Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Lin | 5324 | 94.90% | 4 | 22.22% |
Andrejs Cainikovs | 180 | 3.21% | 3 | 16.67% |
Hui Wang | 31 | 0.55% | 2 | 11.11% |
Mark Brown | 31 | 0.55% | 2 | 11.11% |
Emanuele Ghidoli | 28 | 0.50% | 1 | 5.56% |
Kuninori Morimoto | 14 | 0.25% | 4 | 22.22% |
Francesco Dolcini | 1 | 0.02% | 1 | 5.56% |
Uwe Kleine-König | 1 | 0.02% | 1 | 5.56% |
Total | 5610 | 18 |
// SPDX-License-Identifier: GPL-2.0 // // nau8822.c -- NAU8822 ALSA Soc Audio driver // // Copyright 2017 Nuvoton Technology Crop. // // Author: David Lin <ctlin0@nuvoton.com> // Co-author: John Hsu <kchsu0@nuvoton.com> // Co-author: Seven Li <wtli@nuvoton.com> // // Based on WM8974.c #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/initval.h> #include <sound/tlv.h> #include <asm/div64.h> #include "nau8822.h" #define NAU_PLL_FREQ_MAX 100000000 #define NAU_PLL_FREQ_MIN 90000000 #define NAU_PLL_REF_MAX 33000000 #define NAU_PLL_REF_MIN 8000000 #define NAU_PLL_OPTOP_MIN 6 static const int nau8822_mclk_scaler[] = { 10, 15, 20, 30, 40, 60, 80, 120 }; static const struct reg_default nau8822_reg_defaults[] = { { NAU8822_REG_POWER_MANAGEMENT_1, 0x0000 }, { NAU8822_REG_POWER_MANAGEMENT_2, 0x0000 }, { NAU8822_REG_POWER_MANAGEMENT_3, 0x0000 }, { NAU8822_REG_AUDIO_INTERFACE, 0x0050 }, { NAU8822_REG_COMPANDING_CONTROL, 0x0000 }, { NAU8822_REG_CLOCKING, 0x0140 }, { NAU8822_REG_ADDITIONAL_CONTROL, 0x0000 }, { NAU8822_REG_GPIO_CONTROL, 0x0000 }, { NAU8822_REG_JACK_DETECT_CONTROL_1, 0x0000 }, { NAU8822_REG_DAC_CONTROL, 0x0000 }, { NAU8822_REG_LEFT_DAC_DIGITAL_VOLUME, 0x00ff }, { NAU8822_REG_RIGHT_DAC_DIGITAL_VOLUME, 0x00ff }, { NAU8822_REG_JACK_DETECT_CONTROL_2, 0x0000 }, { NAU8822_REG_ADC_CONTROL, 0x0100 }, { NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME, 0x00ff }, { NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME, 0x00ff }, { NAU8822_REG_EQ1, 0x012c }, { NAU8822_REG_EQ2, 0x002c }, { NAU8822_REG_EQ3, 0x002c }, { NAU8822_REG_EQ4, 0x002c }, { NAU8822_REG_EQ5, 0x002c }, { NAU8822_REG_DAC_LIMITER_1, 0x0032 }, { NAU8822_REG_DAC_LIMITER_2, 0x0000 }, { NAU8822_REG_NOTCH_FILTER_1, 0x0000 }, { NAU8822_REG_NOTCH_FILTER_2, 0x0000 }, { NAU8822_REG_NOTCH_FILTER_3, 0x0000 }, { NAU8822_REG_NOTCH_FILTER_4, 0x0000 }, { NAU8822_REG_ALC_CONTROL_1, 0x0038 }, { NAU8822_REG_ALC_CONTROL_2, 0x000b }, { NAU8822_REG_ALC_CONTROL_3, 0x0032 }, { NAU8822_REG_NOISE_GATE, 0x0010 }, { NAU8822_REG_PLL_N, 0x0008 }, { NAU8822_REG_PLL_K1, 0x000c }, { NAU8822_REG_PLL_K2, 0x0093 }, { NAU8822_REG_PLL_K3, 0x00e9 }, { NAU8822_REG_3D_CONTROL, 0x0000 }, { NAU8822_REG_RIGHT_SPEAKER_CONTROL, 0x0000 }, { NAU8822_REG_INPUT_CONTROL, 0x0033 }, { NAU8822_REG_LEFT_INP_PGA_CONTROL, 0x0010 }, { NAU8822_REG_RIGHT_INP_PGA_CONTROL, 0x0010 }, { NAU8822_REG_LEFT_ADC_BOOST_CONTROL, 0x0100 }, { NAU8822_REG_RIGHT_ADC_BOOST_CONTROL, 0x0100 }, { NAU8822_REG_OUTPUT_CONTROL, 0x0002 }, { NAU8822_REG_LEFT_MIXER_CONTROL, 0x0001 }, { NAU8822_REG_RIGHT_MIXER_CONTROL, 0x0001 }, { NAU8822_REG_LHP_VOLUME, 0x0039 }, { NAU8822_REG_RHP_VOLUME, 0x0039 }, { NAU8822_REG_LSPKOUT_VOLUME, 0x0039 }, { NAU8822_REG_RSPKOUT_VOLUME, 0x0039 }, { NAU8822_REG_AUX2_MIXER, 0x0001 }, { NAU8822_REG_AUX1_MIXER, 0x0001 }, { NAU8822_REG_POWER_MANAGEMENT_4, 0x0000 }, { NAU8822_REG_LEFT_TIME_SLOT, 0x0000 }, { NAU8822_REG_MISC, 0x0020 }, { NAU8822_REG_RIGHT_TIME_SLOT, 0x0000 }, { NAU8822_REG_DEVICE_REVISION, 0x007f }, { NAU8822_REG_DEVICE_ID, 0x001a }, { NAU8822_REG_DAC_DITHER, 0x0114 }, { NAU8822_REG_ALC_ENHANCE_1, 0x0000 }, { NAU8822_REG_ALC_ENHANCE_2, 0x0000 }, { NAU8822_REG_192KHZ_SAMPLING, 0x0008 }, { NAU8822_REG_MISC_CONTROL, 0x0000 }, { NAU8822_REG_INPUT_TIEOFF, 0x0000 }, { NAU8822_REG_POWER_REDUCTION, 0x0000 }, { NAU8822_REG_AGC_PEAK2PEAK, 0x0000 }, { NAU8822_REG_AGC_PEAK_DETECT, 0x0000 }, { NAU8822_REG_AUTOMUTE_CONTROL, 0x0000 }, { NAU8822_REG_OUTPUT_TIEOFF, 0x0000 }, }; static bool nau8822_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8822_REG_RESET ... NAU8822_REG_JACK_DETECT_CONTROL_1: case NAU8822_REG_DAC_CONTROL ... NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME: case NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME: case NAU8822_REG_EQ1 ... NAU8822_REG_EQ5: case NAU8822_REG_DAC_LIMITER_1 ... NAU8822_REG_DAC_LIMITER_2: case NAU8822_REG_NOTCH_FILTER_1 ... NAU8822_REG_NOTCH_FILTER_4: case NAU8822_REG_ALC_CONTROL_1 ...NAU8822_REG_PLL_K3: case NAU8822_REG_3D_CONTROL: case NAU8822_REG_RIGHT_SPEAKER_CONTROL: case NAU8822_REG_INPUT_CONTROL ... NAU8822_REG_LEFT_ADC_BOOST_CONTROL: case NAU8822_REG_RIGHT_ADC_BOOST_CONTROL ... NAU8822_REG_AUX1_MIXER: case NAU8822_REG_POWER_MANAGEMENT_4 ... NAU8822_REG_DEVICE_ID: case NAU8822_REG_DAC_DITHER: case NAU8822_REG_ALC_ENHANCE_1 ... NAU8822_REG_MISC_CONTROL: case NAU8822_REG_INPUT_TIEOFF ... NAU8822_REG_OUTPUT_TIEOFF: return true; default: return false; } } static bool nau8822_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8822_REG_RESET ... NAU8822_REG_JACK_DETECT_CONTROL_1: case NAU8822_REG_DAC_CONTROL ... NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME: case NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME: case NAU8822_REG_EQ1 ... NAU8822_REG_EQ5: case NAU8822_REG_DAC_LIMITER_1 ... NAU8822_REG_DAC_LIMITER_2: case NAU8822_REG_NOTCH_FILTER_1 ... NAU8822_REG_NOTCH_FILTER_4: case NAU8822_REG_ALC_CONTROL_1 ...NAU8822_REG_PLL_K3: case NAU8822_REG_3D_CONTROL: case NAU8822_REG_RIGHT_SPEAKER_CONTROL: case NAU8822_REG_INPUT_CONTROL ... NAU8822_REG_LEFT_ADC_BOOST_CONTROL: case NAU8822_REG_RIGHT_ADC_BOOST_CONTROL ... NAU8822_REG_AUX1_MIXER: case NAU8822_REG_POWER_MANAGEMENT_4 ... NAU8822_REG_DEVICE_ID: case NAU8822_REG_DAC_DITHER: case NAU8822_REG_ALC_ENHANCE_1 ... NAU8822_REG_MISC_CONTROL: case NAU8822_REG_INPUT_TIEOFF ... NAU8822_REG_OUTPUT_TIEOFF: return true; default: return false; } } static bool nau8822_volatile(struct device *dev, unsigned int reg) { switch (reg) { case NAU8822_REG_RESET: case NAU8822_REG_DEVICE_REVISION: case NAU8822_REG_DEVICE_ID: case NAU8822_REG_AGC_PEAK2PEAK: case NAU8822_REG_AGC_PEAK_DETECT: case NAU8822_REG_AUTOMUTE_CONTROL: return true; default: return false; } } /* The EQ parameters get function is to get the 5 band equalizer control. * The regmap raw read can't work here because regmap doesn't provide * value format for value width of 9 bits. Therefore, the driver reads data * from cache and makes value format according to the endianness of * bytes type control element. */ static int nau8822_eq_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct soc_bytes_ext *params = (void *)kcontrol->private_value; int i, reg; u16 reg_val, *val; __be16 tmp; val = (u16 *)ucontrol->value.bytes.data; reg = NAU8822_REG_EQ1; for (i = 0; i < params->max / sizeof(u16); i++) { reg_val = snd_soc_component_read(component, reg + i); /* conversion of 16-bit integers between native CPU format * and big endian format */ tmp = cpu_to_be16(reg_val); memcpy(val + i, &tmp, sizeof(tmp)); } return 0; } /* The EQ parameters put function is to make configuration of 5 band equalizer * control. These configuration includes central frequency, equalizer gain, * cut-off frequency, bandwidth control, and equalizer path. * The regmap raw write can't work here because regmap doesn't provide * register and value format for register with address 7 bits and value 9 bits. * Therefore, the driver makes value format according to the endianness of * bytes type control element and writes data to codec. */ static int nau8822_eq_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct soc_bytes_ext *params = (void *)kcontrol->private_value; void *data; u16 *val, value; int i, reg, ret; __be16 *tmp; data = kmemdup(ucontrol->value.bytes.data, params->max, GFP_KERNEL | GFP_DMA); if (!data) return -ENOMEM; val = (u16 *)data; reg = NAU8822_REG_EQ1; for (i = 0; i < params->max / sizeof(u16); i++) { /* conversion of 16-bit integers between native CPU format * and big endian format */ tmp = (__be16 *)(val + i); value = be16_to_cpup(tmp); ret = snd_soc_component_write(component, reg + i, value); if (ret) { dev_err(component->dev, "EQ configuration fail, register: %x ret: %d\n", reg + i, ret); kfree(data); return ret; } } kfree(data); return 0; } static const char * const nau8822_companding[] = { "Off", "NC", "u-law", "A-law"}; static const struct soc_enum nau8822_companding_adc_enum = SOC_ENUM_SINGLE(NAU8822_REG_COMPANDING_CONTROL, NAU8822_ADCCM_SFT, ARRAY_SIZE(nau8822_companding), nau8822_companding); static const struct soc_enum nau8822_companding_dac_enum = SOC_ENUM_SINGLE(NAU8822_REG_COMPANDING_CONTROL, NAU8822_DACCM_SFT, ARRAY_SIZE(nau8822_companding), nau8822_companding); static const char * const nau8822_eqmode[] = {"Capture", "Playback"}; static const struct soc_enum nau8822_eqmode_enum = SOC_ENUM_SINGLE(NAU8822_REG_EQ1, NAU8822_EQM_SFT, ARRAY_SIZE(nau8822_eqmode), nau8822_eqmode); static const char * const nau8822_alc1[] = {"Off", "Right", "Left", "Both"}; static const char * const nau8822_alc3[] = {"Normal", "Limiter"}; static const struct soc_enum nau8822_alc_enable_enum = SOC_ENUM_SINGLE(NAU8822_REG_ALC_CONTROL_1, NAU8822_ALCEN_SFT, ARRAY_SIZE(nau8822_alc1), nau8822_alc1); static const struct soc_enum nau8822_alc_mode_enum = SOC_ENUM_SINGLE(NAU8822_REG_ALC_CONTROL_3, NAU8822_ALCM_SFT, ARRAY_SIZE(nau8822_alc3), nau8822_alc3); static const DECLARE_TLV_DB_SCALE(digital_tlv, -12750, 50, 1); static const DECLARE_TLV_DB_SCALE(inpga_tlv, -1200, 75, 0); static const DECLARE_TLV_DB_SCALE(spk_tlv, -5700, 100, 0); static const DECLARE_TLV_DB_SCALE(pga_boost_tlv, 0, 2000, 0); static const DECLARE_TLV_DB_SCALE(boost_tlv, -1500, 300, 1); static const DECLARE_TLV_DB_SCALE(limiter_tlv, 0, 100, 0); static const struct snd_kcontrol_new nau8822_snd_controls[] = { SOC_ENUM("ADC Companding", nau8822_companding_adc_enum), SOC_ENUM("DAC Companding", nau8822_companding_dac_enum), SOC_ENUM("EQ Function", nau8822_eqmode_enum), SND_SOC_BYTES_EXT("EQ Parameters", 10, nau8822_eq_get, nau8822_eq_put), SOC_DOUBLE("DAC Inversion Switch", NAU8822_REG_DAC_CONTROL, 0, 1, 1, 0), SOC_DOUBLE_R_TLV("PCM Volume", NAU8822_REG_LEFT_DAC_DIGITAL_VOLUME, NAU8822_REG_RIGHT_DAC_DIGITAL_VOLUME, 0, 255, 0, digital_tlv), SOC_SINGLE("High Pass Filter Switch", NAU8822_REG_ADC_CONTROL, 8, 1, 0), SOC_SINGLE("High Pass Cut Off", NAU8822_REG_ADC_CONTROL, 4, 7, 0), SOC_DOUBLE("ADC Inversion Switch", NAU8822_REG_ADC_CONTROL, 0, 1, 1, 0), SOC_DOUBLE_R_TLV("ADC Volume", NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME, NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME, 0, 255, 0, digital_tlv), SOC_SINGLE("DAC Limiter Switch", NAU8822_REG_DAC_LIMITER_1, 8, 1, 0), SOC_SINGLE("DAC Limiter Decay", NAU8822_REG_DAC_LIMITER_1, 4, 15, 0), SOC_SINGLE("DAC Limiter Attack", NAU8822_REG_DAC_LIMITER_1, 0, 15, 0), SOC_SINGLE("DAC Limiter Threshold", NAU8822_REG_DAC_LIMITER_2, 4, 7, 0), SOC_SINGLE_TLV("DAC Limiter Volume", NAU8822_REG_DAC_LIMITER_2, 0, 12, 0, limiter_tlv), SOC_ENUM("ALC Mode", nau8822_alc_mode_enum), SOC_ENUM("ALC Enable Switch", nau8822_alc_enable_enum), SOC_SINGLE("ALC Min Gain", NAU8822_REG_ALC_CONTROL_1, 0, 7, 0), SOC_SINGLE("ALC Max Gain", NAU8822_REG_ALC_CONTROL_1, 3, 7, 0), SOC_SINGLE("ALC Hold", NAU8822_REG_ALC_CONTROL_2, 4, 10, 0), SOC_SINGLE("ALC Target", NAU8822_REG_ALC_CONTROL_2, 0, 15, 0), SOC_SINGLE("ALC Decay", NAU8822_REG_ALC_CONTROL_3, 4, 10, 0), SOC_SINGLE("ALC Attack", NAU8822_REG_ALC_CONTROL_3, 0, 10, 0), SOC_SINGLE("ALC Noise Gate Switch", NAU8822_REG_NOISE_GATE, 3, 1, 0), SOC_SINGLE("ALC Noise Gate Threshold", NAU8822_REG_NOISE_GATE, 0, 7, 0), SOC_DOUBLE_R("PGA ZC Switch", NAU8822_REG_LEFT_INP_PGA_CONTROL, NAU8822_REG_RIGHT_INP_PGA_CONTROL, 7, 1, 0), SOC_DOUBLE_R_TLV("PGA Volume", NAU8822_REG_LEFT_INP_PGA_CONTROL, NAU8822_REG_RIGHT_INP_PGA_CONTROL, 0, 63, 0, inpga_tlv), SOC_DOUBLE_R("Headphone ZC Switch", NAU8822_REG_LHP_VOLUME, NAU8822_REG_RHP_VOLUME, 7, 1, 0), SOC_DOUBLE_R("Headphone Playback Switch", NAU8822_REG_LHP_VOLUME, NAU8822_REG_RHP_VOLUME, 6, 1, 1), SOC_DOUBLE_R_TLV("Headphone Volume", NAU8822_REG_LHP_VOLUME, NAU8822_REG_RHP_VOLUME, 0, 63, 0, spk_tlv), SOC_DOUBLE_R("Speaker ZC Switch", NAU8822_REG_LSPKOUT_VOLUME, NAU8822_REG_RSPKOUT_VOLUME, 7, 1, 0), SOC_DOUBLE_R("Speaker Playback Switch", NAU8822_REG_LSPKOUT_VOLUME, NAU8822_REG_RSPKOUT_VOLUME, 6, 1, 1), SOC_DOUBLE_R_TLV("Speaker Volume", NAU8822_REG_LSPKOUT_VOLUME, NAU8822_REG_RSPKOUT_VOLUME, 0, 63, 0, spk_tlv), SOC_DOUBLE_R("AUXOUT Playback Switch", NAU8822_REG_AUX2_MIXER, NAU8822_REG_AUX1_MIXER, 6, 1, 1), SOC_DOUBLE_R_TLV("PGA Boost Volume", NAU8822_REG_LEFT_ADC_BOOST_CONTROL, NAU8822_REG_RIGHT_ADC_BOOST_CONTROL, 8, 1, 0, pga_boost_tlv), SOC_DOUBLE_R_TLV("L2/R2 Boost Volume", NAU8822_REG_LEFT_ADC_BOOST_CONTROL, NAU8822_REG_RIGHT_ADC_BOOST_CONTROL, 4, 7, 0, boost_tlv), SOC_DOUBLE_R_TLV("Aux Boost Volume", NAU8822_REG_LEFT_ADC_BOOST_CONTROL, NAU8822_REG_RIGHT_ADC_BOOST_CONTROL, 0, 7, 0, boost_tlv), SOC_SINGLE("DAC 128x Oversampling Switch", NAU8822_REG_DAC_CONTROL, 5, 1, 0), SOC_SINGLE("ADC 128x Oversampling Switch", NAU8822_REG_ADC_CONTROL, 5, 1, 0), }; /* LMAIN and RMAIN Mixer */ static const struct snd_kcontrol_new nau8822_left_out_mixer[] = { SOC_DAPM_SINGLE("LINMIX Switch", NAU8822_REG_LEFT_MIXER_CONTROL, 1, 1, 0), SOC_DAPM_SINGLE("LAUX Switch", NAU8822_REG_LEFT_MIXER_CONTROL, 5, 1, 0), SOC_DAPM_SINGLE("LDAC Switch", NAU8822_REG_LEFT_MIXER_CONTROL, 0, 1, 0), SOC_DAPM_SINGLE("RDAC Switch", NAU8822_REG_OUTPUT_CONTROL, 5, 1, 0), }; static const struct snd_kcontrol_new nau8822_right_out_mixer[] = { SOC_DAPM_SINGLE("RINMIX Switch", NAU8822_REG_RIGHT_MIXER_CONTROL, 1, 1, 0), SOC_DAPM_SINGLE("RAUX Switch", NAU8822_REG_RIGHT_MIXER_CONTROL, 5, 1, 0), SOC_DAPM_SINGLE("RDAC Switch", NAU8822_REG_RIGHT_MIXER_CONTROL, 0, 1, 0), SOC_DAPM_SINGLE("LDAC Switch", NAU8822_REG_OUTPUT_CONTROL, 6, 1, 0), }; /* AUX1 and AUX2 Mixer */ static const struct snd_kcontrol_new nau8822_auxout1_mixer[] = { SOC_DAPM_SINGLE("RDAC Switch", NAU8822_REG_AUX1_MIXER, 0, 1, 0), SOC_DAPM_SINGLE("RMIX Switch", NAU8822_REG_AUX1_MIXER, 1, 1, 0), SOC_DAPM_SINGLE("RINMIX Switch", NAU8822_REG_AUX1_MIXER, 2, 1, 0), SOC_DAPM_SINGLE("LDAC Switch", NAU8822_REG_AUX1_MIXER, 3, 1, 0), SOC_DAPM_SINGLE("LMIX Switch", NAU8822_REG_AUX1_MIXER, 4, 1, 0), }; static const struct snd_kcontrol_new nau8822_auxout2_mixer[] = { SOC_DAPM_SINGLE("LDAC Switch", NAU8822_REG_AUX2_MIXER, 0, 1, 0), SOC_DAPM_SINGLE("LMIX Switch", NAU8822_REG_AUX2_MIXER, 1, 1, 0), SOC_DAPM_SINGLE("LINMIX Switch", NAU8822_REG_AUX2_MIXER, 2, 1, 0), SOC_DAPM_SINGLE("AUX1MIX Output Switch", NAU8822_REG_AUX2_MIXER, 3, 1, 0), }; /* Input PGA */ static const struct snd_kcontrol_new nau8822_left_input_mixer[] = { SOC_DAPM_SINGLE("L2 Switch", NAU8822_REG_INPUT_CONTROL, 2, 1, 0), SOC_DAPM_SINGLE("MicN Switch", NAU8822_REG_INPUT_CONTROL, 1, 1, 0), SOC_DAPM_SINGLE("MicP Switch", NAU8822_REG_INPUT_CONTROL, 0, 1, 0), }; static const struct snd_kcontrol_new nau8822_right_input_mixer[] = { SOC_DAPM_SINGLE("R2 Switch", NAU8822_REG_INPUT_CONTROL, 6, 1, 0), SOC_DAPM_SINGLE("MicN Switch", NAU8822_REG_INPUT_CONTROL, 5, 1, 0), SOC_DAPM_SINGLE("MicP Switch", NAU8822_REG_INPUT_CONTROL, 4, 1, 0), }; /* Loopback Switch */ static const struct snd_kcontrol_new nau8822_loopback = SOC_DAPM_SINGLE("Switch", NAU8822_REG_COMPANDING_CONTROL, NAU8822_ADDAP_SFT, 1, 0); static int check_mclk_select_pll(struct snd_soc_dapm_widget *source, struct snd_soc_dapm_widget *sink) { struct snd_soc_component *component = snd_soc_dapm_to_component(source->dapm); unsigned int value; value = snd_soc_component_read(component, NAU8822_REG_CLOCKING); return (value & NAU8822_CLKM_MASK); } static const struct snd_soc_dapm_widget nau8822_dapm_widgets[] = { SND_SOC_DAPM_DAC("Left DAC", "Left HiFi Playback", NAU8822_REG_POWER_MANAGEMENT_3, 0, 0), SND_SOC_DAPM_DAC("Right DAC", "Right HiFi Playback", NAU8822_REG_POWER_MANAGEMENT_3, 1, 0), SND_SOC_DAPM_ADC("Left ADC", "Left HiFi Capture", NAU8822_REG_POWER_MANAGEMENT_2, 0, 0), SND_SOC_DAPM_ADC("Right ADC", "Right HiFi Capture", NAU8822_REG_POWER_MANAGEMENT_2, 1, 0), SOC_MIXER_ARRAY("Left Output Mixer", NAU8822_REG_POWER_MANAGEMENT_3, 2, 0, nau8822_left_out_mixer), SOC_MIXER_ARRAY("Right Output Mixer", NAU8822_REG_POWER_MANAGEMENT_3, 3, 0, nau8822_right_out_mixer), SOC_MIXER_ARRAY("AUX1 Output Mixer", NAU8822_REG_POWER_MANAGEMENT_1, 7, 0, nau8822_auxout1_mixer), SOC_MIXER_ARRAY("AUX2 Output Mixer", NAU8822_REG_POWER_MANAGEMENT_1, 6, 0, nau8822_auxout2_mixer), SOC_MIXER_ARRAY("Left Input Mixer", NAU8822_REG_POWER_MANAGEMENT_2, 2, 0, nau8822_left_input_mixer), SOC_MIXER_ARRAY("Right Input Mixer", NAU8822_REG_POWER_MANAGEMENT_2, 3, 0, nau8822_right_input_mixer), SND_SOC_DAPM_PGA("Left Boost Mixer", NAU8822_REG_POWER_MANAGEMENT_2, 4, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Boost Mixer", NAU8822_REG_POWER_MANAGEMENT_2, 5, 0, NULL, 0), SND_SOC_DAPM_PGA("Left Capture PGA", NAU8822_REG_LEFT_INP_PGA_CONTROL, 6, 1, NULL, 0), SND_SOC_DAPM_PGA("Right Capture PGA", NAU8822_REG_RIGHT_INP_PGA_CONTROL, 6, 1, NULL, 0), SND_SOC_DAPM_PGA("Left Headphone Out", NAU8822_REG_POWER_MANAGEMENT_2, 7, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Headphone Out", NAU8822_REG_POWER_MANAGEMENT_2, 8, 0, NULL, 0), SND_SOC_DAPM_PGA("Left Speaker Out", NAU8822_REG_POWER_MANAGEMENT_3, 6, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Speaker Out", NAU8822_REG_POWER_MANAGEMENT_3, 5, 0, NULL, 0), SND_SOC_DAPM_PGA("AUX1 Out", NAU8822_REG_POWER_MANAGEMENT_3, 8, 0, NULL, 0), SND_SOC_DAPM_PGA("AUX2 Out", NAU8822_REG_POWER_MANAGEMENT_3, 7, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Mic Bias", NAU8822_REG_POWER_MANAGEMENT_1, 4, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("PLL", NAU8822_REG_POWER_MANAGEMENT_1, 5, 0, NULL, 0), SND_SOC_DAPM_SWITCH("Digital Loopback", SND_SOC_NOPM, 0, 0, &nau8822_loopback), SND_SOC_DAPM_INPUT("LMICN"), SND_SOC_DAPM_INPUT("LMICP"), SND_SOC_DAPM_INPUT("RMICN"), SND_SOC_DAPM_INPUT("RMICP"), SND_SOC_DAPM_INPUT("LAUX"), SND_SOC_DAPM_INPUT("RAUX"), SND_SOC_DAPM_INPUT("L2"), SND_SOC_DAPM_INPUT("R2"), SND_SOC_DAPM_OUTPUT("LHP"), SND_SOC_DAPM_OUTPUT("RHP"), SND_SOC_DAPM_OUTPUT("LSPK"), SND_SOC_DAPM_OUTPUT("RSPK"), SND_SOC_DAPM_OUTPUT("AUXOUT1"), SND_SOC_DAPM_OUTPUT("AUXOUT2"), }; static const struct snd_soc_dapm_route nau8822_dapm_routes[] = { {"Right DAC", NULL, "PLL", check_mclk_select_pll}, {"Left DAC", NULL, "PLL", check_mclk_select_pll}, /* LMAIN and RMAIN Mixer */ {"Right Output Mixer", "LDAC Switch", "Left DAC"}, {"Right Output Mixer", "RDAC Switch", "Right DAC"}, {"Right Output Mixer", "RAUX Switch", "RAUX"}, {"Right Output Mixer", "RINMIX Switch", "Right Boost Mixer"}, {"Left Output Mixer", "LDAC Switch", "Left DAC"}, {"Left Output Mixer", "RDAC Switch", "Right DAC"}, {"Left Output Mixer", "LAUX Switch", "LAUX"}, {"Left Output Mixer", "LINMIX Switch", "Left Boost Mixer"}, /* AUX1 and AUX2 Mixer */ {"AUX1 Output Mixer", "RDAC Switch", "Right DAC"}, {"AUX1 Output Mixer", "RMIX Switch", "Right Output Mixer"}, {"AUX1 Output Mixer", "RINMIX Switch", "Right Boost Mixer"}, {"AUX1 Output Mixer", "LDAC Switch", "Left DAC"}, {"AUX1 Output Mixer", "LMIX Switch", "Left Output Mixer"}, {"AUX2 Output Mixer", "LDAC Switch", "Left DAC"}, {"AUX2 Output Mixer", "LMIX Switch", "Left Output Mixer"}, {"AUX2 Output Mixer", "LINMIX Switch", "Left Boost Mixer"}, {"AUX2 Output Mixer", "AUX1MIX Output Switch", "AUX1 Output Mixer"}, /* Outputs */ {"Right Headphone Out", NULL, "Right Output Mixer"}, {"RHP", NULL, "Right Headphone Out"}, {"Left Headphone Out", NULL, "Left Output Mixer"}, {"LHP", NULL, "Left Headphone Out"}, {"Right Speaker Out", NULL, "Right Output Mixer"}, {"RSPK", NULL, "Right Speaker Out"}, {"Left Speaker Out", NULL, "Left Output Mixer"}, {"LSPK", NULL, "Left Speaker Out"}, {"AUX1 Out", NULL, "AUX1 Output Mixer"}, {"AUX2 Out", NULL, "AUX2 Output Mixer"}, {"AUXOUT1", NULL, "AUX1 Out"}, {"AUXOUT2", NULL, "AUX2 Out"}, /* Boost Mixer */ {"Right ADC", NULL, "PLL", check_mclk_select_pll}, {"Left ADC", NULL, "PLL", check_mclk_select_pll}, {"Right ADC", NULL, "Right Boost Mixer"}, {"Right Boost Mixer", NULL, "RAUX"}, {"Right Boost Mixer", NULL, "Right Capture PGA"}, {"Right Boost Mixer", NULL, "R2"}, {"Left ADC", NULL, "Left Boost Mixer"}, {"Left Boost Mixer", NULL, "LAUX"}, {"Left Boost Mixer", NULL, "Left Capture PGA"}, {"Left Boost Mixer", NULL, "L2"}, /* Input PGA */ {"Right Capture PGA", NULL, "Right Input Mixer"}, {"Left Capture PGA", NULL, "Left Input Mixer"}, /* Enable Microphone Power */ {"Right Capture PGA", NULL, "Mic Bias"}, {"Left Capture PGA", NULL, "Mic Bias"}, {"Right Input Mixer", "R2 Switch", "R2"}, {"Right Input Mixer", "MicN Switch", "RMICN"}, {"Right Input Mixer", "MicP Switch", "RMICP"}, {"Left Input Mixer", "L2 Switch", "L2"}, {"Left Input Mixer", "MicN Switch", "LMICN"}, {"Left Input Mixer", "MicP Switch", "LMICP"}, /* Digital Loopback */ {"Digital Loopback", "Switch", "Left ADC"}, {"Digital Loopback", "Switch", "Right ADC"}, {"Left DAC", NULL, "Digital Loopback"}, {"Right DAC", NULL, "Digital Loopback"}, }; static int nau8822_calc_pll(unsigned int pll_in, unsigned int fs, struct nau8822_pll *pll_param) { u64 f2, f2_max, pll_ratio; int i, scal_sel; if (pll_in > NAU_PLL_REF_MAX || pll_in < NAU_PLL_REF_MIN) return -EINVAL; f2_max = 0; scal_sel = ARRAY_SIZE(nau8822_mclk_scaler); for (i = 0; i < scal_sel; i++) { f2 = 256 * fs * 4 * nau8822_mclk_scaler[i] / 10; if (f2 > NAU_PLL_FREQ_MIN && f2 < NAU_PLL_FREQ_MAX && f2_max < f2) { f2_max = f2; scal_sel = i; } } if (ARRAY_SIZE(nau8822_mclk_scaler) == scal_sel) return -EINVAL; pll_param->mclk_scaler = scal_sel; f2 = f2_max; /* Calculate the PLL 4-bit integer input and the PLL 24-bit fractional * input; round up the 24+4bit. */ pll_ratio = div_u64(f2 << 28, pll_in); pll_param->pre_factor = 0; if (((pll_ratio >> 28) & 0xF) < NAU_PLL_OPTOP_MIN) { pll_ratio <<= 1; pll_param->pre_factor = 1; } pll_param->pll_int = (pll_ratio >> 28) & 0xF; pll_param->pll_frac = ((pll_ratio & 0xFFFFFFF) >> 4); return 0; } static int nau8822_config_clkdiv(struct snd_soc_dai *dai, int div, int rate) { struct snd_soc_component *component = dai->component; struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component); struct nau8822_pll *pll = &nau8822->pll; int i, sclk, imclk; switch (nau8822->div_id) { case NAU8822_CLK_MCLK: /* Configure the master clock prescaler div to make system * clock to approximate the internal master clock (IMCLK); * and large or equal to IMCLK. */ div = 0; imclk = rate * 256; for (i = 1; i < ARRAY_SIZE(nau8822_mclk_scaler); i++) { sclk = (nau8822->sysclk * 10) / nau8822_mclk_scaler[i]; if (sclk < imclk) break; div = i; } dev_dbg(component->dev, "master clock prescaler %x for fs %d\n", div, rate); /* master clock from MCLK and disable PLL */ snd_soc_component_update_bits(component, NAU8822_REG_CLOCKING, NAU8822_MCLKSEL_MASK, (div << NAU8822_MCLKSEL_SFT)); snd_soc_component_update_bits(component, NAU8822_REG_CLOCKING, NAU8822_CLKM_MASK, NAU8822_CLKM_MCLK); break; case NAU8822_CLK_PLL: /* master clock from PLL and enable PLL */ if (pll->mclk_scaler != div) { dev_err(component->dev, "master clock prescaler not meet PLL parameters\n"); return -EINVAL; } snd_soc_component_update_bits(component, NAU8822_REG_CLOCKING, NAU8822_MCLKSEL_MASK, (div << NAU8822_MCLKSEL_SFT)); snd_soc_component_update_bits(component, NAU8822_REG_CLOCKING, NAU8822_CLKM_MASK, NAU8822_CLKM_PLL); break; default: return -EINVAL; } return 0; } static int nau8822_set_pll(struct snd_soc_dai *dai, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct snd_soc_component *component = dai->component; struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component); struct nau8822_pll *pll_param = &nau8822->pll; int ret, fs; if (freq_in == pll_param->freq_in && freq_out == pll_param->freq_out) return 0; if (freq_out == 0) { dev_dbg(component->dev, "PLL disabled\n"); snd_soc_component_update_bits(component, NAU8822_REG_POWER_MANAGEMENT_1, NAU8822_PLL_EN_MASK, NAU8822_PLL_OFF); return 0; } fs = freq_out / 256; ret = nau8822_calc_pll(freq_in, fs, pll_param); if (ret < 0) { dev_err(component->dev, "Unsupported input clock %d\n", freq_in); return ret; } dev_dbg(component->dev, "pll_int=%x pll_frac=%x mclk_scaler=%x pre_factor=%x\n", pll_param->pll_int, pll_param->pll_frac, pll_param->mclk_scaler, pll_param->pre_factor); snd_soc_component_update_bits(component, NAU8822_REG_POWER_MANAGEMENT_1, NAU8822_PLL_EN_MASK, NAU8822_PLL_OFF); snd_soc_component_update_bits(component, NAU8822_REG_PLL_N, NAU8822_PLLMCLK_DIV2 | NAU8822_PLLN_MASK, (pll_param->pre_factor ? NAU8822_PLLMCLK_DIV2 : 0) | pll_param->pll_int); snd_soc_component_write(component, NAU8822_REG_PLL_K1, (pll_param->pll_frac >> NAU8822_PLLK1_SFT) & NAU8822_PLLK1_MASK); snd_soc_component_write(component, NAU8822_REG_PLL_K2, (pll_param->pll_frac >> NAU8822_PLLK2_SFT) & NAU8822_PLLK2_MASK); snd_soc_component_write(component, NAU8822_REG_PLL_K3, pll_param->pll_frac & NAU8822_PLLK3_MASK); snd_soc_component_update_bits(component, NAU8822_REG_CLOCKING, NAU8822_MCLKSEL_MASK, pll_param->mclk_scaler << NAU8822_MCLKSEL_SFT); snd_soc_component_update_bits(component, NAU8822_REG_CLOCKING, NAU8822_CLKM_MASK, NAU8822_CLKM_PLL); snd_soc_component_update_bits(component, NAU8822_REG_POWER_MANAGEMENT_1, NAU8822_PLL_EN_MASK, NAU8822_PLL_ON); pll_param->freq_in = freq_in; pll_param->freq_out = freq_out; return 0; } static int nau8822_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = dai->component; struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component); unsigned long mclk_freq; nau8822->div_id = clk_id; nau8822->sysclk = freq; if (nau8822->mclk) { mclk_freq = clk_get_rate(nau8822->mclk); if (mclk_freq != freq) { int ret = nau8822_set_pll(dai, NAU8822_CLK_MCLK, NAU8822_CLK_MCLK, mclk_freq, freq); if (ret) { dev_err(component->dev, "Failed to set PLL\n"); return ret; } nau8822->div_id = NAU8822_CLK_PLL; } } dev_dbg(component->dev, "master sysclk %dHz, source %s\n", freq, nau8822->div_id == NAU8822_CLK_PLL ? "PLL" : "MCLK"); return 0; } static int nau8822_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *component = dai->component; u16 ctrl1_val = 0, ctrl2_val = 0; dev_dbg(component->dev, "%s\n", __func__); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: ctrl2_val |= 1; break; case SND_SOC_DAIFMT_CBS_CFS: ctrl2_val &= ~1; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: ctrl1_val |= 0x10; break; case SND_SOC_DAIFMT_RIGHT_J: break; case SND_SOC_DAIFMT_LEFT_J: ctrl1_val |= 0x8; break; case SND_SOC_DAIFMT_DSP_A: ctrl1_val |= 0x18; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_IF: ctrl1_val |= 0x180; break; case SND_SOC_DAIFMT_IB_NF: ctrl1_val |= 0x100; break; case SND_SOC_DAIFMT_NB_IF: ctrl1_val |= 0x80; break; default: return -EINVAL; } snd_soc_component_update_bits(component, NAU8822_REG_AUDIO_INTERFACE, NAU8822_AIFMT_MASK | NAU8822_LRP_MASK | NAU8822_BCLKP_MASK, ctrl1_val); snd_soc_component_update_bits(component, NAU8822_REG_CLOCKING, NAU8822_CLKIOEN_MASK, ctrl2_val); return 0; } static int nau8822_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component); int div = 0, val_len = 0, val_rate = 0; unsigned int ctrl_val, bclk_fs, bclk_div; /* make BCLK and LRC divide configuration if the codec as master. */ ctrl_val = snd_soc_component_read(component, NAU8822_REG_CLOCKING); if (ctrl_val & NAU8822_CLK_MASTER) { /* get the bclk and fs ratio */ bclk_fs = snd_soc_params_to_bclk(params) / params_rate(params); if (bclk_fs <= 32) bclk_div = NAU8822_BCLKDIV_8; else if (bclk_fs <= 64) bclk_div = NAU8822_BCLKDIV_4; else if (bclk_fs <= 128) bclk_div = NAU8822_BCLKDIV_2; else return -EINVAL; snd_soc_component_update_bits(component, NAU8822_REG_CLOCKING, NAU8822_BCLKSEL_MASK, bclk_div); } switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: break; case SNDRV_PCM_FORMAT_S20_3LE: val_len |= NAU8822_WLEN_20; break; case SNDRV_PCM_FORMAT_S24_LE: val_len |= NAU8822_WLEN_24; break; case SNDRV_PCM_FORMAT_S32_LE: val_len |= NAU8822_WLEN_32; break; default: return -EINVAL; } switch (params_rate(params)) { case 8000: val_rate |= NAU8822_SMPLR_8K; break; case 11025: val_rate |= NAU8822_SMPLR_12K; break; case 16000: val_rate |= NAU8822_SMPLR_16K; break; case 22050: val_rate |= NAU8822_SMPLR_24K; break; case 32000: val_rate |= NAU8822_SMPLR_32K; break; case 44100: case 48000: break; default: return -EINVAL; } snd_soc_component_update_bits(component, NAU8822_REG_AUDIO_INTERFACE, NAU8822_WLEN_MASK, val_len); snd_soc_component_update_bits(component, NAU8822_REG_ADDITIONAL_CONTROL, NAU8822_SMPLR_MASK, val_rate); /* If the master clock is from MCLK, provide the runtime FS for driver * to get the master clock prescaler configuration. */ if (nau8822->div_id != NAU8822_CLK_MCLK) div = nau8822->pll.mclk_scaler; nau8822_config_clkdiv(dai, div, params_rate(params)); return 0; } static int nau8822_mute(struct snd_soc_dai *dai, int mute, int direction) { struct snd_soc_component *component = dai->component; dev_dbg(component->dev, "%s: %d\n", __func__, mute); if (mute) snd_soc_component_update_bits(component, NAU8822_REG_DAC_CONTROL, 0x40, 0x40); else snd_soc_component_update_bits(component, NAU8822_REG_DAC_CONTROL, 0x40, 0); return 0; } static int nau8822_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component); switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: if (nau8822->mclk && snd_soc_component_get_bias_level(component) != SND_SOC_BIAS_ON) { int ret = clk_prepare_enable(nau8822->mclk); if (ret) { dev_err(component->dev, "Failed to enable MCLK: %d\n", ret); return ret; } } snd_soc_component_update_bits(component, NAU8822_REG_POWER_MANAGEMENT_1, NAU8822_REFIMP_MASK, NAU8822_REFIMP_80K); break; case SND_SOC_BIAS_STANDBY: if (nau8822->mclk && snd_soc_component_get_bias_level(component) != SND_SOC_BIAS_OFF) clk_disable_unprepare(nau8822->mclk); snd_soc_component_update_bits(component, NAU8822_REG_POWER_MANAGEMENT_1, NAU8822_IOBUF_EN | NAU8822_ABIAS_EN, NAU8822_IOBUF_EN | NAU8822_ABIAS_EN); if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { snd_soc_component_update_bits(component, NAU8822_REG_POWER_MANAGEMENT_1, NAU8822_REFIMP_MASK, NAU8822_REFIMP_3K); mdelay(100); } snd_soc_component_update_bits(component, NAU8822_REG_POWER_MANAGEMENT_1, NAU8822_REFIMP_MASK, NAU8822_REFIMP_300K); break; case SND_SOC_BIAS_OFF: snd_soc_component_write(component, NAU8822_REG_POWER_MANAGEMENT_1, 0); snd_soc_component_write(component, NAU8822_REG_POWER_MANAGEMENT_2, 0); snd_soc_component_write(component, NAU8822_REG_POWER_MANAGEMENT_3, 0); break; } dev_dbg(component->dev, "%s: %d\n", __func__, level); return 0; } #define NAU8822_RATES (SNDRV_PCM_RATE_8000_48000) #define NAU8822_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops nau8822_dai_ops = { .hw_params = nau8822_hw_params, .mute_stream = nau8822_mute, .set_fmt = nau8822_set_dai_fmt, .set_sysclk = nau8822_set_dai_sysclk, .set_pll = nau8822_set_pll, .no_capture_mute = 1, }; static struct snd_soc_dai_driver nau8822_dai = { .name = "nau8822-hifi", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = NAU8822_RATES, .formats = NAU8822_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = NAU8822_RATES, .formats = NAU8822_FORMATS, }, .ops = &nau8822_dai_ops, .symmetric_rate = 1, }; static int nau8822_suspend(struct snd_soc_component *component) { struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component); snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); regcache_mark_dirty(nau8822->regmap); return 0; } static int nau8822_resume(struct snd_soc_component *component) { struct nau8822 *nau8822 = snd_soc_component_get_drvdata(component); regcache_sync(nau8822->regmap); snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY); return 0; } /* * These registers contain an "update" bit - bit 8. This means, for example, * that one can write new DAC digital volume for both channels, but only when * the update bit is set, will also the volume be updated - simultaneously for * both channels. */ static const int update_reg[] = { NAU8822_REG_LEFT_DAC_DIGITAL_VOLUME, NAU8822_REG_RIGHT_DAC_DIGITAL_VOLUME, NAU8822_REG_LEFT_ADC_DIGITAL_VOLUME, NAU8822_REG_RIGHT_ADC_DIGITAL_VOLUME, NAU8822_REG_LEFT_INP_PGA_CONTROL, NAU8822_REG_RIGHT_INP_PGA_CONTROL, NAU8822_REG_LHP_VOLUME, NAU8822_REG_RHP_VOLUME, NAU8822_REG_LSPKOUT_VOLUME, NAU8822_REG_RSPKOUT_VOLUME, }; static int nau8822_probe(struct snd_soc_component *component) { int i; struct device_node *of_node = component->dev->of_node; /* * Set the update bit in all registers, that have one. This way all * writes to those registers will also cause the update bit to be * written. */ for (i = 0; i < ARRAY_SIZE(update_reg); i++) snd_soc_component_update_bits(component, update_reg[i], 0x100, 0x100); /* Check property to configure the two loudspeaker outputs as * a single Bridge Tied Load output */ if (of_property_read_bool(of_node, "nuvoton,spk-btl")) snd_soc_component_update_bits(component, NAU8822_REG_RIGHT_SPEAKER_CONTROL, NAU8822_RSUBBYP, NAU8822_RSUBBYP); return 0; } static const struct snd_soc_component_driver soc_component_dev_nau8822 = { .probe = nau8822_probe, .suspend = nau8822_suspend, .resume = nau8822_resume, .set_bias_level = nau8822_set_bias_level, .controls = nau8822_snd_controls, .num_controls = ARRAY_SIZE(nau8822_snd_controls), .dapm_widgets = nau8822_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(nau8822_dapm_widgets), .dapm_routes = nau8822_dapm_routes, .num_dapm_routes = ARRAY_SIZE(nau8822_dapm_routes), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static const struct regmap_config nau8822_regmap_config = { .reg_bits = 7, .val_bits = 9, .max_register = NAU8822_REG_MAX_REGISTER, .volatile_reg = nau8822_volatile, .readable_reg = nau8822_readable_reg, .writeable_reg = nau8822_writeable_reg, .cache_type = REGCACHE_RBTREE, .reg_defaults = nau8822_reg_defaults, .num_reg_defaults = ARRAY_SIZE(nau8822_reg_defaults), }; static int nau8822_i2c_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct nau8822 *nau8822 = dev_get_platdata(dev); int ret; if (!nau8822) { nau8822 = devm_kzalloc(dev, sizeof(*nau8822), GFP_KERNEL); if (nau8822 == NULL) return -ENOMEM; } i2c_set_clientdata(i2c, nau8822); nau8822->mclk = devm_clk_get_optional(&i2c->dev, "mclk"); if (IS_ERR(nau8822->mclk)) return dev_err_probe(&i2c->dev, PTR_ERR(nau8822->mclk), "Error getting mclk\n"); nau8822->regmap = devm_regmap_init_i2c(i2c, &nau8822_regmap_config); if (IS_ERR(nau8822->regmap)) { ret = PTR_ERR(nau8822->regmap); dev_err(&i2c->dev, "Failed to allocate regmap: %d\n", ret); return ret; } nau8822->dev = dev; /* Reset the codec */ ret = regmap_write(nau8822->regmap, NAU8822_REG_RESET, 0x00); if (ret != 0) { dev_err(&i2c->dev, "Failed to issue reset: %d\n", ret); return ret; } ret = devm_snd_soc_register_component(dev, &soc_component_dev_nau8822, &nau8822_dai, 1); if (ret != 0) { dev_err(&i2c->dev, "Failed to register CODEC: %d\n", ret); return ret; } return 0; } static const struct i2c_device_id nau8822_i2c_id[] = { { "nau8822" }, { } }; MODULE_DEVICE_TABLE(i2c, nau8822_i2c_id); #ifdef CONFIG_OF static const struct of_device_id nau8822_of_match[] = { { .compatible = "nuvoton,nau8822", }, { } }; MODULE_DEVICE_TABLE(of, nau8822_of_match); #endif static struct i2c_driver nau8822_i2c_driver = { .driver = { .name = "nau8822", .of_match_table = of_match_ptr(nau8822_of_match), }, .probe = nau8822_i2c_probe, .id_table = nau8822_i2c_id, }; module_i2c_driver(nau8822_i2c_driver); MODULE_DESCRIPTION("ASoC NAU8822 codec driver"); MODULE_AUTHOR("David Lin <ctlin0@nuvoton.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1