Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bard Liao | 9601 | 64.26% | 9 | 9.28% |
Hans de Goede | 2088 | 13.97% | 20 | 20.62% |
Oder Chiou | 1901 | 12.72% | 20 | 20.62% |
Jack Yu | 450 | 3.01% | 1 | 1.03% |
Kuninori Morimoto | 267 | 1.79% | 2 | 2.06% |
John Lin | 110 | 0.74% | 1 | 1.03% |
Mark Brown | 91 | 0.61% | 2 | 2.06% |
Sugar Zhang | 67 | 0.45% | 2 | 2.06% |
Stephen Warren | 59 | 0.39% | 3 | 3.09% |
Lars-Peter Clausen | 57 | 0.38% | 5 | 5.15% |
Jarkko Nikula | 51 | 0.34% | 5 | 5.15% |
Liam Girdwood | 49 | 0.33% | 2 | 2.06% |
Linus Walleij | 35 | 0.23% | 1 | 1.03% |
Ondrej Jirman | 17 | 0.11% | 1 | 1.03% |
Pierre-Louis Bossart | 17 | 0.11% | 3 | 3.09% |
Sameer Pujar | 12 | 0.08% | 1 | 1.03% |
Dmitry Osipenko | 9 | 0.06% | 1 | 1.03% |
Cezary Rojewski | 8 | 0.05% | 1 | 1.03% |
Thierry Reding | 7 | 0.05% | 1 | 1.03% |
Alexandrov Stansilav | 6 | 0.04% | 1 | 1.03% |
David Frey | 6 | 0.04% | 1 | 1.03% |
Jorge Fernandez Monteagudo | 6 | 0.04% | 1 | 1.03% |
Nicholas Mc Guire | 4 | 0.03% | 1 | 1.03% |
Gustavo A. R. Silva | 4 | 0.03% | 1 | 1.03% |
Takashi Iwai | 4 | 0.03% | 1 | 1.03% |
Sachin Kamat | 3 | 0.02% | 1 | 1.03% |
Senhong Liu | 2 | 0.01% | 1 | 1.03% |
Mathias Krause | 2 | 0.01% | 1 | 1.03% |
Thomas Gleixner | 2 | 0.01% | 1 | 1.03% |
Bhumika Goyal | 1 | 0.01% | 1 | 1.03% |
Colin Ian King | 1 | 0.01% | 1 | 1.03% |
Uwe Kleine-König | 1 | 0.01% | 1 | 1.03% |
Nariman Poushin | 1 | 0.01% | 1 | 1.03% |
Charles Keepax | 1 | 0.01% | 1 | 1.03% |
Axel Lin | 1 | 0.01% | 1 | 1.03% |
Total | 14941 | 97 |
// SPDX-License-Identifier: GPL-2.0-only /* * rt5640.c -- RT5640/RT5639 ALSA SoC audio codec driver * * Copyright 2011 Realtek Semiconductor Corp. * Author: Johnny Hsu <johnnyhsu@realtek.com> * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/acpi.h> #include <sound/core.h> #include <sound/jack.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/initval.h> #include <sound/tlv.h> #include "rl6231.h" #include "rt5640.h" #define RT5640_DEVICE_ID 0x6231 #define RT5640_PR_RANGE_BASE (0xff + 1) #define RT5640_PR_SPACING 0x100 #define RT5640_PR_BASE (RT5640_PR_RANGE_BASE + (0 * RT5640_PR_SPACING)) static const struct regmap_range_cfg rt5640_ranges[] = { { .name = "PR", .range_min = RT5640_PR_BASE, .range_max = RT5640_PR_BASE + 0xb4, .selector_reg = RT5640_PRIV_INDEX, .selector_mask = 0xff, .selector_shift = 0x0, .window_start = RT5640_PRIV_DATA, .window_len = 0x1, }, }; static const struct reg_sequence init_list[] = { {RT5640_PR_BASE + 0x3d, 0x3600}, {RT5640_PR_BASE + 0x12, 0x0aa8}, {RT5640_PR_BASE + 0x14, 0x0aaa}, {RT5640_PR_BASE + 0x21, 0xe0e0}, {RT5640_PR_BASE + 0x23, 0x1804}, }; static const struct reg_default rt5640_reg[] = { { 0x00, 0x000e }, { 0x01, 0xc8c8 }, { 0x02, 0xc8c8 }, { 0x03, 0xc8c8 }, { 0x04, 0x8000 }, { 0x0d, 0x0000 }, { 0x0e, 0x0000 }, { 0x0f, 0x0808 }, { 0x19, 0xafaf }, { 0x1a, 0xafaf }, { 0x1b, 0x0000 }, { 0x1c, 0x2f2f }, { 0x1d, 0x2f2f }, { 0x1e, 0x0000 }, { 0x27, 0x7060 }, { 0x28, 0x7070 }, { 0x29, 0x8080 }, { 0x2a, 0x5454 }, { 0x2b, 0x5454 }, { 0x2c, 0xaa00 }, { 0x2d, 0x0000 }, { 0x2e, 0xa000 }, { 0x2f, 0x0000 }, { 0x3b, 0x0000 }, { 0x3c, 0x007f }, { 0x3d, 0x0000 }, { 0x3e, 0x007f }, { 0x45, 0xe000 }, { 0x46, 0x003e }, { 0x47, 0x003e }, { 0x48, 0xf800 }, { 0x49, 0x3800 }, { 0x4a, 0x0004 }, { 0x4c, 0xfc00 }, { 0x4d, 0x0000 }, { 0x4f, 0x01ff }, { 0x50, 0x0000 }, { 0x51, 0x0000 }, { 0x52, 0x01ff }, { 0x53, 0xf000 }, { 0x61, 0x0000 }, { 0x62, 0x0000 }, { 0x63, 0x00c0 }, { 0x64, 0x0000 }, { 0x65, 0x0000 }, { 0x66, 0x0000 }, { 0x6a, 0x0000 }, { 0x6c, 0x0000 }, { 0x70, 0x8000 }, { 0x71, 0x8000 }, { 0x72, 0x8000 }, { 0x73, 0x1114 }, { 0x74, 0x0c00 }, { 0x75, 0x1d00 }, { 0x80, 0x0000 }, { 0x81, 0x0000 }, { 0x82, 0x0000 }, { 0x83, 0x0000 }, { 0x84, 0x0000 }, { 0x85, 0x0008 }, { 0x89, 0x0000 }, { 0x8a, 0x0000 }, { 0x8b, 0x0600 }, { 0x8c, 0x0228 }, { 0x8d, 0xa000 }, { 0x8e, 0x0004 }, { 0x8f, 0x1100 }, { 0x90, 0x0646 }, { 0x91, 0x0c00 }, { 0x92, 0x0000 }, { 0x93, 0x3000 }, { 0xb0, 0x2080 }, { 0xb1, 0x0000 }, { 0xb4, 0x2206 }, { 0xb5, 0x1f00 }, { 0xb6, 0x0000 }, { 0xb8, 0x034b }, { 0xb9, 0x0066 }, { 0xba, 0x000b }, { 0xbb, 0x0000 }, { 0xbc, 0x0000 }, { 0xbd, 0x0000 }, { 0xbe, 0x0000 }, { 0xbf, 0x0000 }, { 0xc0, 0x0400 }, { 0xc2, 0x0000 }, { 0xc4, 0x0000 }, { 0xc5, 0x0000 }, { 0xc6, 0x2000 }, { 0xc8, 0x0000 }, { 0xc9, 0x0000 }, { 0xca, 0x0000 }, { 0xcb, 0x0000 }, { 0xcc, 0x0000 }, { 0xcf, 0x0013 }, { 0xd0, 0x0680 }, { 0xd1, 0x1c17 }, { 0xd2, 0x8c00 }, { 0xd3, 0xaa20 }, { 0xd6, 0x0400 }, { 0xd9, 0x0809 }, { 0xfe, 0x10ec }, { 0xff, 0x6231 }, }; static int rt5640_reset(struct snd_soc_component *component) { return snd_soc_component_write(component, RT5640_RESET, 0); } static bool rt5640_volatile_register(struct device *dev, unsigned int reg) { int i; for (i = 0; i < ARRAY_SIZE(rt5640_ranges); i++) if ((reg >= rt5640_ranges[i].window_start && reg <= rt5640_ranges[i].window_start + rt5640_ranges[i].window_len) || (reg >= rt5640_ranges[i].range_min && reg <= rt5640_ranges[i].range_max)) return true; switch (reg) { case RT5640_RESET: case RT5640_ASRC_5: case RT5640_EQ_CTRL1: case RT5640_DRC_AGC_1: case RT5640_ANC_CTRL1: case RT5640_IRQ_CTRL2: case RT5640_INT_IRQ_ST: case RT5640_DSP_CTRL2: case RT5640_DSP_CTRL3: case RT5640_PRIV_INDEX: case RT5640_PRIV_DATA: case RT5640_PGM_REG_ARR1: case RT5640_PGM_REG_ARR3: case RT5640_DUMMY2: case RT5640_VENDOR_ID: case RT5640_VENDOR_ID1: case RT5640_VENDOR_ID2: return true; default: return false; } } static bool rt5640_readable_register(struct device *dev, unsigned int reg) { int i; for (i = 0; i < ARRAY_SIZE(rt5640_ranges); i++) if ((reg >= rt5640_ranges[i].window_start && reg <= rt5640_ranges[i].window_start + rt5640_ranges[i].window_len) || (reg >= rt5640_ranges[i].range_min && reg <= rt5640_ranges[i].range_max)) return true; switch (reg) { case RT5640_RESET: case RT5640_SPK_VOL: case RT5640_HP_VOL: case RT5640_OUTPUT: case RT5640_MONO_OUT: case RT5640_IN1_IN2: case RT5640_IN3_IN4: case RT5640_INL_INR_VOL: case RT5640_DAC1_DIG_VOL: case RT5640_DAC2_DIG_VOL: case RT5640_DAC2_CTRL: case RT5640_ADC_DIG_VOL: case RT5640_ADC_DATA: case RT5640_ADC_BST_VOL: case RT5640_STO_ADC_MIXER: case RT5640_MONO_ADC_MIXER: case RT5640_AD_DA_MIXER: case RT5640_STO_DAC_MIXER: case RT5640_MONO_DAC_MIXER: case RT5640_DIG_MIXER: case RT5640_DSP_PATH1: case RT5640_DSP_PATH2: case RT5640_DIG_INF_DATA: case RT5640_REC_L1_MIXER: case RT5640_REC_L2_MIXER: case RT5640_REC_R1_MIXER: case RT5640_REC_R2_MIXER: case RT5640_HPO_MIXER: case RT5640_SPK_L_MIXER: case RT5640_SPK_R_MIXER: case RT5640_SPO_L_MIXER: case RT5640_SPO_R_MIXER: case RT5640_SPO_CLSD_RATIO: case RT5640_MONO_MIXER: case RT5640_OUT_L1_MIXER: case RT5640_OUT_L2_MIXER: case RT5640_OUT_L3_MIXER: case RT5640_OUT_R1_MIXER: case RT5640_OUT_R2_MIXER: case RT5640_OUT_R3_MIXER: case RT5640_LOUT_MIXER: case RT5640_PWR_DIG1: case RT5640_PWR_DIG2: case RT5640_PWR_ANLG1: case RT5640_PWR_ANLG2: case RT5640_PWR_MIXER: case RT5640_PWR_VOL: case RT5640_PRIV_INDEX: case RT5640_PRIV_DATA: case RT5640_I2S1_SDP: case RT5640_I2S2_SDP: case RT5640_ADDA_CLK1: case RT5640_ADDA_CLK2: case RT5640_DMIC: case RT5640_GLB_CLK: case RT5640_PLL_CTRL1: case RT5640_PLL_CTRL2: case RT5640_ASRC_1: case RT5640_ASRC_2: case RT5640_ASRC_3: case RT5640_ASRC_4: case RT5640_ASRC_5: case RT5640_HP_OVCD: case RT5640_CLS_D_OVCD: case RT5640_CLS_D_OUT: case RT5640_DEPOP_M1: case RT5640_DEPOP_M2: case RT5640_DEPOP_M3: case RT5640_CHARGE_PUMP: case RT5640_PV_DET_SPK_G: case RT5640_MICBIAS: case RT5640_EQ_CTRL1: case RT5640_EQ_CTRL2: case RT5640_WIND_FILTER: case RT5640_DRC_AGC_1: case RT5640_DRC_AGC_2: case RT5640_DRC_AGC_3: case RT5640_SVOL_ZC: case RT5640_ANC_CTRL1: case RT5640_ANC_CTRL2: case RT5640_ANC_CTRL3: case RT5640_JD_CTRL: case RT5640_ANC_JD: case RT5640_IRQ_CTRL1: case RT5640_IRQ_CTRL2: case RT5640_INT_IRQ_ST: case RT5640_GPIO_CTRL1: case RT5640_GPIO_CTRL2: case RT5640_GPIO_CTRL3: case RT5640_DSP_CTRL1: case RT5640_DSP_CTRL2: case RT5640_DSP_CTRL3: case RT5640_DSP_CTRL4: case RT5640_PGM_REG_ARR1: case RT5640_PGM_REG_ARR2: case RT5640_PGM_REG_ARR3: case RT5640_PGM_REG_ARR4: case RT5640_PGM_REG_ARR5: case RT5640_SCB_FUNC: case RT5640_SCB_CTRL: case RT5640_BASE_BACK: case RT5640_MP3_PLUS1: case RT5640_MP3_PLUS2: case RT5640_3D_HP: case RT5640_ADJ_HPF: case RT5640_HP_CALIB_AMP_DET: case RT5640_HP_CALIB2: case RT5640_SV_ZCD1: case RT5640_SV_ZCD2: case RT5640_DUMMY1: case RT5640_DUMMY2: case RT5640_DUMMY3: case RT5640_VENDOR_ID: case RT5640_VENDOR_ID1: case RT5640_VENDOR_ID2: return true; default: return false; } } static const DECLARE_TLV_DB_SCALE(out_vol_tlv, -4650, 150, 0); static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -6562, 0); static const DECLARE_TLV_DB_SCALE(in_vol_tlv, -3450, 150, 0); static const DECLARE_TLV_DB_MINMAX(adc_vol_tlv, -1762, 3000); static const DECLARE_TLV_DB_SCALE(adc_bst_tlv, 0, 1200, 0); /* {0, +20, +24, +30, +35, +40, +44, +50, +52} dB */ static const DECLARE_TLV_DB_RANGE(bst_tlv, 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0), 1, 1, TLV_DB_SCALE_ITEM(2000, 0, 0), 2, 2, TLV_DB_SCALE_ITEM(2400, 0, 0), 3, 5, TLV_DB_SCALE_ITEM(3000, 500, 0), 6, 6, TLV_DB_SCALE_ITEM(4400, 0, 0), 7, 7, TLV_DB_SCALE_ITEM(5000, 0, 0), 8, 8, TLV_DB_SCALE_ITEM(5200, 0, 0) ); /* Interface data select */ static const char * const rt5640_data_select[] = { "Normal", "Swap", "left copy to right", "right copy to left"}; static SOC_ENUM_SINGLE_DECL(rt5640_if1_dac_enum, RT5640_DIG_INF_DATA, RT5640_IF1_DAC_SEL_SFT, rt5640_data_select); static SOC_ENUM_SINGLE_DECL(rt5640_if1_adc_enum, RT5640_DIG_INF_DATA, RT5640_IF1_ADC_SEL_SFT, rt5640_data_select); static SOC_ENUM_SINGLE_DECL(rt5640_if2_dac_enum, RT5640_DIG_INF_DATA, RT5640_IF2_DAC_SEL_SFT, rt5640_data_select); static SOC_ENUM_SINGLE_DECL(rt5640_if2_adc_enum, RT5640_DIG_INF_DATA, RT5640_IF2_ADC_SEL_SFT, rt5640_data_select); /* Class D speaker gain ratio */ static const char * const rt5640_clsd_spk_ratio[] = {"1.66x", "1.83x", "1.94x", "2x", "2.11x", "2.22x", "2.33x", "2.44x", "2.55x", "2.66x", "2.77x"}; static SOC_ENUM_SINGLE_DECL(rt5640_clsd_spk_ratio_enum, RT5640_CLS_D_OUT, RT5640_CLSD_RATIO_SFT, rt5640_clsd_spk_ratio); static const struct snd_kcontrol_new rt5640_snd_controls[] = { /* Speaker Output Volume */ SOC_DOUBLE("Speaker Channel Switch", RT5640_SPK_VOL, RT5640_VOL_L_SFT, RT5640_VOL_R_SFT, 1, 1), SOC_DOUBLE_TLV("Speaker Playback Volume", RT5640_SPK_VOL, RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 39, 1, out_vol_tlv), /* Headphone Output Volume */ SOC_DOUBLE("HP Channel Switch", RT5640_HP_VOL, RT5640_VOL_L_SFT, RT5640_VOL_R_SFT, 1, 1), SOC_DOUBLE_TLV("HP Playback Volume", RT5640_HP_VOL, RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 39, 1, out_vol_tlv), /* OUTPUT Control */ SOC_DOUBLE("OUT Playback Switch", RT5640_OUTPUT, RT5640_L_MUTE_SFT, RT5640_R_MUTE_SFT, 1, 1), SOC_DOUBLE("OUT Channel Switch", RT5640_OUTPUT, RT5640_VOL_L_SFT, RT5640_VOL_R_SFT, 1, 1), SOC_DOUBLE_TLV("OUT Playback Volume", RT5640_OUTPUT, RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 39, 1, out_vol_tlv), /* DAC Digital Volume */ SOC_DOUBLE("DAC2 Playback Switch", RT5640_DAC2_CTRL, RT5640_M_DAC_L2_VOL_SFT, RT5640_M_DAC_R2_VOL_SFT, 1, 1), SOC_DOUBLE_TLV("DAC2 Playback Volume", RT5640_DAC2_DIG_VOL, RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 175, 0, dac_vol_tlv), SOC_DOUBLE_TLV("DAC1 Playback Volume", RT5640_DAC1_DIG_VOL, RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 175, 0, dac_vol_tlv), /* IN1/IN2/IN3 Control */ SOC_SINGLE_TLV("IN1 Boost", RT5640_IN1_IN2, RT5640_BST_SFT1, 8, 0, bst_tlv), SOC_SINGLE_TLV("IN2 Boost", RT5640_IN3_IN4, RT5640_BST_SFT2, 8, 0, bst_tlv), SOC_SINGLE_TLV("IN3 Boost", RT5640_IN1_IN2, RT5640_BST_SFT2, 8, 0, bst_tlv), /* INL/INR Volume Control */ SOC_DOUBLE_TLV("IN Capture Volume", RT5640_INL_INR_VOL, RT5640_INL_VOL_SFT, RT5640_INR_VOL_SFT, 31, 1, in_vol_tlv), /* ADC Digital Volume Control */ SOC_DOUBLE("ADC Capture Switch", RT5640_ADC_DIG_VOL, RT5640_L_MUTE_SFT, RT5640_R_MUTE_SFT, 1, 1), SOC_DOUBLE_TLV("ADC Capture Volume", RT5640_ADC_DIG_VOL, RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 127, 0, adc_vol_tlv), SOC_DOUBLE("Mono ADC Capture Switch", RT5640_DUMMY1, RT5640_M_MONO_ADC_L_SFT, RT5640_M_MONO_ADC_R_SFT, 1, 1), SOC_DOUBLE_TLV("Mono ADC Capture Volume", RT5640_ADC_DATA, RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 127, 0, adc_vol_tlv), /* ADC Boost Volume Control */ SOC_DOUBLE_TLV("ADC Boost Gain", RT5640_ADC_BST_VOL, RT5640_ADC_L_BST_SFT, RT5640_ADC_R_BST_SFT, 3, 0, adc_bst_tlv), /* Class D speaker gain ratio */ SOC_ENUM("Class D SPK Ratio Control", rt5640_clsd_spk_ratio_enum), SOC_ENUM("ADC IF1 Data Switch", rt5640_if1_adc_enum), SOC_ENUM("DAC IF1 Data Switch", rt5640_if1_dac_enum), SOC_ENUM("ADC IF2 Data Switch", rt5640_if2_adc_enum), SOC_ENUM("DAC IF2 Data Switch", rt5640_if2_dac_enum), }; static const struct snd_kcontrol_new rt5640_specific_snd_controls[] = { /* MONO Output Control */ SOC_SINGLE("Mono Playback Switch", RT5640_MONO_OUT, RT5640_L_MUTE_SFT, 1, 1), }; /** * set_dmic_clk - Set parameter of dmic. * * @w: DAPM widget. * @kcontrol: The kcontrol of this widget. * @event: Event id. * */ static int set_dmic_clk(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); int idx, rate; rate = rt5640->sysclk / rl6231_get_pre_div(rt5640->regmap, RT5640_ADDA_CLK1, RT5640_I2S_PD1_SFT); idx = rl6231_calc_dmic_clk(rate); if (idx < 0) dev_err(component->dev, "Failed to set DMIC clock\n"); else snd_soc_component_update_bits(component, RT5640_DMIC, RT5640_DMIC_CLK_MASK, idx << RT5640_DMIC_CLK_SFT); return idx; } static int is_using_asrc(struct snd_soc_dapm_widget *source, struct snd_soc_dapm_widget *sink) { struct snd_soc_component *component = snd_soc_dapm_to_component(source->dapm); struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); if (!rt5640->asrc_en) return 0; return 1; } /* Digital Mixer */ static const struct snd_kcontrol_new rt5640_sto_adc_l_mix[] = { SOC_DAPM_SINGLE("ADC1 Switch", RT5640_STO_ADC_MIXER, RT5640_M_ADC_L1_SFT, 1, 1), SOC_DAPM_SINGLE("ADC2 Switch", RT5640_STO_ADC_MIXER, RT5640_M_ADC_L2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_sto_adc_r_mix[] = { SOC_DAPM_SINGLE("ADC1 Switch", RT5640_STO_ADC_MIXER, RT5640_M_ADC_R1_SFT, 1, 1), SOC_DAPM_SINGLE("ADC2 Switch", RT5640_STO_ADC_MIXER, RT5640_M_ADC_R2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_mono_adc_l_mix[] = { SOC_DAPM_SINGLE("ADC1 Switch", RT5640_MONO_ADC_MIXER, RT5640_M_MONO_ADC_L1_SFT, 1, 1), SOC_DAPM_SINGLE("ADC2 Switch", RT5640_MONO_ADC_MIXER, RT5640_M_MONO_ADC_L2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_mono_adc_r_mix[] = { SOC_DAPM_SINGLE("ADC1 Switch", RT5640_MONO_ADC_MIXER, RT5640_M_MONO_ADC_R1_SFT, 1, 1), SOC_DAPM_SINGLE("ADC2 Switch", RT5640_MONO_ADC_MIXER, RT5640_M_MONO_ADC_R2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_dac_l_mix[] = { SOC_DAPM_SINGLE("Stereo ADC Switch", RT5640_AD_DA_MIXER, RT5640_M_ADCMIX_L_SFT, 1, 1), SOC_DAPM_SINGLE("INF1 Switch", RT5640_AD_DA_MIXER, RT5640_M_IF1_DAC_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_dac_r_mix[] = { SOC_DAPM_SINGLE("Stereo ADC Switch", RT5640_AD_DA_MIXER, RT5640_M_ADCMIX_R_SFT, 1, 1), SOC_DAPM_SINGLE("INF1 Switch", RT5640_AD_DA_MIXER, RT5640_M_IF1_DAC_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_sto_dac_l_mix[] = { SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_STO_DAC_MIXER, RT5640_M_DAC_L1_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_STO_DAC_MIXER, RT5640_M_DAC_L2_SFT, 1, 1), SOC_DAPM_SINGLE("ANC Switch", RT5640_STO_DAC_MIXER, RT5640_M_ANC_DAC_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_sto_dac_r_mix[] = { SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_STO_DAC_MIXER, RT5640_M_DAC_R1_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_STO_DAC_MIXER, RT5640_M_DAC_R2_SFT, 1, 1), SOC_DAPM_SINGLE("ANC Switch", RT5640_STO_DAC_MIXER, RT5640_M_ANC_DAC_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5639_sto_dac_l_mix[] = { SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_STO_DAC_MIXER, RT5640_M_DAC_L1_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_STO_DAC_MIXER, RT5640_M_DAC_L2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5639_sto_dac_r_mix[] = { SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_STO_DAC_MIXER, RT5640_M_DAC_R1_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_STO_DAC_MIXER, RT5640_M_DAC_R2_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_mono_dac_l_mix[] = { SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_MONO_DAC_MIXER, RT5640_M_DAC_L1_MONO_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_MONO_DAC_MIXER, RT5640_M_DAC_L2_MONO_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_MONO_DAC_MIXER, RT5640_M_DAC_R2_MONO_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_mono_dac_r_mix[] = { SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_MONO_DAC_MIXER, RT5640_M_DAC_R1_MONO_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_MONO_DAC_MIXER, RT5640_M_DAC_R2_MONO_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_MONO_DAC_MIXER, RT5640_M_DAC_L2_MONO_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_dig_l_mix[] = { SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_DIG_MIXER, RT5640_M_STO_L_DAC_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_DIG_MIXER, RT5640_M_DAC_L2_DAC_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_dig_r_mix[] = { SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_DIG_MIXER, RT5640_M_STO_R_DAC_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_DIG_MIXER, RT5640_M_DAC_R2_DAC_R_SFT, 1, 1), }; /* Analog Input Mixer */ static const struct snd_kcontrol_new rt5640_rec_l_mix[] = { SOC_DAPM_SINGLE("HPOL Switch", RT5640_REC_L2_MIXER, RT5640_M_HP_L_RM_L_SFT, 1, 1), SOC_DAPM_SINGLE("INL Switch", RT5640_REC_L2_MIXER, RT5640_M_IN_L_RM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST3 Switch", RT5640_REC_L2_MIXER, RT5640_M_BST2_RM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST2 Switch", RT5640_REC_L2_MIXER, RT5640_M_BST4_RM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5640_REC_L2_MIXER, RT5640_M_BST1_RM_L_SFT, 1, 1), SOC_DAPM_SINGLE("OUT MIXL Switch", RT5640_REC_L2_MIXER, RT5640_M_OM_L_RM_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_rec_r_mix[] = { SOC_DAPM_SINGLE("HPOR Switch", RT5640_REC_R2_MIXER, RT5640_M_HP_R_RM_R_SFT, 1, 1), SOC_DAPM_SINGLE("INR Switch", RT5640_REC_R2_MIXER, RT5640_M_IN_R_RM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST3 Switch", RT5640_REC_R2_MIXER, RT5640_M_BST2_RM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST2 Switch", RT5640_REC_R2_MIXER, RT5640_M_BST4_RM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5640_REC_R2_MIXER, RT5640_M_BST1_RM_R_SFT, 1, 1), SOC_DAPM_SINGLE("OUT MIXR Switch", RT5640_REC_R2_MIXER, RT5640_M_OM_R_RM_R_SFT, 1, 1), }; /* Analog Output Mixer */ static const struct snd_kcontrol_new rt5640_spk_l_mix[] = { SOC_DAPM_SINGLE("REC MIXL Switch", RT5640_SPK_L_MIXER, RT5640_M_RM_L_SM_L_SFT, 1, 1), SOC_DAPM_SINGLE("INL Switch", RT5640_SPK_L_MIXER, RT5640_M_IN_L_SM_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_SPK_L_MIXER, RT5640_M_DAC_L1_SM_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_SPK_L_MIXER, RT5640_M_DAC_L2_SM_L_SFT, 1, 1), SOC_DAPM_SINGLE("OUT MIXL Switch", RT5640_SPK_L_MIXER, RT5640_M_OM_L_SM_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_spk_r_mix[] = { SOC_DAPM_SINGLE("REC MIXR Switch", RT5640_SPK_R_MIXER, RT5640_M_RM_R_SM_R_SFT, 1, 1), SOC_DAPM_SINGLE("INR Switch", RT5640_SPK_R_MIXER, RT5640_M_IN_R_SM_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_SPK_R_MIXER, RT5640_M_DAC_R1_SM_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_SPK_R_MIXER, RT5640_M_DAC_R2_SM_R_SFT, 1, 1), SOC_DAPM_SINGLE("OUT MIXR Switch", RT5640_SPK_R_MIXER, RT5640_M_OM_R_SM_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_out_l_mix[] = { SOC_DAPM_SINGLE("SPK MIXL Switch", RT5640_OUT_L3_MIXER, RT5640_M_SM_L_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5640_OUT_L3_MIXER, RT5640_M_BST1_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("INL Switch", RT5640_OUT_L3_MIXER, RT5640_M_IN_L_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("REC MIXL Switch", RT5640_OUT_L3_MIXER, RT5640_M_RM_L_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_OUT_L3_MIXER, RT5640_M_DAC_R2_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_OUT_L3_MIXER, RT5640_M_DAC_L2_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_OUT_L3_MIXER, RT5640_M_DAC_L1_OM_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_out_r_mix[] = { SOC_DAPM_SINGLE("SPK MIXR Switch", RT5640_OUT_R3_MIXER, RT5640_M_SM_L_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST2 Switch", RT5640_OUT_R3_MIXER, RT5640_M_BST4_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5640_OUT_R3_MIXER, RT5640_M_BST1_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("INR Switch", RT5640_OUT_R3_MIXER, RT5640_M_IN_R_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("REC MIXR Switch", RT5640_OUT_R3_MIXER, RT5640_M_RM_R_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_OUT_R3_MIXER, RT5640_M_DAC_L2_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_OUT_R3_MIXER, RT5640_M_DAC_R2_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_OUT_R3_MIXER, RT5640_M_DAC_R1_OM_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5639_out_l_mix[] = { SOC_DAPM_SINGLE("BST1 Switch", RT5640_OUT_L3_MIXER, RT5640_M_BST1_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("INL Switch", RT5640_OUT_L3_MIXER, RT5640_M_IN_L_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("REC MIXL Switch", RT5640_OUT_L3_MIXER, RT5640_M_RM_L_OM_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_OUT_L3_MIXER, RT5640_M_DAC_L1_OM_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5639_out_r_mix[] = { SOC_DAPM_SINGLE("BST2 Switch", RT5640_OUT_R3_MIXER, RT5640_M_BST4_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5640_OUT_R3_MIXER, RT5640_M_BST1_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("INR Switch", RT5640_OUT_R3_MIXER, RT5640_M_IN_R_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("REC MIXR Switch", RT5640_OUT_R3_MIXER, RT5640_M_RM_R_OM_R_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_OUT_R3_MIXER, RT5640_M_DAC_R1_OM_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_spo_l_mix[] = { SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_SPO_L_MIXER, RT5640_M_DAC_R1_SPM_L_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_SPO_L_MIXER, RT5640_M_DAC_L1_SPM_L_SFT, 1, 1), SOC_DAPM_SINGLE("SPKVOL R Switch", RT5640_SPO_L_MIXER, RT5640_M_SV_R_SPM_L_SFT, 1, 1), SOC_DAPM_SINGLE("SPKVOL L Switch", RT5640_SPO_L_MIXER, RT5640_M_SV_L_SPM_L_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5640_SPO_L_MIXER, RT5640_M_BST1_SPM_L_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_spo_r_mix[] = { SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_SPO_R_MIXER, RT5640_M_DAC_R1_SPM_R_SFT, 1, 1), SOC_DAPM_SINGLE("SPKVOL R Switch", RT5640_SPO_R_MIXER, RT5640_M_SV_R_SPM_R_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5640_SPO_R_MIXER, RT5640_M_BST1_SPM_R_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_hpo_mix[] = { SOC_DAPM_SINGLE("HPO MIX DAC2 Switch", RT5640_HPO_MIXER, RT5640_M_DAC2_HM_SFT, 1, 1), SOC_DAPM_SINGLE("HPO MIX DAC1 Switch", RT5640_HPO_MIXER, RT5640_M_DAC1_HM_SFT, 1, 1), SOC_DAPM_SINGLE("HPO MIX HPVOL Switch", RT5640_HPO_MIXER, RT5640_M_HPVOL_HM_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5639_hpo_mix[] = { SOC_DAPM_SINGLE("HPO MIX DAC1 Switch", RT5640_HPO_MIXER, RT5640_M_DAC1_HM_SFT, 1, 1), SOC_DAPM_SINGLE("HPO MIX HPVOL Switch", RT5640_HPO_MIXER, RT5640_M_HPVOL_HM_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_lout_mix[] = { SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_LOUT_MIXER, RT5640_M_DAC_L1_LM_SFT, 1, 1), SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_LOUT_MIXER, RT5640_M_DAC_R1_LM_SFT, 1, 1), SOC_DAPM_SINGLE("OUTVOL L Switch", RT5640_LOUT_MIXER, RT5640_M_OV_L_LM_SFT, 1, 1), SOC_DAPM_SINGLE("OUTVOL R Switch", RT5640_LOUT_MIXER, RT5640_M_OV_R_LM_SFT, 1, 1), }; static const struct snd_kcontrol_new rt5640_mono_mix[] = { SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_MONO_MIXER, RT5640_M_DAC_R2_MM_SFT, 1, 1), SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_MONO_MIXER, RT5640_M_DAC_L2_MM_SFT, 1, 1), SOC_DAPM_SINGLE("OUTVOL R Switch", RT5640_MONO_MIXER, RT5640_M_OV_R_MM_SFT, 1, 1), SOC_DAPM_SINGLE("OUTVOL L Switch", RT5640_MONO_MIXER, RT5640_M_OV_L_MM_SFT, 1, 1), SOC_DAPM_SINGLE("BST1 Switch", RT5640_MONO_MIXER, RT5640_M_BST1_MM_SFT, 1, 1), }; static const struct snd_kcontrol_new spk_l_enable_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5640_SPK_VOL, RT5640_L_MUTE_SFT, 1, 1); static const struct snd_kcontrol_new spk_r_enable_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5640_SPK_VOL, RT5640_R_MUTE_SFT, 1, 1); static const struct snd_kcontrol_new hp_l_enable_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5640_HP_VOL, RT5640_L_MUTE_SFT, 1, 1); static const struct snd_kcontrol_new hp_r_enable_control = SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5640_HP_VOL, RT5640_R_MUTE_SFT, 1, 1); /* Stereo ADC source */ static const char * const rt5640_stereo_adc1_src[] = { "DIG MIX", "ADC" }; static SOC_ENUM_SINGLE_DECL(rt5640_stereo_adc1_enum, RT5640_STO_ADC_MIXER, RT5640_ADC_1_SRC_SFT, rt5640_stereo_adc1_src); static const struct snd_kcontrol_new rt5640_sto_adc_1_mux = SOC_DAPM_ENUM("Stereo ADC1 Mux", rt5640_stereo_adc1_enum); static const char * const rt5640_stereo_adc2_src[] = { "DMIC1", "DMIC2", "DIG MIX" }; static SOC_ENUM_SINGLE_DECL(rt5640_stereo_adc2_enum, RT5640_STO_ADC_MIXER, RT5640_ADC_2_SRC_SFT, rt5640_stereo_adc2_src); static const struct snd_kcontrol_new rt5640_sto_adc_2_mux = SOC_DAPM_ENUM("Stereo ADC2 Mux", rt5640_stereo_adc2_enum); /* Mono ADC source */ static const char * const rt5640_mono_adc_l1_src[] = { "Mono DAC MIXL", "ADCL" }; static SOC_ENUM_SINGLE_DECL(rt5640_mono_adc_l1_enum, RT5640_MONO_ADC_MIXER, RT5640_MONO_ADC_L1_SRC_SFT, rt5640_mono_adc_l1_src); static const struct snd_kcontrol_new rt5640_mono_adc_l1_mux = SOC_DAPM_ENUM("Mono ADC1 left source", rt5640_mono_adc_l1_enum); static const char * const rt5640_mono_adc_l2_src[] = { "DMIC L1", "DMIC L2", "Mono DAC MIXL" }; static SOC_ENUM_SINGLE_DECL(rt5640_mono_adc_l2_enum, RT5640_MONO_ADC_MIXER, RT5640_MONO_ADC_L2_SRC_SFT, rt5640_mono_adc_l2_src); static const struct snd_kcontrol_new rt5640_mono_adc_l2_mux = SOC_DAPM_ENUM("Mono ADC2 left source", rt5640_mono_adc_l2_enum); static const char * const rt5640_mono_adc_r1_src[] = { "Mono DAC MIXR", "ADCR" }; static SOC_ENUM_SINGLE_DECL(rt5640_mono_adc_r1_enum, RT5640_MONO_ADC_MIXER, RT5640_MONO_ADC_R1_SRC_SFT, rt5640_mono_adc_r1_src); static const struct snd_kcontrol_new rt5640_mono_adc_r1_mux = SOC_DAPM_ENUM("Mono ADC1 right source", rt5640_mono_adc_r1_enum); static const char * const rt5640_mono_adc_r2_src[] = { "DMIC R1", "DMIC R2", "Mono DAC MIXR" }; static SOC_ENUM_SINGLE_DECL(rt5640_mono_adc_r2_enum, RT5640_MONO_ADC_MIXER, RT5640_MONO_ADC_R2_SRC_SFT, rt5640_mono_adc_r2_src); static const struct snd_kcontrol_new rt5640_mono_adc_r2_mux = SOC_DAPM_ENUM("Mono ADC2 right source", rt5640_mono_adc_r2_enum); /* DAC2 channel source */ static const char * const rt5640_dac_l2_src[] = { "IF2", "Base L/R" }; static int rt5640_dac_l2_values[] = { 0, 3, }; static SOC_VALUE_ENUM_SINGLE_DECL(rt5640_dac_l2_enum, RT5640_DSP_PATH2, RT5640_DAC_L2_SEL_SFT, 0x3, rt5640_dac_l2_src, rt5640_dac_l2_values); static const struct snd_kcontrol_new rt5640_dac_l2_mux = SOC_DAPM_ENUM("DAC2 left channel source", rt5640_dac_l2_enum); static const char * const rt5640_dac_r2_src[] = { "IF2", }; static int rt5640_dac_r2_values[] = { 0, }; static SOC_VALUE_ENUM_SINGLE_DECL(rt5640_dac_r2_enum, RT5640_DSP_PATH2, RT5640_DAC_R2_SEL_SFT, 0x3, rt5640_dac_r2_src, rt5640_dac_r2_values); static const struct snd_kcontrol_new rt5640_dac_r2_mux = SOC_DAPM_ENUM("DAC2 right channel source", rt5640_dac_r2_enum); /* digital interface and iis interface map */ static const char * const rt5640_dai_iis_map[] = { "1:1|2:2", "1:2|2:1", "1:1|2:1", "1:2|2:2" }; static int rt5640_dai_iis_map_values[] = { 0, 5, 6, 7, }; static SOC_VALUE_ENUM_SINGLE_DECL(rt5640_dai_iis_map_enum, RT5640_I2S1_SDP, RT5640_I2S_IF_SFT, 0x7, rt5640_dai_iis_map, rt5640_dai_iis_map_values); static const struct snd_kcontrol_new rt5640_dai_mux = SOC_DAPM_ENUM("DAI select", rt5640_dai_iis_map_enum); /* SDI select */ static const char * const rt5640_sdi_sel[] = { "IF1", "IF2" }; static SOC_ENUM_SINGLE_DECL(rt5640_sdi_sel_enum, RT5640_I2S2_SDP, RT5640_I2S2_SDI_SFT, rt5640_sdi_sel); static const struct snd_kcontrol_new rt5640_sdi_mux = SOC_DAPM_ENUM("SDI select", rt5640_sdi_sel_enum); static void hp_amp_power_on(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); /* depop parameters */ regmap_update_bits(rt5640->regmap, RT5640_PR_BASE + RT5640_CHPUMP_INT_REG1, 0x0700, 0x0200); regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M2, RT5640_DEPOP_MASK, RT5640_DEPOP_MAN); regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M1, RT5640_HP_CP_MASK | RT5640_HP_SG_MASK | RT5640_HP_CB_MASK, RT5640_HP_CP_PU | RT5640_HP_SG_DIS | RT5640_HP_CB_PU); regmap_write(rt5640->regmap, RT5640_PR_BASE + RT5640_HP_DCC_INT1, 0x9f00); /* headphone amp power on */ regmap_update_bits(rt5640->regmap, RT5640_PWR_ANLG1, RT5640_PWR_FV1 | RT5640_PWR_FV2, 0); regmap_update_bits(rt5640->regmap, RT5640_PWR_ANLG1, RT5640_PWR_HA, RT5640_PWR_HA); usleep_range(10000, 15000); regmap_update_bits(rt5640->regmap, RT5640_PWR_ANLG1, RT5640_PWR_FV1 | RT5640_PWR_FV2 , RT5640_PWR_FV1 | RT5640_PWR_FV2); } static void rt5640_pmu_depop(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M2, RT5640_DEPOP_MASK | RT5640_DIG_DP_MASK, RT5640_DEPOP_AUTO | RT5640_DIG_DP_EN); regmap_update_bits(rt5640->regmap, RT5640_CHARGE_PUMP, RT5640_PM_HP_MASK, RT5640_PM_HP_HV); regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M3, RT5640_CP_FQ1_MASK | RT5640_CP_FQ2_MASK | RT5640_CP_FQ3_MASK, (RT5640_CP_FQ_192_KHZ << RT5640_CP_FQ1_SFT) | (RT5640_CP_FQ_12_KHZ << RT5640_CP_FQ2_SFT) | (RT5640_CP_FQ_192_KHZ << RT5640_CP_FQ3_SFT)); regmap_write(rt5640->regmap, RT5640_PR_BASE + RT5640_MAMP_INT_REG2, 0x1c00); regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M1, RT5640_HP_CP_MASK | RT5640_HP_SG_MASK, RT5640_HP_CP_PD | RT5640_HP_SG_EN); regmap_update_bits(rt5640->regmap, RT5640_PR_BASE + RT5640_CHPUMP_INT_REG1, 0x0700, 0x0400); } static int rt5640_hp_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: rt5640_pmu_depop(component); rt5640->hp_mute = false; break; case SND_SOC_DAPM_PRE_PMD: rt5640->hp_mute = true; msleep(70); break; default: return 0; } return 0; } static int rt5640_lout_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); switch (event) { case SND_SOC_DAPM_POST_PMU: hp_amp_power_on(component); snd_soc_component_update_bits(component, RT5640_PWR_ANLG1, RT5640_PWR_LM, RT5640_PWR_LM); snd_soc_component_update_bits(component, RT5640_OUTPUT, RT5640_L_MUTE | RT5640_R_MUTE, 0); break; case SND_SOC_DAPM_PRE_PMD: snd_soc_component_update_bits(component, RT5640_OUTPUT, RT5640_L_MUTE | RT5640_R_MUTE, RT5640_L_MUTE | RT5640_R_MUTE); snd_soc_component_update_bits(component, RT5640_PWR_ANLG1, RT5640_PWR_LM, 0); break; default: return 0; } return 0; } static int rt5640_hp_power_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); switch (event) { case SND_SOC_DAPM_POST_PMU: hp_amp_power_on(component); break; default: return 0; } return 0; } static int rt5640_hp_post_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_POST_PMU: if (!rt5640->hp_mute) msleep(80); break; default: return 0; } return 0; } static const struct snd_soc_dapm_widget rt5640_dapm_widgets[] = { /* ASRC */ SND_SOC_DAPM_SUPPLY_S("Stereo Filter ASRC", 1, RT5640_ASRC_1, 15, 0, NULL, 0), SND_SOC_DAPM_SUPPLY_S("I2S2 Filter ASRC", 1, RT5640_ASRC_1, 12, 0, NULL, 0), SND_SOC_DAPM_SUPPLY_S("I2S2 ASRC", 1, RT5640_ASRC_1, 11, 0, NULL, 0), SND_SOC_DAPM_SUPPLY_S("DMIC1 ASRC", 1, RT5640_ASRC_1, 9, 0, NULL, 0), SND_SOC_DAPM_SUPPLY_S("DMIC2 ASRC", 1, RT5640_ASRC_1, 8, 0, NULL, 0), /* Input Side */ /* micbias */ SND_SOC_DAPM_SUPPLY("LDO2", RT5640_PWR_ANLG1, RT5640_PWR_LDO2_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("MICBIAS1", RT5640_PWR_ANLG2, RT5640_PWR_MB1_BIT, 0, NULL, 0), /* Input Lines */ SND_SOC_DAPM_INPUT("DMIC1"), SND_SOC_DAPM_INPUT("DMIC2"), SND_SOC_DAPM_INPUT("IN1P"), SND_SOC_DAPM_INPUT("IN1N"), SND_SOC_DAPM_INPUT("IN2P"), SND_SOC_DAPM_INPUT("IN2N"), SND_SOC_DAPM_INPUT("IN3P"), SND_SOC_DAPM_INPUT("IN3N"), SND_SOC_DAPM_PGA("DMIC L1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("DMIC R1", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("DMIC L2", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("DMIC R2", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DMIC CLK", SND_SOC_NOPM, 0, 0, set_dmic_clk, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_SUPPLY("DMIC1 Power", RT5640_DMIC, RT5640_DMIC_1_EN_SFT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DMIC2 Power", RT5640_DMIC, RT5640_DMIC_2_EN_SFT, 0, NULL, 0), /* Boost */ SND_SOC_DAPM_PGA("BST1", RT5640_PWR_ANLG2, RT5640_PWR_BST1_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("BST2", RT5640_PWR_ANLG2, RT5640_PWR_BST4_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("BST3", RT5640_PWR_ANLG2, RT5640_PWR_BST2_BIT, 0, NULL, 0), /* Input Volume */ SND_SOC_DAPM_PGA("INL VOL", RT5640_PWR_VOL, RT5640_PWR_IN_L_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("INR VOL", RT5640_PWR_VOL, RT5640_PWR_IN_R_BIT, 0, NULL, 0), /* REC Mixer */ SND_SOC_DAPM_MIXER("RECMIXL", RT5640_PWR_MIXER, RT5640_PWR_RM_L_BIT, 0, rt5640_rec_l_mix, ARRAY_SIZE(rt5640_rec_l_mix)), SND_SOC_DAPM_MIXER("RECMIXR", RT5640_PWR_MIXER, RT5640_PWR_RM_R_BIT, 0, rt5640_rec_r_mix, ARRAY_SIZE(rt5640_rec_r_mix)), /* ADCs */ SND_SOC_DAPM_ADC("ADC L", NULL, RT5640_PWR_DIG1, RT5640_PWR_ADC_L_BIT, 0), SND_SOC_DAPM_ADC("ADC R", NULL, RT5640_PWR_DIG1, RT5640_PWR_ADC_R_BIT, 0), /* ADC Mux */ SND_SOC_DAPM_MUX("Stereo ADC L2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_sto_adc_2_mux), SND_SOC_DAPM_MUX("Stereo ADC R2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_sto_adc_2_mux), SND_SOC_DAPM_MUX("Stereo ADC L1 Mux", SND_SOC_NOPM, 0, 0, &rt5640_sto_adc_1_mux), SND_SOC_DAPM_MUX("Stereo ADC R1 Mux", SND_SOC_NOPM, 0, 0, &rt5640_sto_adc_1_mux), SND_SOC_DAPM_MUX("Mono ADC L2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_mono_adc_l2_mux), SND_SOC_DAPM_MUX("Mono ADC L1 Mux", SND_SOC_NOPM, 0, 0, &rt5640_mono_adc_l1_mux), SND_SOC_DAPM_MUX("Mono ADC R1 Mux", SND_SOC_NOPM, 0, 0, &rt5640_mono_adc_r1_mux), SND_SOC_DAPM_MUX("Mono ADC R2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_mono_adc_r2_mux), /* ADC Mixer */ SND_SOC_DAPM_SUPPLY("Stereo Filter", RT5640_PWR_DIG2, RT5640_PWR_ADC_SF_BIT, 0, NULL, 0), SND_SOC_DAPM_MIXER("Stereo ADC MIXL", SND_SOC_NOPM, 0, 0, rt5640_sto_adc_l_mix, ARRAY_SIZE(rt5640_sto_adc_l_mix)), SND_SOC_DAPM_MIXER("Stereo ADC MIXR", SND_SOC_NOPM, 0, 0, rt5640_sto_adc_r_mix, ARRAY_SIZE(rt5640_sto_adc_r_mix)), SND_SOC_DAPM_SUPPLY("Mono Left Filter", RT5640_PWR_DIG2, RT5640_PWR_ADC_MF_L_BIT, 0, NULL, 0), SND_SOC_DAPM_MIXER("Mono ADC MIXL", SND_SOC_NOPM, 0, 0, rt5640_mono_adc_l_mix, ARRAY_SIZE(rt5640_mono_adc_l_mix)), SND_SOC_DAPM_SUPPLY("Mono Right Filter", RT5640_PWR_DIG2, RT5640_PWR_ADC_MF_R_BIT, 0, NULL, 0), SND_SOC_DAPM_MIXER("Mono ADC MIXR", SND_SOC_NOPM, 0, 0, rt5640_mono_adc_r_mix, ARRAY_SIZE(rt5640_mono_adc_r_mix)), /* Digital Interface */ SND_SOC_DAPM_SUPPLY("I2S1", RT5640_PWR_DIG1, RT5640_PWR_I2S1_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 DAC", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 DAC L", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 DAC R", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 ADC", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 ADC L", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF1 ADC R", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("I2S2", RT5640_PWR_DIG1, RT5640_PWR_I2S2_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("IF2 DAC", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF2 DAC L", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF2 DAC R", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF2 ADC", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF2 ADC L", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("IF2 ADC R", SND_SOC_NOPM, 0, 0, NULL, 0), /* Digital Interface Select */ SND_SOC_DAPM_MUX("DAI1 RX Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux), SND_SOC_DAPM_MUX("DAI1 TX Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux), SND_SOC_DAPM_MUX("DAI1 IF1 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux), SND_SOC_DAPM_MUX("DAI1 IF2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux), SND_SOC_DAPM_MUX("SDI1 TX Mux", SND_SOC_NOPM, 0, 0, &rt5640_sdi_mux), SND_SOC_DAPM_MUX("DAI2 RX Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux), SND_SOC_DAPM_MUX("DAI2 TX Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux), SND_SOC_DAPM_MUX("DAI2 IF1 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux), SND_SOC_DAPM_MUX("DAI2 IF2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux), SND_SOC_DAPM_MUX("SDI2 TX Mux", SND_SOC_NOPM, 0, 0, &rt5640_sdi_mux), /* Audio Interface */ SND_SOC_DAPM_AIF_IN("AIF1RX", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF1TX", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("AIF2RX", "AIF2 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF2TX", "AIF2 Capture", 0, SND_SOC_NOPM, 0, 0), /* Output Side */ /* DAC mixer before sound effect */ SND_SOC_DAPM_MIXER("DAC MIXL", SND_SOC_NOPM, 0, 0, rt5640_dac_l_mix, ARRAY_SIZE(rt5640_dac_l_mix)), SND_SOC_DAPM_MIXER("DAC MIXR", SND_SOC_NOPM, 0, 0, rt5640_dac_r_mix, ARRAY_SIZE(rt5640_dac_r_mix)), /* DAC Mixer */ SND_SOC_DAPM_MIXER("Mono DAC MIXL", SND_SOC_NOPM, 0, 0, rt5640_mono_dac_l_mix, ARRAY_SIZE(rt5640_mono_dac_l_mix)), SND_SOC_DAPM_MIXER("Mono DAC MIXR", SND_SOC_NOPM, 0, 0, rt5640_mono_dac_r_mix, ARRAY_SIZE(rt5640_mono_dac_r_mix)), SND_SOC_DAPM_MIXER("DIG MIXL", SND_SOC_NOPM, 0, 0, rt5640_dig_l_mix, ARRAY_SIZE(rt5640_dig_l_mix)), SND_SOC_DAPM_MIXER("DIG MIXR", SND_SOC_NOPM, 0, 0, rt5640_dig_r_mix, ARRAY_SIZE(rt5640_dig_r_mix)), /* DACs */ SND_SOC_DAPM_DAC("DAC L1", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("DAC R1", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_SUPPLY("DAC L1 Power", RT5640_PWR_DIG1, RT5640_PWR_DAC_L1_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAC R1 Power", RT5640_PWR_DIG1, RT5640_PWR_DAC_R1_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAC L2 Power", RT5640_PWR_DIG1, RT5640_PWR_DAC_L2_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAC R2 Power", RT5640_PWR_DIG1, RT5640_PWR_DAC_R2_BIT, 0, NULL, 0), /* SPK/OUT Mixer */ SND_SOC_DAPM_MIXER("SPK MIXL", RT5640_PWR_MIXER, RT5640_PWR_SM_L_BIT, 0, rt5640_spk_l_mix, ARRAY_SIZE(rt5640_spk_l_mix)), SND_SOC_DAPM_MIXER("SPK MIXR", RT5640_PWR_MIXER, RT5640_PWR_SM_R_BIT, 0, rt5640_spk_r_mix, ARRAY_SIZE(rt5640_spk_r_mix)), /* Ouput Volume */ SND_SOC_DAPM_PGA("SPKVOL L", RT5640_PWR_VOL, RT5640_PWR_SV_L_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("SPKVOL R", RT5640_PWR_VOL, RT5640_PWR_SV_R_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("OUTVOL L", RT5640_PWR_VOL, RT5640_PWR_OV_L_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("OUTVOL R", RT5640_PWR_VOL, RT5640_PWR_OV_R_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("HPOVOL L", RT5640_PWR_VOL, RT5640_PWR_HV_L_BIT, 0, NULL, 0), SND_SOC_DAPM_PGA("HPOVOL R", RT5640_PWR_VOL, RT5640_PWR_HV_R_BIT, 0, NULL, 0), /* SPO/HPO/LOUT/Mono Mixer */ SND_SOC_DAPM_MIXER("SPOL MIX", SND_SOC_NOPM, 0, 0, rt5640_spo_l_mix, ARRAY_SIZE(rt5640_spo_l_mix)), SND_SOC_DAPM_MIXER("SPOR MIX", SND_SOC_NOPM, 0, 0, rt5640_spo_r_mix, ARRAY_SIZE(rt5640_spo_r_mix)), SND_SOC_DAPM_MIXER("LOUT MIX", SND_SOC_NOPM, 0, 0, rt5640_lout_mix, ARRAY_SIZE(rt5640_lout_mix)), SND_SOC_DAPM_SUPPLY_S("Improve HP Amp Drv", 1, SND_SOC_NOPM, 0, 0, rt5640_hp_power_event, SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_PGA_S("HP Amp", 1, SND_SOC_NOPM, 0, 0, rt5640_hp_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_PGA_S("LOUT amp", 1, SND_SOC_NOPM, 0, 0, rt5640_lout_event, SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU), SND_SOC_DAPM_SUPPLY("HP L Amp", RT5640_PWR_ANLG1, RT5640_PWR_HP_L_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("HP R Amp", RT5640_PWR_ANLG1, RT5640_PWR_HP_R_BIT, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Improve SPK Amp Drv", RT5640_PWR_DIG1, RT5640_PWR_CLS_D_BIT, 0, NULL, 0), /* Output Switch */ SND_SOC_DAPM_SWITCH("Speaker L Playback", SND_SOC_NOPM, 0, 0, &spk_l_enable_control), SND_SOC_DAPM_SWITCH("Speaker R Playback", SND_SOC_NOPM, 0, 0, &spk_r_enable_control), SND_SOC_DAPM_SWITCH("HP L Playback", SND_SOC_NOPM, 0, 0, &hp_l_enable_control), SND_SOC_DAPM_SWITCH("HP R Playback", SND_SOC_NOPM, 0, 0, &hp_r_enable_control), SND_SOC_DAPM_POST("HP Post", rt5640_hp_post_event), /* Output Lines */ SND_SOC_DAPM_OUTPUT("SPOLP"), SND_SOC_DAPM_OUTPUT("SPOLN"), SND_SOC_DAPM_OUTPUT("SPORP"), SND_SOC_DAPM_OUTPUT("SPORN"), SND_SOC_DAPM_OUTPUT("HPOL"), SND_SOC_DAPM_OUTPUT("HPOR"), SND_SOC_DAPM_OUTPUT("LOUTL"), SND_SOC_DAPM_OUTPUT("LOUTR"), }; static const struct snd_soc_dapm_widget rt5640_specific_dapm_widgets[] = { /* Audio DSP */ SND_SOC_DAPM_PGA("Audio DSP", SND_SOC_NOPM, 0, 0, NULL, 0), /* ANC */ SND_SOC_DAPM_PGA("ANC", SND_SOC_NOPM, 0, 0, NULL, 0), /* DAC2 channel Mux */ SND_SOC_DAPM_MUX("DAC L2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dac_l2_mux), SND_SOC_DAPM_MUX("DAC R2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dac_r2_mux), SND_SOC_DAPM_MIXER("Stereo DAC MIXL", SND_SOC_NOPM, 0, 0, rt5640_sto_dac_l_mix, ARRAY_SIZE(rt5640_sto_dac_l_mix)), SND_SOC_DAPM_MIXER("Stereo DAC MIXR", SND_SOC_NOPM, 0, 0, rt5640_sto_dac_r_mix, ARRAY_SIZE(rt5640_sto_dac_r_mix)), SND_SOC_DAPM_DAC("DAC R2", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("DAC L2", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MIXER("OUT MIXL", RT5640_PWR_MIXER, RT5640_PWR_OM_L_BIT, 0, rt5640_out_l_mix, ARRAY_SIZE(rt5640_out_l_mix)), SND_SOC_DAPM_MIXER("OUT MIXR", RT5640_PWR_MIXER, RT5640_PWR_OM_R_BIT, 0, rt5640_out_r_mix, ARRAY_SIZE(rt5640_out_r_mix)), SND_SOC_DAPM_MIXER("HPO MIX L", SND_SOC_NOPM, 0, 0, rt5640_hpo_mix, ARRAY_SIZE(rt5640_hpo_mix)), SND_SOC_DAPM_MIXER("HPO MIX R", SND_SOC_NOPM, 0, 0, rt5640_hpo_mix, ARRAY_SIZE(rt5640_hpo_mix)), SND_SOC_DAPM_MIXER("Mono MIX", RT5640_PWR_ANLG1, RT5640_PWR_MM_BIT, 0, rt5640_mono_mix, ARRAY_SIZE(rt5640_mono_mix)), SND_SOC_DAPM_SUPPLY("Improve MONO Amp Drv", RT5640_PWR_ANLG1, RT5640_PWR_MA_BIT, 0, NULL, 0), SND_SOC_DAPM_OUTPUT("MONOP"), SND_SOC_DAPM_OUTPUT("MONON"), }; static const struct snd_soc_dapm_widget rt5639_specific_dapm_widgets[] = { SND_SOC_DAPM_MIXER("Stereo DAC MIXL", SND_SOC_NOPM, 0, 0, rt5639_sto_dac_l_mix, ARRAY_SIZE(rt5639_sto_dac_l_mix)), SND_SOC_DAPM_MIXER("Stereo DAC MIXR", SND_SOC_NOPM, 0, 0, rt5639_sto_dac_r_mix, ARRAY_SIZE(rt5639_sto_dac_r_mix)), SND_SOC_DAPM_MIXER("OUT MIXL", RT5640_PWR_MIXER, RT5640_PWR_OM_L_BIT, 0, rt5639_out_l_mix, ARRAY_SIZE(rt5639_out_l_mix)), SND_SOC_DAPM_MIXER("OUT MIXR", RT5640_PWR_MIXER, RT5640_PWR_OM_R_BIT, 0, rt5639_out_r_mix, ARRAY_SIZE(rt5639_out_r_mix)), SND_SOC_DAPM_MIXER("HPO MIX L", SND_SOC_NOPM, 0, 0, rt5639_hpo_mix, ARRAY_SIZE(rt5639_hpo_mix)), SND_SOC_DAPM_MIXER("HPO MIX R", SND_SOC_NOPM, 0, 0, rt5639_hpo_mix, ARRAY_SIZE(rt5639_hpo_mix)), }; static const struct snd_soc_dapm_route rt5640_dapm_routes[] = { { "I2S1", NULL, "Stereo Filter ASRC", is_using_asrc }, { "I2S2", NULL, "I2S2 ASRC", is_using_asrc }, { "I2S2", NULL, "I2S2 Filter ASRC", is_using_asrc }, { "DMIC1", NULL, "DMIC1 ASRC", is_using_asrc }, { "DMIC2", NULL, "DMIC2 ASRC", is_using_asrc }, {"IN1P", NULL, "LDO2"}, {"IN2P", NULL, "LDO2"}, {"IN3P", NULL, "LDO2"}, {"DMIC L1", NULL, "DMIC1"}, {"DMIC R1", NULL, "DMIC1"}, {"DMIC L2", NULL, "DMIC2"}, {"DMIC R2", NULL, "DMIC2"}, {"BST1", NULL, "IN1P"}, {"BST1", NULL, "IN1N"}, {"BST2", NULL, "IN2P"}, {"BST2", NULL, "IN2N"}, {"BST3", NULL, "IN3P"}, {"BST3", NULL, "IN3N"}, {"INL VOL", NULL, "IN2P"}, {"INR VOL", NULL, "IN2N"}, {"RECMIXL", "HPOL Switch", "HPOL"}, {"RECMIXL", "INL Switch", "INL VOL"}, {"RECMIXL", "BST3 Switch", "BST3"}, {"RECMIXL", "BST2 Switch", "BST2"}, {"RECMIXL", "BST1 Switch", "BST1"}, {"RECMIXL", "OUT MIXL Switch", "OUT MIXL"}, {"RECMIXR", "HPOR Switch", "HPOR"}, {"RECMIXR", "INR Switch", "INR VOL"}, {"RECMIXR", "BST3 Switch", "BST3"}, {"RECMIXR", "BST2 Switch", "BST2"}, {"RECMIXR", "BST1 Switch", "BST1"}, {"RECMIXR", "OUT MIXR Switch", "OUT MIXR"}, {"ADC L", NULL, "RECMIXL"}, {"ADC R", NULL, "RECMIXR"}, {"DMIC L1", NULL, "DMIC CLK"}, {"DMIC L1", NULL, "DMIC1 Power"}, {"DMIC R1", NULL, "DMIC CLK"}, {"DMIC R1", NULL, "DMIC1 Power"}, {"DMIC L2", NULL, "DMIC CLK"}, {"DMIC L2", NULL, "DMIC2 Power"}, {"DMIC R2", NULL, "DMIC CLK"}, {"DMIC R2", NULL, "DMIC2 Power"}, {"Stereo ADC L2 Mux", "DMIC1", "DMIC L1"}, {"Stereo ADC L2 Mux", "DMIC2", "DMIC L2"}, {"Stereo ADC L2 Mux", "DIG MIX", "DIG MIXL"}, {"Stereo ADC L1 Mux", "ADC", "ADC L"}, {"Stereo ADC L1 Mux", "DIG MIX", "DIG MIXL"}, {"Stereo ADC R1 Mux", "ADC", "ADC R"}, {"Stereo ADC R1 Mux", "DIG MIX", "DIG MIXR"}, {"Stereo ADC R2 Mux", "DMIC1", "DMIC R1"}, {"Stereo ADC R2 Mux", "DMIC2", "DMIC R2"}, {"Stereo ADC R2 Mux", "DIG MIX", "DIG MIXR"}, {"Mono ADC L2 Mux", "DMIC L1", "DMIC L1"}, {"Mono ADC L2 Mux", "DMIC L2", "DMIC L2"}, {"Mono ADC L2 Mux", "Mono DAC MIXL", "Mono DAC MIXL"}, {"Mono ADC L1 Mux", "Mono DAC MIXL", "Mono DAC MIXL"}, {"Mono ADC L1 Mux", "ADCL", "ADC L"}, {"Mono ADC R1 Mux", "Mono DAC MIXR", "Mono DAC MIXR"}, {"Mono ADC R1 Mux", "ADCR", "ADC R"}, {"Mono ADC R2 Mux", "DMIC R1", "DMIC R1"}, {"Mono ADC R2 Mux", "DMIC R2", "DMIC R2"}, {"Mono ADC R2 Mux", "Mono DAC MIXR", "Mono DAC MIXR"}, {"Stereo ADC MIXL", "ADC1 Switch", "Stereo ADC L1 Mux"}, {"Stereo ADC MIXL", "ADC2 Switch", "Stereo ADC L2 Mux"}, {"Stereo ADC MIXL", NULL, "Stereo Filter"}, {"Stereo ADC MIXR", "ADC1 Switch", "Stereo ADC R1 Mux"}, {"Stereo ADC MIXR", "ADC2 Switch", "Stereo ADC R2 Mux"}, {"Stereo ADC MIXR", NULL, "Stereo Filter"}, {"Mono ADC MIXL", "ADC1 Switch", "Mono ADC L1 Mux"}, {"Mono ADC MIXL", "ADC2 Switch", "Mono ADC L2 Mux"}, {"Mono ADC MIXL", NULL, "Mono Left Filter"}, {"Mono ADC MIXR", "ADC1 Switch", "Mono ADC R1 Mux"}, {"Mono ADC MIXR", "ADC2 Switch", "Mono ADC R2 Mux"}, {"Mono ADC MIXR", NULL, "Mono Right Filter"}, {"IF2 ADC L", NULL, "Mono ADC MIXL"}, {"IF2 ADC R", NULL, "Mono ADC MIXR"}, {"IF1 ADC L", NULL, "Stereo ADC MIXL"}, {"IF1 ADC R", NULL, "Stereo ADC MIXR"}, {"IF1 ADC", NULL, "I2S1"}, {"IF1 ADC", NULL, "IF1 ADC L"}, {"IF1 ADC", NULL, "IF1 ADC R"}, {"IF2 ADC", NULL, "I2S2"}, {"IF2 ADC", NULL, "IF2 ADC L"}, {"IF2 ADC", NULL, "IF2 ADC R"}, {"DAI1 TX Mux", "1:1|2:2", "IF1 ADC"}, {"DAI1 TX Mux", "1:2|2:1", "IF2 ADC"}, {"DAI1 IF1 Mux", "1:1|2:1", "IF1 ADC"}, {"DAI1 IF2 Mux", "1:1|2:1", "IF2 ADC"}, {"SDI1 TX Mux", "IF1", "DAI1 IF1 Mux"}, {"SDI1 TX Mux", "IF2", "DAI1 IF2 Mux"}, {"DAI2 TX Mux", "1:2|2:1", "IF1 ADC"}, {"DAI2 TX Mux", "1:1|2:2", "IF2 ADC"}, {"DAI2 IF1 Mux", "1:2|2:2", "IF1 ADC"}, {"DAI2 IF2 Mux", "1:2|2:2", "IF2 ADC"}, {"SDI2 TX Mux", "IF1", "DAI2 IF1 Mux"}, {"SDI2 TX Mux", "IF2", "DAI2 IF2 Mux"}, {"AIF1TX", NULL, "DAI1 TX Mux"}, {"AIF1TX", NULL, "SDI1 TX Mux"}, {"AIF2TX", NULL, "DAI2 TX Mux"}, {"AIF2TX", NULL, "SDI2 TX Mux"}, {"DAI1 RX Mux", "1:1|2:2", "AIF1RX"}, {"DAI1 RX Mux", "1:1|2:1", "AIF1RX"}, {"DAI1 RX Mux", "1:2|2:1", "AIF2RX"}, {"DAI1 RX Mux", "1:2|2:2", "AIF2RX"}, {"DAI2 RX Mux", "1:2|2:1", "AIF1RX"}, {"DAI2 RX Mux", "1:1|2:1", "AIF1RX"}, {"DAI2 RX Mux", "1:1|2:2", "AIF2RX"}, {"DAI2 RX Mux", "1:2|2:2", "AIF2RX"}, {"IF1 DAC", NULL, "I2S1"}, {"IF1 DAC", NULL, "DAI1 RX Mux"}, {"IF2 DAC", NULL, "I2S2"}, {"IF2 DAC", NULL, "DAI2 RX Mux"}, {"IF1 DAC L", NULL, "IF1 DAC"}, {"IF1 DAC R", NULL, "IF1 DAC"}, {"IF2 DAC L", NULL, "IF2 DAC"}, {"IF2 DAC R", NULL, "IF2 DAC"}, {"DAC MIXL", "Stereo ADC Switch", "Stereo ADC MIXL"}, {"DAC MIXL", "INF1 Switch", "IF1 DAC L"}, {"DAC MIXL", NULL, "DAC L1 Power"}, {"DAC MIXR", "Stereo ADC Switch", "Stereo ADC MIXR"}, {"DAC MIXR", "INF1 Switch", "IF1 DAC R"}, {"DAC MIXR", NULL, "DAC R1 Power"}, {"Stereo DAC MIXL", "DAC L1 Switch", "DAC MIXL"}, {"Stereo DAC MIXR", "DAC R1 Switch", "DAC MIXR"}, {"Mono DAC MIXL", "DAC L1 Switch", "DAC MIXL"}, {"Mono DAC MIXR", "DAC R1 Switch", "DAC MIXR"}, {"DIG MIXL", "DAC L1 Switch", "DAC MIXL"}, {"DIG MIXR", "DAC R1 Switch", "DAC MIXR"}, {"DAC L1", NULL, "Stereo DAC MIXL"}, {"DAC L1", NULL, "DAC L1 Power"}, {"DAC R1", NULL, "Stereo DAC MIXR"}, {"DAC R1", NULL, "DAC R1 Power"}, {"SPK MIXL", "REC MIXL Switch", "RECMIXL"}, {"SPK MIXL", "INL Switch", "INL VOL"}, {"SPK MIXL", "DAC L1 Switch", "DAC L1"}, {"SPK MIXL", "OUT MIXL Switch", "OUT MIXL"}, {"SPK MIXR", "REC MIXR Switch", "RECMIXR"}, {"SPK MIXR", "INR Switch", "INR VOL"}, {"SPK MIXR", "DAC R1 Switch", "DAC R1"}, {"SPK MIXR", "OUT MIXR Switch", "OUT MIXR"}, {"OUT MIXL", "BST1 Switch", "BST1"}, {"OUT MIXL", "INL Switch", "INL VOL"}, {"OUT MIXL", "REC MIXL Switch", "RECMIXL"}, {"OUT MIXL", "DAC L1 Switch", "DAC L1"}, {"OUT MIXR", "BST2 Switch", "BST2"}, {"OUT MIXR", "BST1 Switch", "BST1"}, {"OUT MIXR", "INR Switch", "INR VOL"}, {"OUT MIXR", "REC MIXR Switch", "RECMIXR"}, {"OUT MIXR", "DAC R1 Switch", "DAC R1"}, {"SPKVOL L", NULL, "SPK MIXL"}, {"SPKVOL R", NULL, "SPK MIXR"}, {"HPOVOL L", NULL, "OUT MIXL"}, {"HPOVOL R", NULL, "OUT MIXR"}, {"OUTVOL L", NULL, "OUT MIXL"}, {"OUTVOL R", NULL, "OUT MIXR"}, {"SPOL MIX", "DAC R1 Switch", "DAC R1"}, {"SPOL MIX", "DAC L1 Switch", "DAC L1"}, {"SPOL MIX", "SPKVOL R Switch", "SPKVOL R"}, {"SPOL MIX", "SPKVOL L Switch", "SPKVOL L"}, {"SPOL MIX", "BST1 Switch", "BST1"}, {"SPOR MIX", "DAC R1 Switch", "DAC R1"}, {"SPOR MIX", "SPKVOL R Switch", "SPKVOL R"}, {"SPOR MIX", "BST1 Switch", "BST1"}, {"HPO MIX L", "HPO MIX DAC1 Switch", "DAC L1"}, {"HPO MIX L", "HPO MIX HPVOL Switch", "HPOVOL L"}, {"HPO MIX L", NULL, "HP L Amp"}, {"HPO MIX R", "HPO MIX DAC1 Switch", "DAC R1"}, {"HPO MIX R", "HPO MIX HPVOL Switch", "HPOVOL R"}, {"HPO MIX R", NULL, "HP R Amp"}, {"LOUT MIX", "DAC L1 Switch", "DAC L1"}, {"LOUT MIX", "DAC R1 Switch", "DAC R1"}, {"LOUT MIX", "OUTVOL L Switch", "OUTVOL L"}, {"LOUT MIX", "OUTVOL R Switch", "OUTVOL R"}, {"HP Amp", NULL, "HPO MIX L"}, {"HP Amp", NULL, "HPO MIX R"}, {"Speaker L Playback", "Switch", "SPOL MIX"}, {"Speaker R Playback", "Switch", "SPOR MIX"}, {"SPOLP", NULL, "Speaker L Playback"}, {"SPOLN", NULL, "Speaker L Playback"}, {"SPORP", NULL, "Speaker R Playback"}, {"SPORN", NULL, "Speaker R Playback"}, {"SPOLP", NULL, "Improve SPK Amp Drv"}, {"SPOLN", NULL, "Improve SPK Amp Drv"}, {"SPORP", NULL, "Improve SPK Amp Drv"}, {"SPORN", NULL, "Improve SPK Amp Drv"}, {"HPOL", NULL, "Improve HP Amp Drv"}, {"HPOR", NULL, "Improve HP Amp Drv"}, {"HP L Playback", "Switch", "HP Amp"}, {"HP R Playback", "Switch", "HP Amp"}, {"HPOL", NULL, "HP L Playback"}, {"HPOR", NULL, "HP R Playback"}, {"LOUT amp", NULL, "LOUT MIX"}, {"LOUTL", NULL, "LOUT amp"}, {"LOUTR", NULL, "LOUT amp"}, }; static const struct snd_soc_dapm_route rt5640_specific_dapm_routes[] = { {"ANC", NULL, "Stereo ADC MIXL"}, {"ANC", NULL, "Stereo ADC MIXR"}, {"Audio DSP", NULL, "DAC MIXL"}, {"Audio DSP", NULL, "DAC MIXR"}, {"DAC L2 Mux", "IF2", "IF2 DAC L"}, {"DAC L2 Mux", "Base L/R", "Audio DSP"}, {"DAC L2 Mux", NULL, "DAC L2 Power"}, {"DAC R2 Mux", "IF2", "IF2 DAC R"}, {"DAC R2 Mux", NULL, "DAC R2 Power"}, {"Stereo DAC MIXL", "DAC L2 Switch", "DAC L2 Mux"}, {"Stereo DAC MIXL", "ANC Switch", "ANC"}, {"Stereo DAC MIXR", "DAC R2 Switch", "DAC R2 Mux"}, {"Stereo DAC MIXR", "ANC Switch", "ANC"}, {"Mono DAC MIXL", "DAC L2 Switch", "DAC L2 Mux"}, {"Mono DAC MIXL", "DAC R2 Switch", "DAC R2 Mux"}, {"Mono DAC MIXR", "DAC R2 Switch", "DAC R2 Mux"}, {"Mono DAC MIXR", "DAC L2 Switch", "DAC L2 Mux"}, {"DIG MIXR", "DAC R2 Switch", "DAC R2 Mux"}, {"DIG MIXL", "DAC L2 Switch", "DAC L2 Mux"}, {"DAC L2", NULL, "Mono DAC MIXL"}, {"DAC L2", NULL, "DAC L2 Power"}, {"DAC R2", NULL, "Mono DAC MIXR"}, {"DAC R2", NULL, "DAC R2 Power"}, {"SPK MIXL", "DAC L2 Switch", "DAC L2"}, {"SPK MIXR", "DAC R2 Switch", "DAC R2"}, {"OUT MIXL", "SPK MIXL Switch", "SPK MIXL"}, {"OUT MIXR", "SPK MIXR Switch", "SPK MIXR"}, {"OUT MIXL", "DAC R2 Switch", "DAC R2"}, {"OUT MIXL", "DAC L2 Switch", "DAC L2"}, {"OUT MIXR", "DAC L2 Switch", "DAC L2"}, {"OUT MIXR", "DAC R2 Switch", "DAC R2"}, {"HPO MIX L", "HPO MIX DAC2 Switch", "DAC L2"}, {"HPO MIX R", "HPO MIX DAC2 Switch", "DAC R2"}, {"Mono MIX", "DAC R2 Switch", "DAC R2"}, {"Mono MIX", "DAC L2 Switch", "DAC L2"}, {"Mono MIX", "OUTVOL R Switch", "OUTVOL R"}, {"Mono MIX", "OUTVOL L Switch", "OUTVOL L"}, {"Mono MIX", "BST1 Switch", "BST1"}, {"MONOP", NULL, "Mono MIX"}, {"MONON", NULL, "Mono MIX"}, {"MONOP", NULL, "Improve MONO Amp Drv"}, }; static const struct snd_soc_dapm_route rt5639_specific_dapm_routes[] = { {"Stereo DAC MIXL", "DAC L2 Switch", "IF2 DAC L"}, {"Stereo DAC MIXR", "DAC R2 Switch", "IF2 DAC R"}, {"Mono DAC MIXL", "DAC L2 Switch", "IF2 DAC L"}, {"Mono DAC MIXL", "DAC R2 Switch", "IF2 DAC R"}, {"Mono DAC MIXR", "DAC R2 Switch", "IF2 DAC R"}, {"Mono DAC MIXR", "DAC L2 Switch", "IF2 DAC L"}, {"DIG MIXL", "DAC L2 Switch", "IF2 DAC L"}, {"DIG MIXR", "DAC R2 Switch", "IF2 DAC R"}, {"IF2 DAC L", NULL, "DAC L2 Power"}, {"IF2 DAC R", NULL, "DAC R2 Power"}, }; static int get_sdp_info(struct snd_soc_component *component, int dai_id) { int ret = 0, val; if (component == NULL) return -EINVAL; val = snd_soc_component_read(component, RT5640_I2S1_SDP); val = (val & RT5640_I2S_IF_MASK) >> RT5640_I2S_IF_SFT; switch (dai_id) { case RT5640_AIF1: switch (val) { case RT5640_IF_123: case RT5640_IF_132: ret |= RT5640_U_IF1; break; case RT5640_IF_113: ret |= RT5640_U_IF1; fallthrough; case RT5640_IF_312: case RT5640_IF_213: ret |= RT5640_U_IF2; break; } break; case RT5640_AIF2: switch (val) { case RT5640_IF_231: case RT5640_IF_213: ret |= RT5640_U_IF1; break; case RT5640_IF_223: ret |= RT5640_U_IF1; fallthrough; case RT5640_IF_123: case RT5640_IF_321: ret |= RT5640_U_IF2; break; } break; default: ret = -EINVAL; break; } return ret; } static int rt5640_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); unsigned int val_len = 0, val_clk, mask_clk; int dai_sel, pre_div, bclk_ms, frame_size; rt5640->lrck[dai->id] = params_rate(params); pre_div = rl6231_get_clk_info(rt5640->sysclk, rt5640->lrck[dai->id]); if (pre_div < 0) { dev_err(component->dev, "Unsupported clock setting %d for DAI %d\n", rt5640->lrck[dai->id], dai->id); return -EINVAL; } frame_size = snd_soc_params_to_frame_size(params); if (frame_size < 0) { dev_err(component->dev, "Unsupported frame size: %d\n", frame_size); return frame_size; } if (frame_size > 32) bclk_ms = 1; else bclk_ms = 0; rt5640->bclk[dai->id] = rt5640->lrck[dai->id] * (32 << bclk_ms); dev_dbg(dai->dev, "bclk is %dHz and lrck is %dHz\n", rt5640->bclk[dai->id], rt5640->lrck[dai->id]); dev_dbg(dai->dev, "bclk_ms is %d and pre_div is %d for iis %d\n", bclk_ms, pre_div, dai->id); switch (params_width(params)) { case 16: break; case 20: val_len |= RT5640_I2S_DL_20; break; case 24: val_len |= RT5640_I2S_DL_24; break; case 8: val_len |= RT5640_I2S_DL_8; break; default: return -EINVAL; } dai_sel = get_sdp_info(component, dai->id); if (dai_sel < 0) { dev_err(component->dev, "Failed to get sdp info: %d\n", dai_sel); return -EINVAL; } if (dai_sel & RT5640_U_IF1) { mask_clk = RT5640_I2S_BCLK_MS1_MASK | RT5640_I2S_PD1_MASK; val_clk = bclk_ms << RT5640_I2S_BCLK_MS1_SFT | pre_div << RT5640_I2S_PD1_SFT; snd_soc_component_update_bits(component, RT5640_I2S1_SDP, RT5640_I2S_DL_MASK, val_len); snd_soc_component_update_bits(component, RT5640_ADDA_CLK1, mask_clk, val_clk); } if (dai_sel & RT5640_U_IF2) { mask_clk = RT5640_I2S_BCLK_MS2_MASK | RT5640_I2S_PD2_MASK; val_clk = bclk_ms << RT5640_I2S_BCLK_MS2_SFT | pre_div << RT5640_I2S_PD2_SFT; snd_soc_component_update_bits(component, RT5640_I2S2_SDP, RT5640_I2S_DL_MASK, val_len); snd_soc_component_update_bits(component, RT5640_ADDA_CLK1, mask_clk, val_clk); } return 0; } static int rt5640_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *component = dai->component; struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); unsigned int reg_val = 0; int dai_sel; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: rt5640->master[dai->id] = 1; break; case SND_SOC_DAIFMT_CBS_CFS: reg_val |= RT5640_I2S_MS_S; rt5640->master[dai->id] = 0; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: reg_val |= RT5640_I2S_BP_INV; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: break; case SND_SOC_DAIFMT_LEFT_J: reg_val |= RT5640_I2S_DF_LEFT; break; case SND_SOC_DAIFMT_DSP_A: reg_val |= RT5640_I2S_DF_PCM_A; break; case SND_SOC_DAIFMT_DSP_B: reg_val |= RT5640_I2S_DF_PCM_B; break; default: return -EINVAL; } dai_sel = get_sdp_info(component, dai->id); if (dai_sel < 0) { dev_err(component->dev, "Failed to get sdp info: %d\n", dai_sel); return -EINVAL; } if (dai_sel & RT5640_U_IF1) { snd_soc_component_update_bits(component, RT5640_I2S1_SDP, RT5640_I2S_MS_MASK | RT5640_I2S_BP_MASK | RT5640_I2S_DF_MASK, reg_val); } if (dai_sel & RT5640_U_IF2) { snd_soc_component_update_bits(component, RT5640_I2S2_SDP, RT5640_I2S_MS_MASK | RT5640_I2S_BP_MASK | RT5640_I2S_DF_MASK, reg_val); } return 0; } static int rt5640_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = dai->component; struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); unsigned int reg_val = 0; unsigned int pll_bit = 0; int ret; switch (clk_id) { case RT5640_SCLK_S_MCLK: ret = clk_set_rate(rt5640->mclk, freq); if (ret) return ret; reg_val |= RT5640_SCLK_SRC_MCLK; break; case RT5640_SCLK_S_PLL1: reg_val |= RT5640_SCLK_SRC_PLL1; pll_bit |= RT5640_PWR_PLL; break; case RT5640_SCLK_S_RCCLK: reg_val |= RT5640_SCLK_SRC_RCCLK; break; default: dev_err(component->dev, "Invalid clock id (%d)\n", clk_id); return -EINVAL; } snd_soc_component_update_bits(component, RT5640_PWR_ANLG2, RT5640_PWR_PLL, pll_bit); snd_soc_component_update_bits(component, RT5640_GLB_CLK, RT5640_SCLK_SRC_MASK, reg_val); rt5640->sysclk = freq; rt5640->sysclk_src = clk_id; dev_dbg(dai->dev, "Sysclk is %dHz and clock id is %d\n", freq, clk_id); return 0; } static int rt5640_set_dai_pll(struct snd_soc_dai *dai, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct snd_soc_component *component = dai->component; struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); struct rl6231_pll_code pll_code; int ret; if (source == rt5640->pll_src && freq_in == rt5640->pll_in && freq_out == rt5640->pll_out) return 0; if (!freq_in || !freq_out) { dev_dbg(component->dev, "PLL disabled\n"); rt5640->pll_in = 0; rt5640->pll_out = 0; snd_soc_component_update_bits(component, RT5640_GLB_CLK, RT5640_SCLK_SRC_MASK, RT5640_SCLK_SRC_MCLK); return 0; } switch (source) { case RT5640_PLL1_S_MCLK: snd_soc_component_update_bits(component, RT5640_GLB_CLK, RT5640_PLL1_SRC_MASK, RT5640_PLL1_SRC_MCLK); break; case RT5640_PLL1_S_BCLK1: snd_soc_component_update_bits(component, RT5640_GLB_CLK, RT5640_PLL1_SRC_MASK, RT5640_PLL1_SRC_BCLK1); break; case RT5640_PLL1_S_BCLK2: snd_soc_component_update_bits(component, RT5640_GLB_CLK, RT5640_PLL1_SRC_MASK, RT5640_PLL1_SRC_BCLK2); break; default: dev_err(component->dev, "Unknown PLL source %d\n", source); return -EINVAL; } ret = rl6231_pll_calc(freq_in, freq_out, &pll_code); if (ret < 0) { dev_err(component->dev, "Unsupported input clock %d\n", freq_in); return ret; } dev_dbg(component->dev, "bypass=%d m=%d n=%d k=%d\n", pll_code.m_bp, (pll_code.m_bp ? 0 : pll_code.m_code), pll_code.n_code, pll_code.k_code); snd_soc_component_write(component, RT5640_PLL_CTRL1, (pll_code.n_code << RT5640_PLL_N_SFT) | pll_code.k_code); snd_soc_component_write(component, RT5640_PLL_CTRL2, ((pll_code.m_bp ? 0 : pll_code.m_code) << RT5640_PLL_M_SFT) | (pll_code.m_bp << RT5640_PLL_M_BP_SFT)); rt5640->pll_in = freq_in; rt5640->pll_out = freq_out; rt5640->pll_src = source; return 0; } static int rt5640_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); int ret; switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: /* * SND_SOC_BIAS_PREPARE is called while preparing for a * transition to ON or away from ON. If current bias_level * is SND_SOC_BIAS_ON, then it is preparing for a transition * away from ON. Disable the clock in that case, otherwise * enable it. */ if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_ON) { clk_disable_unprepare(rt5640->mclk); } else { ret = clk_prepare_enable(rt5640->mclk); if (ret) return ret; } break; case SND_SOC_BIAS_STANDBY: if (SND_SOC_BIAS_OFF == snd_soc_component_get_bias_level(component)) { snd_soc_component_update_bits(component, RT5640_PWR_ANLG1, RT5640_PWR_VREF1 | RT5640_PWR_MB | RT5640_PWR_BG | RT5640_PWR_VREF2, RT5640_PWR_VREF1 | RT5640_PWR_MB | RT5640_PWR_BG | RT5640_PWR_VREF2); usleep_range(10000, 15000); snd_soc_component_update_bits(component, RT5640_PWR_ANLG1, RT5640_PWR_FV1 | RT5640_PWR_FV2, RT5640_PWR_FV1 | RT5640_PWR_FV2); snd_soc_component_update_bits(component, RT5640_DUMMY1, 0x1, 0x1); snd_soc_component_update_bits(component, RT5640_MICBIAS, 0x0030, 0x0030); } break; case SND_SOC_BIAS_OFF: snd_soc_component_write(component, RT5640_DEPOP_M1, 0x0004); snd_soc_component_write(component, RT5640_DEPOP_M2, 0x1100); snd_soc_component_update_bits(component, RT5640_DUMMY1, 0x1, 0); snd_soc_component_write(component, RT5640_PWR_DIG1, 0x0000); snd_soc_component_write(component, RT5640_PWR_DIG2, 0x0000); snd_soc_component_write(component, RT5640_PWR_VOL, 0x0000); snd_soc_component_write(component, RT5640_PWR_MIXER, 0x0000); if (rt5640->jd_src == RT5640_JD_SRC_HDA_HEADER) snd_soc_component_write(component, RT5640_PWR_ANLG1, 0x2818); else snd_soc_component_write(component, RT5640_PWR_ANLG1, 0x0000); snd_soc_component_write(component, RT5640_PWR_ANLG2, 0x0000); break; default: break; } return 0; } int rt5640_dmic_enable(struct snd_soc_component *component, bool dmic1_data_pin, bool dmic2_data_pin) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); regmap_update_bits(rt5640->regmap, RT5640_GPIO_CTRL1, RT5640_GP2_PIN_MASK, RT5640_GP2_PIN_DMIC1_SCL); if (dmic1_data_pin) { regmap_update_bits(rt5640->regmap, RT5640_DMIC, RT5640_DMIC_1_DP_MASK, RT5640_DMIC_1_DP_GPIO3); regmap_update_bits(rt5640->regmap, RT5640_GPIO_CTRL1, RT5640_GP3_PIN_MASK, RT5640_GP3_PIN_DMIC1_SDA); } if (dmic2_data_pin) { regmap_update_bits(rt5640->regmap, RT5640_DMIC, RT5640_DMIC_2_DP_MASK, RT5640_DMIC_2_DP_GPIO4); regmap_update_bits(rt5640->regmap, RT5640_GPIO_CTRL1, RT5640_GP4_PIN_MASK, RT5640_GP4_PIN_DMIC2_SDA); } return 0; } EXPORT_SYMBOL_GPL(rt5640_dmic_enable); int rt5640_sel_asrc_clk_src(struct snd_soc_component *component, unsigned int filter_mask, unsigned int clk_src) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); unsigned int asrc2_mask = 0; unsigned int asrc2_value = 0; switch (clk_src) { case RT5640_CLK_SEL_SYS: case RT5640_CLK_SEL_ASRC: break; default: return -EINVAL; } if (!filter_mask) return -EINVAL; if (filter_mask & RT5640_DA_STEREO_FILTER) { asrc2_mask |= RT5640_STO_DAC_M_MASK; asrc2_value = (asrc2_value & ~RT5640_STO_DAC_M_MASK) | (clk_src << RT5640_STO_DAC_M_SFT); } if (filter_mask & RT5640_DA_MONO_L_FILTER) { asrc2_mask |= RT5640_MDA_L_M_MASK; asrc2_value = (asrc2_value & ~RT5640_MDA_L_M_MASK) | (clk_src << RT5640_MDA_L_M_SFT); } if (filter_mask & RT5640_DA_MONO_R_FILTER) { asrc2_mask |= RT5640_MDA_R_M_MASK; asrc2_value = (asrc2_value & ~RT5640_MDA_R_M_MASK) | (clk_src << RT5640_MDA_R_M_SFT); } if (filter_mask & RT5640_AD_STEREO_FILTER) { asrc2_mask |= RT5640_ADC_M_MASK; asrc2_value = (asrc2_value & ~RT5640_ADC_M_MASK) | (clk_src << RT5640_ADC_M_SFT); } if (filter_mask & RT5640_AD_MONO_L_FILTER) { asrc2_mask |= RT5640_MAD_L_M_MASK; asrc2_value = (asrc2_value & ~RT5640_MAD_L_M_MASK) | (clk_src << RT5640_MAD_L_M_SFT); } if (filter_mask & RT5640_AD_MONO_R_FILTER) { asrc2_mask |= RT5640_MAD_R_M_MASK; asrc2_value = (asrc2_value & ~RT5640_MAD_R_M_MASK) | (clk_src << RT5640_MAD_R_M_SFT); } snd_soc_component_update_bits(component, RT5640_ASRC_2, asrc2_mask, asrc2_value); if (snd_soc_component_read(component, RT5640_ASRC_2)) { rt5640->asrc_en = true; snd_soc_component_update_bits(component, RT5640_JD_CTRL, 0x3, 0x3); } else { rt5640->asrc_en = false; snd_soc_component_update_bits(component, RT5640_JD_CTRL, 0x3, 0x0); } return 0; } EXPORT_SYMBOL_GPL(rt5640_sel_asrc_clk_src); void rt5640_enable_micbias1_for_ovcd(struct snd_soc_component *component) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); snd_soc_dapm_mutex_lock(dapm); snd_soc_dapm_force_enable_pin_unlocked(dapm, "LDO2"); snd_soc_dapm_force_enable_pin_unlocked(dapm, "MICBIAS1"); /* OVCD is unreliable when used with RCCLK as sysclk-source */ if (rt5640->use_platform_clock) snd_soc_dapm_force_enable_pin_unlocked(dapm, "Platform Clock"); snd_soc_dapm_sync_unlocked(dapm); snd_soc_dapm_mutex_unlock(dapm); } EXPORT_SYMBOL_GPL(rt5640_enable_micbias1_for_ovcd); void rt5640_disable_micbias1_for_ovcd(struct snd_soc_component *component) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); snd_soc_dapm_mutex_lock(dapm); if (rt5640->use_platform_clock) snd_soc_dapm_disable_pin_unlocked(dapm, "Platform Clock"); snd_soc_dapm_disable_pin_unlocked(dapm, "MICBIAS1"); snd_soc_dapm_disable_pin_unlocked(dapm, "LDO2"); snd_soc_dapm_sync_unlocked(dapm); snd_soc_dapm_mutex_unlock(dapm); } EXPORT_SYMBOL_GPL(rt5640_disable_micbias1_for_ovcd); static void rt5640_enable_micbias1_ovcd_irq(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); snd_soc_component_update_bits(component, RT5640_IRQ_CTRL2, RT5640_IRQ_MB1_OC_MASK, RT5640_IRQ_MB1_OC_NOR); rt5640->ovcd_irq_enabled = true; } static void rt5640_disable_micbias1_ovcd_irq(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); snd_soc_component_update_bits(component, RT5640_IRQ_CTRL2, RT5640_IRQ_MB1_OC_MASK, RT5640_IRQ_MB1_OC_BP); rt5640->ovcd_irq_enabled = false; } static void rt5640_clear_micbias1_ovcd(struct snd_soc_component *component) { snd_soc_component_update_bits(component, RT5640_IRQ_CTRL2, RT5640_MB1_OC_STATUS, 0); } static bool rt5640_micbias1_ovcd(struct snd_soc_component *component) { int val; val = snd_soc_component_read(component, RT5640_IRQ_CTRL2); dev_dbg(component->dev, "irq ctrl2 %#04x\n", val); return (val & RT5640_MB1_OC_STATUS); } static bool rt5640_jack_inserted(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); int val; if (rt5640->jd_gpio) val = gpiod_get_value(rt5640->jd_gpio) ? RT5640_JD_STATUS : 0; else val = snd_soc_component_read(component, RT5640_INT_IRQ_ST); dev_dbg(component->dev, "irq status %#04x\n", val); if (rt5640->jd_inverted) return !(val & RT5640_JD_STATUS); else return (val & RT5640_JD_STATUS); } /* Jack detect and button-press timings */ #define JACK_SETTLE_TIME 100 /* milli seconds */ #define JACK_DETECT_COUNT 5 #define JACK_DETECT_MAXCOUNT 20 /* Aprox. 2 seconds worth of tries */ #define JACK_UNPLUG_TIME 80 /* milli seconds */ #define BP_POLL_TIME 10 /* milli seconds */ #define BP_POLL_MAXCOUNT 200 /* assume something is wrong after this */ #define BP_THRESHOLD 3 static void rt5640_start_button_press_work(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); rt5640->poll_count = 0; rt5640->press_count = 0; rt5640->release_count = 0; rt5640->pressed = false; rt5640->press_reported = false; rt5640_clear_micbias1_ovcd(component); schedule_delayed_work(&rt5640->bp_work, msecs_to_jiffies(BP_POLL_TIME)); } static void rt5640_button_press_work(struct work_struct *work) { struct rt5640_priv *rt5640 = container_of(work, struct rt5640_priv, bp_work.work); struct snd_soc_component *component = rt5640->component; /* Check the jack was not removed underneath us */ if (!rt5640_jack_inserted(component)) return; if (rt5640_micbias1_ovcd(component)) { rt5640->release_count = 0; rt5640->press_count++; /* Remember till after JACK_UNPLUG_TIME wait */ if (rt5640->press_count >= BP_THRESHOLD) rt5640->pressed = true; rt5640_clear_micbias1_ovcd(component); } else { rt5640->press_count = 0; rt5640->release_count++; } /* * The pins get temporarily shorted on jack unplug, so we poll for * at least JACK_UNPLUG_TIME milli-seconds before reporting a press. */ rt5640->poll_count++; if (rt5640->poll_count < (JACK_UNPLUG_TIME / BP_POLL_TIME)) { schedule_delayed_work(&rt5640->bp_work, msecs_to_jiffies(BP_POLL_TIME)); return; } if (rt5640->pressed && !rt5640->press_reported) { dev_dbg(component->dev, "headset button press\n"); snd_soc_jack_report(rt5640->jack, SND_JACK_BTN_0, SND_JACK_BTN_0); rt5640->press_reported = true; } if (rt5640->release_count >= BP_THRESHOLD) { if (rt5640->press_reported) { dev_dbg(component->dev, "headset button release\n"); snd_soc_jack_report(rt5640->jack, 0, SND_JACK_BTN_0); } /* Re-enable OVCD IRQ to detect next press */ rt5640_enable_micbias1_ovcd_irq(component); return; /* Stop polling */ } schedule_delayed_work(&rt5640->bp_work, msecs_to_jiffies(BP_POLL_TIME)); } int rt5640_detect_headset(struct snd_soc_component *component, struct gpio_desc *hp_det_gpio) { int i, headset_count = 0, headphone_count = 0; /* * We get the insertion event before the jack is fully inserted at which * point the second ring on a TRRS connector may short the 2nd ring and * sleeve contacts, also the overcurrent detection is not entirely * reliable. So we try several times with a wait in between until we * detect the same type JACK_DETECT_COUNT times in a row. */ for (i = 0; i < JACK_DETECT_MAXCOUNT; i++) { /* Clear any previous over-current status flag */ rt5640_clear_micbias1_ovcd(component); msleep(JACK_SETTLE_TIME); /* Check the jack is still connected before checking ovcd */ if (hp_det_gpio) { if (gpiod_get_value_cansleep(hp_det_gpio)) return 0; } else { if (!rt5640_jack_inserted(component)) return 0; } if (rt5640_micbias1_ovcd(component)) { /* * Over current detected, there is a short between the * 2nd ring contact and the ground, so a TRS connector * without a mic contact and thus plain headphones. */ dev_dbg(component->dev, "jack mic-gnd shorted\n"); headset_count = 0; headphone_count++; if (headphone_count == JACK_DETECT_COUNT) return SND_JACK_HEADPHONE; } else { dev_dbg(component->dev, "jack mic-gnd open\n"); headphone_count = 0; headset_count++; if (headset_count == JACK_DETECT_COUNT) return SND_JACK_HEADSET; } } dev_err(component->dev, "Error detecting headset vs headphones, bad contact?, assuming headphones\n"); return SND_JACK_HEADPHONE; } EXPORT_SYMBOL_GPL(rt5640_detect_headset); static void rt5640_jack_work(struct work_struct *work) { struct rt5640_priv *rt5640 = container_of(work, struct rt5640_priv, jack_work.work); struct snd_soc_component *component = rt5640->component; int status; if (rt5640->jd_src == RT5640_JD_SRC_HDA_HEADER) { int val, jack_type = 0, hda_mic_plugged, hda_hp_plugged; /* mic jack */ val = snd_soc_component_read(component, RT5640_INT_IRQ_ST); hda_mic_plugged = !(val & RT5640_JD_STATUS); dev_dbg(component->dev, "mic jack status %d\n", hda_mic_plugged); snd_soc_component_update_bits(component, RT5640_IRQ_CTRL1, RT5640_JD_P_MASK, !hda_mic_plugged << RT5640_JD_P_SFT); if (hda_mic_plugged) jack_type |= SND_JACK_MICROPHONE; /* headphone jack */ val = snd_soc_component_read(component, RT5640_DUMMY2); hda_hp_plugged = !(val & (0x1 << 11)); dev_dbg(component->dev, "headphone jack status %d\n", hda_hp_plugged); snd_soc_component_update_bits(component, RT5640_DUMMY2, (0x1 << 10), !hda_hp_plugged << 10); if (hda_hp_plugged) jack_type |= SND_JACK_HEADPHONE; snd_soc_jack_report(rt5640->jack, jack_type, SND_JACK_HEADSET); return; } if (!rt5640_jack_inserted(component)) { /* Jack removed, or spurious IRQ? */ if (rt5640->jack->status & SND_JACK_HEADPHONE) { if (rt5640->jack->status & SND_JACK_MICROPHONE) { cancel_delayed_work_sync(&rt5640->bp_work); rt5640_disable_micbias1_ovcd_irq(component); rt5640_disable_micbias1_for_ovcd(component); } snd_soc_jack_report(rt5640->jack, 0, SND_JACK_HEADSET | SND_JACK_BTN_0); dev_dbg(component->dev, "jack unplugged\n"); } } else if (!(rt5640->jack->status & SND_JACK_HEADPHONE)) { /* Jack inserted */ WARN_ON(rt5640->ovcd_irq_enabled); rt5640_enable_micbias1_for_ovcd(component); status = rt5640_detect_headset(component, NULL); if (status == SND_JACK_HEADSET) { /* Enable ovcd IRQ for button press detect. */ rt5640_enable_micbias1_ovcd_irq(component); } else { /* No more need for overcurrent detect. */ rt5640_disable_micbias1_for_ovcd(component); } dev_dbg(component->dev, "detect status %#02x\n", status); snd_soc_jack_report(rt5640->jack, status, SND_JACK_HEADSET); } else if (rt5640->ovcd_irq_enabled && rt5640_micbias1_ovcd(component)) { dev_dbg(component->dev, "OVCD IRQ\n"); /* * The ovcd IRQ keeps firing while the button is pressed, so * we disable it and start polling the button until released. * * The disable will make the IRQ pin 0 again and since we get * IRQs on both edges (so as to detect both jack plugin and * unplug) this means we will immediately get another IRQ. * The ovcd_irq_enabled check above makes the 2ND IRQ a NOP. */ rt5640_disable_micbias1_ovcd_irq(component); rt5640_start_button_press_work(component); /* * If the jack-detect IRQ flag goes high (unplug) after our * above rt5640_jack_inserted() check and before we have * disabled the OVCD IRQ, the IRQ pin will stay high and as * we react to edges, we miss the unplug event -> recheck. */ queue_delayed_work(system_long_wq, &rt5640->jack_work, 0); } } static irqreturn_t rt5640_irq(int irq, void *data) { struct rt5640_priv *rt5640 = data; int delay = 0; if (rt5640->jd_src == RT5640_JD_SRC_HDA_HEADER) delay = 100; if (rt5640->jack) mod_delayed_work(system_long_wq, &rt5640->jack_work, delay); return IRQ_HANDLED; } static irqreturn_t rt5640_jd_gpio_irq(int irq, void *data) { struct rt5640_priv *rt5640 = data; queue_delayed_work(system_long_wq, &rt5640->jack_work, msecs_to_jiffies(JACK_SETTLE_TIME)); return IRQ_HANDLED; } static void rt5640_cancel_work(void *data) { struct rt5640_priv *rt5640 = data; cancel_delayed_work_sync(&rt5640->jack_work); cancel_delayed_work_sync(&rt5640->bp_work); } void rt5640_set_ovcd_params(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); snd_soc_component_write(component, RT5640_PR_BASE + RT5640_BIAS_CUR4, 0xa800 | rt5640->ovcd_sf); snd_soc_component_update_bits(component, RT5640_MICBIAS, RT5640_MIC1_OVTH_MASK | RT5640_MIC1_OVCD_MASK, rt5640->ovcd_th | RT5640_MIC1_OVCD_EN); /* * The over-current-detect is only reliable in detecting the absence * of over-current, when the mic-contact in the jack is short-circuited, * the hardware periodically retries if it can apply the bias-current * leading to the ovcd status flip-flopping 1-0-1 with it being 0 about * 10% of the time, as we poll the ovcd status bit we might hit that * 10%, so we enable sticky mode and when checking OVCD we clear the * status, msleep() a bit and then check to get a reliable reading. */ snd_soc_component_update_bits(component, RT5640_IRQ_CTRL2, RT5640_MB1_OC_STKY_MASK, RT5640_MB1_OC_STKY_EN); } EXPORT_SYMBOL_GPL(rt5640_set_ovcd_params); static void rt5640_disable_jack_detect(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); /* * soc_remove_component() force-disables jack and thus rt5640->jack * could be NULL at the time of driver's module unloading. */ if (!rt5640->jack) return; if (rt5640->jd_gpio_irq_requested) free_irq(rt5640->jd_gpio_irq, rt5640); if (rt5640->irq_requested) free_irq(rt5640->irq, rt5640); rt5640_cancel_work(rt5640); if (rt5640->jack->status & SND_JACK_MICROPHONE) { rt5640_disable_micbias1_ovcd_irq(component); rt5640_disable_micbias1_for_ovcd(component); snd_soc_jack_report(rt5640->jack, 0, SND_JACK_BTN_0); } rt5640->jd_gpio_irq_requested = false; rt5640->irq_requested = false; rt5640->jd_gpio = NULL; rt5640->jack = NULL; } static void rt5640_enable_jack_detect(struct snd_soc_component *component, struct snd_soc_jack *jack, struct rt5640_set_jack_data *jack_data) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); int ret; /* Select JD-source */ snd_soc_component_update_bits(component, RT5640_JD_CTRL, RT5640_JD_MASK, rt5640->jd_src << RT5640_JD_SFT); /* Selecting GPIO01 as an interrupt */ snd_soc_component_update_bits(component, RT5640_GPIO_CTRL1, RT5640_GP1_PIN_MASK, RT5640_GP1_PIN_IRQ); /* Set GPIO1 output */ snd_soc_component_update_bits(component, RT5640_GPIO_CTRL3, RT5640_GP1_PF_MASK, RT5640_GP1_PF_OUT); snd_soc_component_write(component, RT5640_DUMMY1, 0x3f41); rt5640_set_ovcd_params(component); /* * All IRQs get or-ed together, so we need the jack IRQ to report 0 * when a jack is inserted so that the OVCD IRQ then toggles the IRQ * pin 0/1 instead of it being stuck to 1. So we invert the JD polarity * on systems where the hardware does not already do this. */ if (rt5640->jd_inverted) { if (rt5640->jd_src == RT5640_JD_SRC_JD1_IN4P) snd_soc_component_write(component, RT5640_IRQ_CTRL1, RT5640_IRQ_JD_NOR); else if (rt5640->jd_src == RT5640_JD_SRC_JD2_IN4N) snd_soc_component_update_bits(component, RT5640_DUMMY2, RT5640_IRQ_JD2_MASK | RT5640_JD2_MASK, RT5640_IRQ_JD2_NOR | RT5640_JD2_EN); } else { if (rt5640->jd_src == RT5640_JD_SRC_JD1_IN4P) snd_soc_component_write(component, RT5640_IRQ_CTRL1, RT5640_IRQ_JD_NOR | RT5640_JD_P_INV); else if (rt5640->jd_src == RT5640_JD_SRC_JD2_IN4N) snd_soc_component_update_bits(component, RT5640_DUMMY2, RT5640_IRQ_JD2_MASK | RT5640_JD2_P_MASK | RT5640_JD2_MASK, RT5640_IRQ_JD2_NOR | RT5640_JD2_P_INV | RT5640_JD2_EN); } rt5640->jack = jack; if (rt5640->jack->status & SND_JACK_MICROPHONE) { rt5640_enable_micbias1_for_ovcd(component); rt5640_enable_micbias1_ovcd_irq(component); } if (jack_data && jack_data->codec_irq_override) rt5640->irq = jack_data->codec_irq_override; if (jack_data && jack_data->jd_gpio) { rt5640->jd_gpio = jack_data->jd_gpio; rt5640->jd_gpio_irq = gpiod_to_irq(rt5640->jd_gpio); ret = request_irq(rt5640->jd_gpio_irq, rt5640_jd_gpio_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "rt5640-jd-gpio", rt5640); if (ret) { dev_warn(component->dev, "Failed to request jd GPIO IRQ %d: %d\n", rt5640->jd_gpio_irq, ret); rt5640_disable_jack_detect(component); return; } rt5640->jd_gpio_irq_requested = true; } if (jack_data && jack_data->use_platform_clock) rt5640->use_platform_clock = jack_data->use_platform_clock; ret = request_irq(rt5640->irq, rt5640_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "rt5640", rt5640); if (ret) { dev_warn(component->dev, "Failed to request IRQ %d: %d\n", rt5640->irq, ret); rt5640_disable_jack_detect(component); return; } rt5640->irq_requested = true; /* sync initial jack state */ queue_delayed_work(system_long_wq, &rt5640->jack_work, 0); } static const struct snd_soc_dapm_route rt5640_hda_jack_dapm_routes[] = { {"IN1P", NULL, "MICBIAS1"}, {"IN2P", NULL, "MICBIAS1"}, {"IN3P", NULL, "MICBIAS1"}, }; static void rt5640_enable_hda_jack_detect( struct snd_soc_component *component, struct snd_soc_jack *jack) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); int ret; /* Select JD1 for Mic */ snd_soc_component_update_bits(component, RT5640_JD_CTRL, RT5640_JD_MASK, RT5640_JD_JD1_IN4P); snd_soc_component_write(component, RT5640_IRQ_CTRL1, RT5640_IRQ_JD_NOR); /* Select JD2 for Headphone */ snd_soc_component_update_bits(component, RT5640_DUMMY2, 0x1100, 0x1100); /* Selecting GPIO01 as an interrupt */ snd_soc_component_update_bits(component, RT5640_GPIO_CTRL1, RT5640_GP1_PIN_MASK, RT5640_GP1_PIN_IRQ); /* Set GPIO1 output */ snd_soc_component_update_bits(component, RT5640_GPIO_CTRL3, RT5640_GP1_PF_MASK, RT5640_GP1_PF_OUT); snd_soc_component_update_bits(component, RT5640_DUMMY1, 0x400, 0x0); snd_soc_component_update_bits(component, RT5640_PWR_ANLG1, RT5640_PWR_VREF2 | RT5640_PWR_MB | RT5640_PWR_BG, RT5640_PWR_VREF2 | RT5640_PWR_MB | RT5640_PWR_BG); usleep_range(10000, 15000); snd_soc_component_update_bits(component, RT5640_PWR_ANLG1, RT5640_PWR_FV2, RT5640_PWR_FV2); rt5640->jack = jack; ret = request_irq(rt5640->irq, rt5640_irq, IRQF_TRIGGER_RISING | IRQF_ONESHOT, "rt5640", rt5640); if (ret) { dev_warn(component->dev, "Failed to request IRQ %d: %d\n", rt5640->irq, ret); rt5640->jack = NULL; return; } rt5640->irq_requested = true; /* sync initial jack state */ queue_delayed_work(system_long_wq, &rt5640->jack_work, 0); snd_soc_dapm_add_routes(dapm, rt5640_hda_jack_dapm_routes, ARRAY_SIZE(rt5640_hda_jack_dapm_routes)); } static int rt5640_set_jack(struct snd_soc_component *component, struct snd_soc_jack *jack, void *data) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); if (jack) { if (rt5640->jd_src == RT5640_JD_SRC_HDA_HEADER) rt5640_enable_hda_jack_detect(component, jack); else rt5640_enable_jack_detect(component, jack, data); } else { rt5640_disable_jack_detect(component); } return 0; } static int rt5640_probe(struct snd_soc_component *component) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); u32 dmic1_data_pin = 0; u32 dmic2_data_pin = 0; bool dmic_en = false; u32 val; /* Check if MCLK provided */ rt5640->mclk = devm_clk_get_optional(component->dev, "mclk"); if (IS_ERR(rt5640->mclk)) return PTR_ERR(rt5640->mclk); rt5640->component = component; snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); snd_soc_component_update_bits(component, RT5640_DUMMY1, 0x0301, 0x0301); snd_soc_component_update_bits(component, RT5640_MICBIAS, 0x0030, 0x0030); snd_soc_component_update_bits(component, RT5640_DSP_PATH2, 0xfc00, 0x0c00); switch (snd_soc_component_read(component, RT5640_RESET) & RT5640_ID_MASK) { case RT5640_ID_5640: case RT5640_ID_5642: snd_soc_add_component_controls(component, rt5640_specific_snd_controls, ARRAY_SIZE(rt5640_specific_snd_controls)); snd_soc_dapm_new_controls(dapm, rt5640_specific_dapm_widgets, ARRAY_SIZE(rt5640_specific_dapm_widgets)); snd_soc_dapm_add_routes(dapm, rt5640_specific_dapm_routes, ARRAY_SIZE(rt5640_specific_dapm_routes)); break; case RT5640_ID_5639: snd_soc_dapm_new_controls(dapm, rt5639_specific_dapm_widgets, ARRAY_SIZE(rt5639_specific_dapm_widgets)); snd_soc_dapm_add_routes(dapm, rt5639_specific_dapm_routes, ARRAY_SIZE(rt5639_specific_dapm_routes)); break; default: dev_err(component->dev, "The driver is for RT5639 RT5640 or RT5642 only\n"); return -ENODEV; } /* * Note on some platforms the platform code may need to add device-props * rather then relying only on properties set by the firmware. * Therefor the property parsing MUST be done here, rather then from * rt5640_i2c_probe(), so that the platform-code can attach extra * properties before calling snd_soc_register_card(). */ if (device_property_read_bool(component->dev, "realtek,in1-differential")) snd_soc_component_update_bits(component, RT5640_IN1_IN2, RT5640_IN_DF1, RT5640_IN_DF1); if (device_property_read_bool(component->dev, "realtek,in2-differential")) snd_soc_component_update_bits(component, RT5640_IN3_IN4, RT5640_IN_DF2, RT5640_IN_DF2); if (device_property_read_bool(component->dev, "realtek,in3-differential")) snd_soc_component_update_bits(component, RT5640_IN1_IN2, RT5640_IN_DF2, RT5640_IN_DF2); if (device_property_read_bool(component->dev, "realtek,lout-differential")) snd_soc_component_update_bits(component, RT5640_DUMMY1, RT5640_EN_LOUT_DF, RT5640_EN_LOUT_DF); if (device_property_read_u32(component->dev, "realtek,dmic1-data-pin", &val) == 0 && val) { dmic1_data_pin = val - 1; dmic_en = true; } if (device_property_read_u32(component->dev, "realtek,dmic2-data-pin", &val) == 0 && val) { dmic2_data_pin = val - 1; dmic_en = true; } if (dmic_en) rt5640_dmic_enable(component, dmic1_data_pin, dmic2_data_pin); if (device_property_read_u32(component->dev, "realtek,jack-detect-source", &val) == 0) { if (val <= RT5640_JD_SRC_HDA_HEADER) rt5640->jd_src = val; else dev_warn(component->dev, "Warning: Invalid jack-detect-source value: %d, leaving jack-detect disabled\n", val); } if (!device_property_read_bool(component->dev, "realtek,jack-detect-not-inverted")) rt5640->jd_inverted = true; /* * Testing on various boards has shown that good defaults for the OVCD * threshold and scale-factor are 2000µA and 0.75. For an effective * limit of 1500µA, this seems to be more reliable then 1500µA and 1.0. */ rt5640->ovcd_th = RT5640_MIC1_OVTH_2000UA; rt5640->ovcd_sf = RT5640_MIC_OVCD_SF_0P75; if (device_property_read_u32(component->dev, "realtek,over-current-threshold-microamp", &val) == 0) { switch (val) { case 600: rt5640->ovcd_th = RT5640_MIC1_OVTH_600UA; break; case 1500: rt5640->ovcd_th = RT5640_MIC1_OVTH_1500UA; break; case 2000: rt5640->ovcd_th = RT5640_MIC1_OVTH_2000UA; break; default: dev_warn(component->dev, "Warning: Invalid over-current-threshold-microamp value: %d, defaulting to 2000uA\n", val); } } if (device_property_read_u32(component->dev, "realtek,over-current-scale-factor", &val) == 0) { if (val <= RT5640_OVCD_SF_1P5) rt5640->ovcd_sf = val << RT5640_MIC_OVCD_SF_SFT; else dev_warn(component->dev, "Warning: Invalid over-current-scale-factor value: %d, defaulting to 0.75\n", val); } return 0; } static void rt5640_remove(struct snd_soc_component *component) { rt5640_reset(component); } #ifdef CONFIG_PM static int rt5640_suspend(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); if (rt5640->jack) { /* disable jack interrupts during system suspend */ disable_irq(rt5640->irq); rt5640_cancel_work(rt5640); } snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF); rt5640_reset(component); regcache_cache_only(rt5640->regmap, true); regcache_mark_dirty(rt5640->regmap); if (rt5640->ldo1_en) gpiod_set_value_cansleep(rt5640->ldo1_en, 0); return 0; } static int rt5640_resume(struct snd_soc_component *component) { struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component); if (rt5640->ldo1_en) { gpiod_set_value_cansleep(rt5640->ldo1_en, 1); msleep(400); } regcache_cache_only(rt5640->regmap, false); regcache_sync(rt5640->regmap); if (rt5640->jack) { if (rt5640->jd_src == RT5640_JD_SRC_HDA_HEADER) { snd_soc_component_update_bits(component, RT5640_DUMMY2, 0x1100, 0x1100); } else { if (rt5640->jd_inverted) { if (rt5640->jd_src == RT5640_JD_SRC_JD2_IN4N) snd_soc_component_update_bits( component, RT5640_DUMMY2, RT5640_IRQ_JD2_MASK | RT5640_JD2_MASK, RT5640_IRQ_JD2_NOR | RT5640_JD2_EN); } else { if (rt5640->jd_src == RT5640_JD_SRC_JD2_IN4N) snd_soc_component_update_bits( component, RT5640_DUMMY2, RT5640_IRQ_JD2_MASK | RT5640_JD2_P_MASK | RT5640_JD2_MASK, RT5640_IRQ_JD2_NOR | RT5640_JD2_P_INV | RT5640_JD2_EN); } } enable_irq(rt5640->irq); queue_delayed_work(system_long_wq, &rt5640->jack_work, 0); } return 0; } #else #define rt5640_suspend NULL #define rt5640_resume NULL #endif #define RT5640_STEREO_RATES SNDRV_PCM_RATE_8000_96000 #define RT5640_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S8) static const struct snd_soc_dai_ops rt5640_aif_dai_ops = { .hw_params = rt5640_hw_params, .set_fmt = rt5640_set_dai_fmt, .set_sysclk = rt5640_set_dai_sysclk, .set_pll = rt5640_set_dai_pll, }; static struct snd_soc_dai_driver rt5640_dai[] = { { .name = "rt5640-aif1", .id = RT5640_AIF1, .playback = { .stream_name = "AIF1 Playback", .channels_min = 1, .channels_max = 2, .rates = RT5640_STEREO_RATES, .formats = RT5640_FORMATS, }, .capture = { .stream_name = "AIF1 Capture", .channels_min = 1, .channels_max = 2, .rates = RT5640_STEREO_RATES, .formats = RT5640_FORMATS, }, .ops = &rt5640_aif_dai_ops, }, { .name = "rt5640-aif2", .id = RT5640_AIF2, .playback = { .stream_name = "AIF2 Playback", .channels_min = 1, .channels_max = 2, .rates = RT5640_STEREO_RATES, .formats = RT5640_FORMATS, }, .capture = { .stream_name = "AIF2 Capture", .channels_min = 1, .channels_max = 2, .rates = RT5640_STEREO_RATES, .formats = RT5640_FORMATS, }, .ops = &rt5640_aif_dai_ops, }, }; static const struct snd_soc_component_driver soc_component_dev_rt5640 = { .probe = rt5640_probe, .remove = rt5640_remove, .suspend = rt5640_suspend, .resume = rt5640_resume, .set_bias_level = rt5640_set_bias_level, .set_jack = rt5640_set_jack, .controls = rt5640_snd_controls, .num_controls = ARRAY_SIZE(rt5640_snd_controls), .dapm_widgets = rt5640_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(rt5640_dapm_widgets), .dapm_routes = rt5640_dapm_routes, .num_dapm_routes = ARRAY_SIZE(rt5640_dapm_routes), .use_pmdown_time = 1, .endianness = 1, }; static const struct regmap_config rt5640_regmap = { .reg_bits = 8, .val_bits = 16, .use_single_read = true, .use_single_write = true, .max_register = RT5640_VENDOR_ID2 + 1 + (ARRAY_SIZE(rt5640_ranges) * RT5640_PR_SPACING), .volatile_reg = rt5640_volatile_register, .readable_reg = rt5640_readable_register, .cache_type = REGCACHE_MAPLE, .reg_defaults = rt5640_reg, .num_reg_defaults = ARRAY_SIZE(rt5640_reg), .ranges = rt5640_ranges, .num_ranges = ARRAY_SIZE(rt5640_ranges), }; static const struct i2c_device_id rt5640_i2c_id[] = { { "rt5640" }, { "rt5639" }, { "rt5642" }, { } }; MODULE_DEVICE_TABLE(i2c, rt5640_i2c_id); #if defined(CONFIG_OF) static const struct of_device_id rt5640_of_match[] = { { .compatible = "realtek,rt5639", }, { .compatible = "realtek,rt5640", }, {}, }; MODULE_DEVICE_TABLE(of, rt5640_of_match); #endif #ifdef CONFIG_ACPI static const struct acpi_device_id rt5640_acpi_match[] = { { "INT33CA", 0 }, { "10EC3276", 0 }, { "10EC5640", 0 }, { "10EC5642", 0 }, { "INTCCFFD", 0 }, { }, }; MODULE_DEVICE_TABLE(acpi, rt5640_acpi_match); #endif static int rt5640_i2c_probe(struct i2c_client *i2c) { struct rt5640_priv *rt5640; int ret; unsigned int val; rt5640 = devm_kzalloc(&i2c->dev, sizeof(struct rt5640_priv), GFP_KERNEL); if (NULL == rt5640) return -ENOMEM; i2c_set_clientdata(i2c, rt5640); rt5640->ldo1_en = devm_gpiod_get_optional(&i2c->dev, "realtek,ldo1-en", GPIOD_OUT_HIGH); if (IS_ERR(rt5640->ldo1_en)) return PTR_ERR(rt5640->ldo1_en); if (rt5640->ldo1_en) { gpiod_set_consumer_name(rt5640->ldo1_en, "RT5640 LDO1_EN"); msleep(400); } rt5640->regmap = devm_regmap_init_i2c(i2c, &rt5640_regmap); if (IS_ERR(rt5640->regmap)) { ret = PTR_ERR(rt5640->regmap); dev_err(&i2c->dev, "Failed to allocate register map: %d\n", ret); return ret; } regmap_read(rt5640->regmap, RT5640_VENDOR_ID2, &val); if (val != RT5640_DEVICE_ID) { dev_err(&i2c->dev, "Device with ID register %#x is not rt5640/39\n", val); return -ENODEV; } regmap_write(rt5640->regmap, RT5640_RESET, 0); ret = regmap_register_patch(rt5640->regmap, init_list, ARRAY_SIZE(init_list)); if (ret != 0) dev_warn(&i2c->dev, "Failed to apply regmap patch: %d\n", ret); regmap_update_bits(rt5640->regmap, RT5640_DUMMY1, RT5640_MCLK_DET, RT5640_MCLK_DET); rt5640->hp_mute = true; rt5640->irq = i2c->irq; INIT_DELAYED_WORK(&rt5640->bp_work, rt5640_button_press_work); INIT_DELAYED_WORK(&rt5640->jack_work, rt5640_jack_work); /* Make sure work is stopped on probe-error / remove */ ret = devm_add_action_or_reset(&i2c->dev, rt5640_cancel_work, rt5640); if (ret) return ret; return devm_snd_soc_register_component(&i2c->dev, &soc_component_dev_rt5640, rt5640_dai, ARRAY_SIZE(rt5640_dai)); } static struct i2c_driver rt5640_i2c_driver = { .driver = { .name = "rt5640", .acpi_match_table = ACPI_PTR(rt5640_acpi_match), .of_match_table = of_match_ptr(rt5640_of_match), }, .probe = rt5640_i2c_probe, .id_table = rt5640_i2c_id, }; module_i2c_driver(rt5640_i2c_driver); MODULE_DESCRIPTION("ASoC RT5640/RT5639 driver"); MODULE_AUTHOR("Johnny Hsu <johnnyhsu@realtek.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1