINVAL; } cx2072x->mclk_rate = freq; return 0; } static int cx2072x_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *codec = dai->component; struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); struct device *dev = codec->dev; dev_dbg(dev, "set_dai_fmt- %08x\n", fmt); /* set master/slave */ switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_CBP_CFP: case SND_SOC_DAIFMT_CBC_CFC: break; default: dev_err(dev, "Unsupported DAI master mode\n"); return -EINVAL; } /* set format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_RIGHT_J: case SND_SOC_DAIFMT_LEFT_J: break; default: dev_err(dev, "Unsupported DAI format\n"); return -EINVAL; } /* clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: case SND_SOC_DAIFMT_IB_IF: case SND_SOC_DAIFMT_IB_NF: case SND_SOC_DAIFMT_NB_IF: break; default: dev_err(dev, "Unsupported DAI clock inversion\n"); return -EINVAL; } cx2072x->dai_fmt = fmt; return 0; } static const struct snd_kcontrol_new portaouten_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_PORTA_PIN_CTRL, 6, 1, 0); static const struct snd_kcontrol_new porteouten_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_PORTE_PIN_CTRL, 6, 1, 0); static const struct snd_kcontrol_new portgouten_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_PORTG_PIN_CTRL, 6, 1, 0); static const struct snd_kcontrol_new portmouten_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_PORTM_PIN_CTRL, 6, 1, 0); static const struct snd_kcontrol_new portbinen_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_PORTB_PIN_CTRL, 5, 1, 0); static const struct snd_kcontrol_new portcinen_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_PORTC_PIN_CTRL, 5, 1, 0); static const struct snd_kcontrol_new portdinen_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_PORTD_PIN_CTRL, 5, 1, 0); static const struct snd_kcontrol_new porteinen_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_PORTE_PIN_CTRL, 5, 1, 0); static const struct snd_kcontrol_new i2sadc1l_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL2, 0, 1, 0); static const struct snd_kcontrol_new i2sadc1r_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL2, 1, 1, 0); static const struct snd_kcontrol_new i2sadc2l_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL2, 2, 1, 0); static const struct snd_kcontrol_new i2sadc2r_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL2, 3, 1, 0); static const struct snd_kcontrol_new i2sdac1l_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL3, 0, 1, 0); static const struct snd_kcontrol_new i2sdac1r_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL3, 1, 1, 0); static const struct snd_kcontrol_new i2sdac2l_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL3, 2, 1, 0); static const struct snd_kcontrol_new i2sdac2r_ctl = SOC_DAPM_SINGLE("Switch", CX2072X_I2SPCM_CONTROL3, 3, 1, 0); static const char * const dac_enum_text[] = { "DAC1 Switch", "DAC2 Switch", }; static const struct soc_enum porta_dac_enum = SOC_ENUM_SINGLE(CX2072X_PORTA_CONNECTION_SELECT_CTRL, 0, 2, dac_enum_text); static const struct snd_kcontrol_new porta_mux = SOC_DAPM_ENUM("PortA Mux", porta_dac_enum); static const struct soc_enum portg_dac_enum = SOC_ENUM_SINGLE(CX2072X_PORTG_CONNECTION_SELECT_CTRL, 0, 2, dac_enum_text); static const struct snd_kcontrol_new portg_mux = SOC_DAPM_ENUM("PortG Mux", portg_dac_enum); static const struct soc_enum porte_dac_enum = SOC_ENUM_SINGLE(CX2072X_PORTE_CONNECTION_SELECT_CTRL, 0, 2, dac_enum_text); static const struct snd_kcontrol_new porte_mux = SOC_DAPM_ENUM("PortE Mux", porte_dac_enum); static const struct soc_enum portm_dac_enum = SOC_ENUM_SINGLE(CX2072X_PORTM_CONNECTION_SELECT_CTRL, 0, 2, dac_enum_text); static const struct snd_kcontrol_new portm_mux = SOC_DAPM_ENUM("PortM Mux", portm_dac_enum); static const char * const adc1in_sel_text[] = { "PortB Switch", "PortD Switch", "PortC Switch", "Widget15 Switch", "PortE Switch", "PortF Switch", "PortH Switch" }; static const struct soc_enum adc1in_sel_enum = SOC_ENUM_SINGLE(CX2072X_ADC1_CONNECTION_SELECT_CONTROL, 0, 7, adc1in_sel_text); static const struct snd_kcontrol_new adc1_mux = SOC_DAPM_ENUM("ADC1 Mux", adc1in_sel_enum); static const char * const adc2in_sel_text[] = { "PortC Switch", "Widget15 Switch", "PortH Switch" }; static const struct soc_enum adc2in_sel_enum = SOC_ENUM_SINGLE(CX2072X_ADC2_CONNECTION_SELECT_CONTROL, 0, 3, adc2in_sel_text); static const struct snd_kcontrol_new adc2_mux = SOC_DAPM_ENUM("ADC2 Mux", adc2in_sel_enum); static const struct snd_kcontrol_new wid15_mix[] = { SOC_DAPM_SINGLE("DAC1L Switch", CX2072X_MIXER_GAIN_LEFT_0, 7, 1, 1), SOC_DAPM_SINGLE("DAC1R Switch", CX2072X_MIXER_GAIN_RIGHT_0, 7, 1, 1), SOC_DAPM_SINGLE("DAC2L Switch", CX2072X_MIXER_GAIN_LEFT_1, 7, 1, 1), SOC_DAPM_SINGLE("DAC2R Switch", CX2072X_MIXER_GAIN_RIGHT_1, 7, 1, 1), }; #define CX2072X_DAPM_SUPPLY_S(wname, wsubseq, wreg, wshift, wmask, won_val, \ woff_val, wevent, wflags) \ {.id = snd_soc_dapm_supply, .name = wname, .kcontrol_news = NULL, \ .num_kcontrols = 0, .reg = wreg, .shift = wshift, .mask = wmask, \ .on_val = won_val, .off_val = woff_val, \ .subseq = wsubseq, .event = wevent, .event_flags = wflags} #define CX2072X_DAPM_SWITCH(wname, wreg, wshift, wmask, won_val, woff_val, \ wevent, wflags) \ {.id = snd_soc_dapm_switch, .name = wname, .kcontrol_news = NULL, \ .num_kcontrols = 0, .reg = wreg, .shift = wshift, .mask = wmask, \ .on_val = won_val, .off_val = woff_val, \ .event = wevent, .event_flags = wflags} #define CX2072X_DAPM_SWITCH(wname, wreg, wshift, wmask, won_val, woff_val, \ wevent, wflags) \ {.id = snd_soc_dapm_switch, .name = wname, .kcontrol_news = NULL, \ .num_kcontrols = 0, .reg = wreg, .shift = wshift, .mask = wmask, \ .on_val = won_val, .off_val = woff_val, \ .event = wevent, .event_flags = wflags} #define CX2072X_DAPM_REG_E(wid, wname, wreg, wshift, wmask, won_val, woff_val, \ wevent, wflags) \ {.id = wid, .name = wname, .kcontrol_news = NULL, .num_kcontrols = 0, \ .reg = wreg, .shift = wshift, .mask = wmask, \ .on_val = won_val, .off_val = woff_val, \ .event = wevent, .event_flags = wflags} static const struct snd_soc_dapm_widget cx2072x_dapm_widgets[] = { /*Playback*/ SND_SOC_DAPM_AIF_IN("In AIF", "Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_SWITCH("I2S DAC1L", SND_SOC_NOPM, 0, 0, &i2sdac1l_ctl), SND_SOC_DAPM_SWITCH("I2S DAC1R", SND_SOC_NOPM, 0, 0, &i2sdac1r_ctl), SND_SOC_DAPM_SWITCH("I2S DAC2L", SND_SOC_NOPM, 0, 0, &i2sdac2l_ctl), SND_SOC_DAPM_SWITCH("I2S DAC2R", SND_SOC_NOPM, 0, 0, &i2sdac2r_ctl), SND_SOC_DAPM_REG(snd_soc_dapm_dac, "DAC1", CX2072X_DAC1_POWER_STATE, 0, 0xfff, 0x00, 0x03), SND_SOC_DAPM_REG(snd_soc_dapm_dac, "DAC2", CX2072X_DAC2_POWER_STATE, 0, 0xfff, 0x00, 0x03), SND_SOC_DAPM_MUX("PortA Mux", SND_SOC_NOPM, 0, 0, &porta_mux), SND_SOC_DAPM_MUX("PortG Mux", SND_SOC_NOPM, 0, 0, &portg_mux), SND_SOC_DAPM_MUX("PortE Mux", SND_SOC_NOPM, 0, 0, &porte_mux), SND_SOC_DAPM_MUX("PortM Mux", SND_SOC_NOPM, 0, 0, &portm_mux), SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortA Power", CX2072X_PORTA_POWER_STATE, 0, 0xfff, 0x00, 0x03), SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortM Power", CX2072X_PORTM_POWER_STATE, 0, 0xfff, 0x00, 0x03), SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortG Power", CX2072X_PORTG_POWER_STATE, 0, 0xfff, 0x00, 0x03), CX2072X_DAPM_SUPPLY_S("AFG Power", 0, CX2072X_AFG_POWER_STATE, 0, 0xfff, 0x00, 0x03, afg_power_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_SWITCH("PortA Out En", SND_SOC_NOPM, 0, 0, &portaouten_ctl), SND_SOC_DAPM_SWITCH("PortE Out En", SND_SOC_NOPM, 0, 0, &porteouten_ctl), SND_SOC_DAPM_SWITCH("PortG Out En", SND_SOC_NOPM, 0, 0, &portgouten_ctl), SND_SOC_DAPM_SWITCH("PortM Out En", SND_SOC_NOPM, 0, 0, &portmouten_ctl), SND_SOC_DAPM_OUTPUT("PORTA"), SND_SOC_DAPM_OUTPUT("PORTG"), SND_SOC_DAPM_OUTPUT("PORTE"), SND_SOC_DAPM_OUTPUT("PORTM"), SND_SOC_DAPM_OUTPUT("AEC REF"), /*Capture*/ SND_SOC_DAPM_AIF_OUT("Out AIF", "Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_SWITCH("I2S ADC1L", SND_SOC_NOPM, 0, 0, &i2sadc1l_ctl), SND_SOC_DAPM_SWITCH("I2S ADC1R", SND_SOC_NOPM, 0, 0, &i2sadc1r_ctl), SND_SOC_DAPM_SWITCH("I2S ADC2L", SND_SOC_NOPM, 0, 0, &i2sadc2l_ctl), SND_SOC_DAPM_SWITCH("I2S ADC2R", SND_SOC_NOPM, 0, 0, &i2sadc2r_ctl), SND_SOC_DAPM_REG(snd_soc_dapm_adc, "ADC1", CX2072X_ADC1_POWER_STATE, 0, 0xff, 0x00, 0x03), SND_SOC_DAPM_REG(snd_soc_dapm_adc, "ADC2", CX2072X_ADC2_POWER_STATE, 0, 0xff, 0x00, 0x03), SND_SOC_DAPM_MUX("ADC1 Mux", SND_SOC_NOPM, 0, 0, &adc1_mux), SND_SOC_DAPM_MUX("ADC2 Mux", SND_SOC_NOPM, 0, 0, &adc2_mux), SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortB Power", CX2072X_PORTB_POWER_STATE, 0, 0xfff, 0x00, 0x03), SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortC Power", CX2072X_PORTC_POWER_STATE, 0, 0xfff, 0x00, 0x03), SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortD Power", CX2072X_PORTD_POWER_STATE, 0, 0xfff, 0x00, 0x03), SND_SOC_DAPM_REG(snd_soc_dapm_supply, "PortE Power", CX2072X_PORTE_POWER_STATE, 0, 0xfff, 0x00, 0x03), SND_SOC_DAPM_REG(snd_soc_dapm_supply, "Widget15 Power", CX2072X_MIXER_POWER_STATE, 0, 0xfff, 0x00, 0x03), SND_SOC_DAPM_MIXER("Widget15 Mixer", SND_SOC_NOPM, 0, 0, wid15_mix, ARRAY_SIZE(wid15_mix)), SND_SOC_DAPM_SWITCH("PortB In En", SND_SOC_NOPM, 0, 0, &portbinen_ctl), SND_SOC_DAPM_SWITCH("PortC In En", SND_SOC_NOPM, 0, 0, &portcinen_ctl), SND_SOC_DAPM_SWITCH("PortD In En", SND_SOC_NOPM, 0, 0, &portdinen_ctl), SND_SOC_DAPM_SWITCH("PortE In En", SND_SOC_NOPM, 0, 0, &porteinen_ctl), SND_SOC_DAPM_MICBIAS("Headset Bias", CX2072X_ANALOG_TEST11, 1, 0), SND_SOC_DAPM_MICBIAS("PortB Mic Bias", CX2072X_PORTB_PIN_CTRL, 2, 0), SND_SOC_DAPM_MICBIAS("PortD Mic Bias", CX2072X_PORTD_PIN_CTRL, 2, 0), SND_SOC_DAPM_MICBIAS("PortE Mic Bias", CX2072X_PORTE_PIN_CTRL, 2, 0), SND_SOC_DAPM_INPUT("PORTB"), SND_SOC_DAPM_INPUT("PORTC"), SND_SOC_DAPM_INPUT("PORTD"), SND_SOC_DAPM_INPUT("PORTEIN"), }; static const struct snd_soc_dapm_route cx2072x_intercon[] = { /* Playback */ {"In AIF", NULL, "AFG Power"}, {"I2S DAC1L", "Switch", "In AIF"}, {"I2S DAC1R", "Switch", "In AIF"}, {"I2S DAC2L", "Switch", "In AIF"}, {"I2S DAC2R", "Switch", "In AIF"}, {"DAC1", NULL, "I2S DAC1L"}, {"DAC1", NULL, "I2S DAC1R"}, {"DAC2", NULL, "I2S DAC2L"}, {"DAC2", NULL, "I2S DAC2R"}, {"PortA Mux", "DAC1 Switch", "DAC1"}, {"PortA Mux", "DAC2 Switch", "DAC2"}, {"PortG Mux", "DAC1 Switch", "DAC1"}, {"PortG Mux", "DAC2 Switch", "DAC2"}, {"PortE Mux", "DAC1 Switch", "DAC1"}, {"PortE Mux", "DAC2 Switch", "DAC2"}, {"PortM Mux", "DAC1 Switch", "DAC1"}, {"PortM Mux", "DAC2 Switch", "DAC2"}, {"Widget15 Mixer", "DAC1L Switch", "DAC1"}, {"Widget15 Mixer", "DAC1R Switch", "DAC2"}, {"Widget15 Mixer", "DAC2L Switch", "DAC1"}, {"Widget15 Mixer", "DAC2R Switch", "DAC2"}, {"Widget15 Mixer", NULL, "Widget15 Power"}, {"PortA Out En", "Switch", "PortA Mux"}, {"PortG Out En", "Switch", "PortG Mux"}, {"PortE Out En", "Switch", "PortE Mux"}, {"PortM Out En", "Switch", "PortM Mux"}, {"PortA Mux", NULL, "PortA Power"}, {"PortG Mux", NULL, "PortG Power"}, {"PortE Mux", NULL, "PortE Power"}, {"PortM Mux", NULL, "PortM Power"}, {"PortA Out En", NULL, "PortA Power"}, {"PortG Out En", NULL, "PortG Power"}, {"PortE Out En", NULL, "PortE Power"}, {"PortM Out En", NULL, "PortM Power"}, {"PORTA", NULL, "PortA Out En"}, {"PORTG", NULL, "PortG Out En"}, {"PORTE", NULL, "PortE Out En"}, {"PORTM", NULL, "PortM Out En"}, /* Capture */ {"PORTD", NULL, "Headset Bias"}, {"PortB In En", "Switch", "PORTB"}, {"PortC In En", "Switch", "PORTC"}, {"PortD In En", "Switch", "PORTD"}, {"PortE In En", "Switch", "PORTEIN"}, {"ADC1 Mux", "PortB Switch", "PortB In En"}, {"ADC1 Mux", "PortC Switch", "PortC In En"}, {"ADC1 Mux", "PortD Switch", "PortD In En"}, {"ADC1 Mux", "PortE Switch", "PortE In En"}, {"ADC1 Mux", "Widget15 Switch", "Widget15 Mixer"}, {"ADC2 Mux", "PortC Switch", "PortC In En"}, {"ADC2 Mux", "Widget15 Switch", "Widget15 Mixer"}, {"ADC1", NULL, "ADC1 Mux"}, {"ADC2", NULL, "ADC2 Mux"}, {"I2S ADC1L", "Switch", "ADC1"}, {"I2S ADC1R", "Switch", "ADC1"}, {"I2S ADC2L", "Switch", "ADC2"}, {"I2S ADC2R", "Switch", "ADC2"}, {"Out AIF", NULL, "I2S ADC1L"}, {"Out AIF", NULL, "I2S ADC1R"}, {"Out AIF", NULL, "I2S ADC2L"}, {"Out AIF", NULL, "I2S ADC2R"}, {"Out AIF", NULL, "AFG Power"}, {"AEC REF", NULL, "Out AIF"}, {"PortB In En", NULL, "PortB Power"}, {"PortC In En", NULL, "PortC Power"}, {"PortD In En", NULL, "PortD Power"}, {"PortE In En", NULL, "PortE Power"}, }; static int cx2072x_set_bias_level(struct snd_soc_component *codec, enum snd_soc_bias_level level) { struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); const enum snd_soc_bias_level old_level = snd_soc_component_get_bias_level(codec); if (level == SND_SOC_BIAS_STANDBY && old_level == SND_SOC_BIAS_OFF) regmap_write(cx2072x->regmap, CX2072X_AFG_POWER_STATE, 0); else if (level == SND_SOC_BIAS_OFF && old_level != SND_SOC_BIAS_OFF) regmap_write(cx2072x->regmap, CX2072X_AFG_POWER_STATE, 3); return 0; } /* * FIXME: the whole jack detection code below is pretty platform-specific; * it has lots of implicit assumptions about the pins, etc. * However, since we have no other code and reference, take this hard-coded * setup for now. Once when we have different platform implementations, * this needs to be rewritten in a more generic form, or moving into the * platform data. */ static void cx2072x_enable_jack_detect(struct snd_soc_component *codec) { struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(codec); /* No-sticky input type */ regmap_write(cx2072x->regmap, CX2072X_GPIO_STICKY_MASK, 0x1f); /* Use GPOI0 as interrupt pin */ regmap_write(cx2072x->regmap, CX2072X_UM_INTERRUPT_CRTL_E, 0x12 << 24); /* Enables unsolitited message on PortA */ regmap_write(cx2072x->regmap, CX2072X_PORTA_UNSOLICITED_RESPONSE, 0x80); /* support both nokia and apple headset set. Monitor time = 275 ms */ regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST15, 0x73); /* Disable TIP detection */ regmap_write(cx2072x->regmap, CX2072X_ANALOG_TEST12, 0x300); /* Switch MusicD3Live pin to GPIO */ regmap_write(cx2072x->regmap, CX2072X_DIGITAL_TEST1, 0); snd_soc_dapm_mutex_lock(dapm); snd_soc_dapm_force_enable_pin_unlocked(dapm, "PORTD"); snd_soc_dapm_force_enable_pin_unlocked(dapm, "Headset Bias"); snd_soc_dapm_force_enable_pin_unlocked(dapm, "PortD Mic Bias"); snd_soc_dapm_mutex_unlock(dapm); } static void cx2072x_disable_jack_detect(struct snd_soc_component *codec) { struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); regmap_write(cx2072x->regmap, CX2072X_UM_INTERRUPT_CRTL_E, 0); regmap_write(cx2072x->regmap, CX2072X_PORTA_UNSOLICITED_RESPONSE, 0); } static int cx2072x_jack_status_check(void *data) { struct snd_soc_component *codec = data; struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); unsigned int jack; unsigned int type = 0; int state = 0; mutex_lock(&cx2072x->lock); regmap_read(cx2072x->regmap, CX2072X_PORTA_PIN_SENSE, &jack); jack = jack >> 24; regmap_read(cx2072x->regmap, CX2072X_DIGITAL_TEST11, &type); if (jack == 0x80) { type = type >> 8; if (type & 0x8) { /* Apple headset */ state |= SND_JACK_HEADSET; if (type & 0x2) state |= SND_JACK_BTN_0; } else { /* * Nokia headset (type & 0x4) and * regular Headphone */ state |= SND_JACK_HEADPHONE; } } /* clear interrupt */ regmap_write(cx2072x->regmap, CX2072X_UM_INTERRUPT_CRTL_E, 0x12 << 24); mutex_unlock(&cx2072x->lock); dev_dbg(codec->dev, "CX2072X_HSDETECT type=0x%X,Jack state = %x\n", type, state); return state; } static const struct snd_soc_jack_gpio cx2072x_jack_gpio = { .name = "headset", .report = SND_JACK_HEADSET | SND_JACK_BTN_0, .debounce_time = 150, .wake = true, .jack_status_check = cx2072x_jack_status_check, }; static int cx2072x_set_jack(struct snd_soc_component *codec, struct snd_soc_jack *jack, void *data) { struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); int err; if (!jack) { cx2072x_disable_jack_detect(codec); return 0; } if (!cx2072x->jack_gpio.gpiod_dev) { cx2072x->jack_gpio = cx2072x_jack_gpio; cx2072x->jack_gpio.gpiod_dev = codec->dev; cx2072x->jack_gpio.data = codec; err = snd_soc_jack_add_gpios(jack, 1, &cx2072x->jack_gpio); if (err) { cx2072x->jack_gpio.gpiod_dev = NULL; return err; } } cx2072x_enable_jack_detect(codec); return 0; } static int cx2072x_probe(struct snd_soc_component *codec) { struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(codec); cx2072x->codec = codec; /* * FIXME: below is, again, a very platform-specific init sequence, * but we keep the code here just for simplicity. It seems that all * existing hardware implementations require this, so there is no very * much reason to move this out of the codec driver to the platform * data. * But of course it's no "right" thing; if you are a good boy, don't * read and follow the code like this! */ pm_runtime_get_sync(codec->dev); regmap_write(cx2072x->regmap, CX2072X_AFG_POWER_STATE, 0); regmap_multi_reg_write(cx2072x->regmap, cx2072x_reg_init, ARRAY_SIZE(cx2072x_reg_init)); /* configure PortC as input device */ regmap_update_bits(cx2072x->regmap, CX2072X_PORTC_PIN_CTRL, 0x20, 0x20); regmap_update_bits(cx2072x->regmap, CX2072X_DIGITAL_BIOS_TEST2, 0x84, 0xff); regmap_write(cx2072x->regmap, CX2072X_AFG_POWER_STATE, 3); pm_runtime_put(codec->dev); return 0; } static const struct snd_soc_component_driver soc_codec_driver_cx2072x = { .probe = cx2072x_probe, .set_bias_level = cx2072x_set_bias_level, .set_jack = cx2072x_set_jack, .controls = cx2072x_snd_controls, .num_controls = ARRAY_SIZE(cx2072x_snd_controls), .dapm_widgets = cx2072x_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(cx2072x_dapm_widgets), .dapm_routes = cx2072x_intercon, .num_dapm_routes = ARRAY_SIZE(cx2072x_intercon), .endianness = 1, }; /* * DAI ops */ static const struct snd_soc_dai_ops cx2072x_dai_ops = { .set_sysclk = cx2072x_set_dai_sysclk, .set_fmt = cx2072x_set_dai_fmt, .hw_params = cx2072x_hw_params, .set_bclk_ratio = cx2072x_set_dai_bclk_ratio, }; static int cx2072x_dsp_dai_probe(struct snd_soc_dai *dai) { struct cx2072x_priv *cx2072x = snd_soc_component_get_drvdata(dai->component); cx2072x->en_aec_ref = true; return 0; } static const struct snd_soc_dai_ops cx2072x_dai_ops2 = { .probe = cx2072x_dsp_dai_probe, .set_sysclk = cx2072x_set_dai_sysclk, .set_fmt = cx2072x_set_dai_fmt, .hw_params = cx2072x_hw_params, .set_bclk_ratio = cx2072x_set_dai_bclk_ratio, }; #define CX2072X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE) static struct snd_soc_dai_driver soc_codec_cx2072x_dai[] = { { /* playback and capture */ .name = "cx2072x-hifi", .id = CX2072X_DAI_HIFI, .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = CX2072X_RATES_DSP, .formats = CX2072X_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = CX2072X_RATES_DSP, .formats = CX2072X_FORMATS, }, .ops = &cx2072x_dai_ops, .symmetric_rate = 1, }, { /* plabayck only, return echo reference to Conexant DSP chip */ .name = "cx2072x-dsp", .id = CX2072X_DAI_DSP, .playback = { .stream_name = "DSP Playback", .channels_min = 2, .channels_max = 2, .rates = CX2072X_RATES_DSP, .formats = CX2072X_FORMATS, }, .ops = &cx2072x_dai_ops2, }, { /* plabayck only, return echo reference through I2S TX */ .name = "cx2072x-aec", .id = 3, .capture = { .stream_name = "AEC Capture", .channels_min = 2, .channels_max = 2, .rates = CX2072X_RATES_DSP, .formats = CX2072X_FORMATS, }, }, }; static const struct regmap_config cx2072x_regmap = { .reg_bits = 16, .val_bits = 32, .max_register = CX2072X_REG_MAX, .reg_defaults = cx2072x_reg_defaults, .num_reg_defaults = ARRAY_SIZE(cx2072x_reg_defaults), .cache_type = REGCACHE_RBTREE, .readable_reg = cx2072x_readable_register, .volatile_reg = cx2072x_volatile_register, /* Needs custom read/write functions for various register lengths */ .reg_read = cx2072x_reg_read, .reg_write = cx2072x_reg_write, }; static int __maybe_unused cx2072x_runtime_suspend(struct device *dev) { struct cx2072x_priv *cx2072x = dev_get_drvdata(dev); clk_disable_unprepare(cx2072x->mclk); return 0; } static int __maybe_unused cx2072x_runtime_resume(struct device *dev) { struct cx2072x_priv *cx2072x = dev_get_drvdata(dev); return clk_prepare_enable(cx2072x->mclk); } static int cx2072x_i2c_probe(struct i2c_client *i2c) { struct cx2072x_priv *cx2072x; unsigned int ven_id, rev_id; int ret; cx2072x = devm_kzalloc(&i2c->dev, sizeof(struct cx2072x_priv), GFP_KERNEL); if (!cx2072x) return -ENOMEM; cx2072x->regmap = devm_regmap_init(&i2c->dev, NULL, i2c, &cx2072x_regmap); if (IS_ERR(cx2072x->regmap)) return PTR_ERR(cx2072x->regmap); mutex_init(&cx2072x->lock); i2c_set_clientdata(i2c, cx2072x); cx2072x->dev = &i2c->dev; cx2072x->pll_changed = true; cx2072x->i2spcm_changed = true; cx2072x->bclk_ratio = 0; cx2072x->mclk = devm_clk_get(cx2072x->dev, "mclk"); if (IS_ERR(cx2072x->mclk)) { dev_err(cx2072x->dev, "Failed to get MCLK\n"); return PTR_ERR(cx2072x->mclk); } regmap_read(cx2072x->regmap, CX2072X_VENDOR_ID, &ven_id); regmap_read(cx2072x->regmap, CX2072X_REVISION_ID, &rev_id); dev_info(cx2072x->dev, "codec version: %08x,%08x\n", ven_id, rev_id); ret = devm_snd_soc_register_component(cx2072x->dev, &soc_codec_driver_cx2072x, soc_codec_cx2072x_dai, ARRAY_SIZE(soc_codec_cx2072x_dai)); if (ret < 0) return ret; pm_runtime_use_autosuspend(cx2072x->dev); pm_runtime_enable(cx2072x->dev); return 0; } static void cx2072x_i2c_remove(struct i2c_client *i2c) { pm_runtime_disable(&i2c->dev); } static const struct i2c_device_id cx2072x_i2c_id[] = { { "cx20721" }, { "cx20723" }, {} }; MODULE_DEVICE_TABLE(i2c, cx2072x_i2c_id); #ifdef CONFIG_ACPI static struct acpi_device_id cx2072x_acpi_match[] = { { "14F10720", 0 }, {}, }; MODULE_DEVICE_TABLE(acpi, cx2072x_acpi_match); #endif static const struct dev_pm_ops cx2072x_runtime_pm = { SET_RUNTIME_PM_OPS(cx2072x_runtime_suspend, cx2072x_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static struct i2c_driver cx2072x_i2c_driver = { .driver = { .name = "cx2072x", .acpi_match_table = ACPI_PTR(cx2072x_acpi_match), .pm = &cx2072x_runtime_pm, }, .probe = cx2072x_i2c_probe, .remove = cx2072x_i2c_remove, .id_table = cx2072x_i2c_id, }; module_i2c_driver(cx2072x_i2c_driver); MODULE_DESCRIPTION("ASoC cx2072x Codec Driver"); MODULE_AUTHOR("Simon Ho <simon.ho@conexant.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1