Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andreas Dannenberg | 2829 | 87.72% | 5 | 26.32% |
Steffen Aschbacher | 190 | 5.89% | 2 | 10.53% |
Kuninori Morimoto | 164 | 5.09% | 3 | 15.79% |
Alexandru Ardelean | 16 | 0.50% | 1 | 5.26% |
Stephen Kitt | 10 | 0.31% | 1 | 5.26% |
Ying Liu | 6 | 0.19% | 1 | 5.26% |
Mark Brown | 3 | 0.09% | 1 | 5.26% |
Bhumika Goyal | 3 | 0.09% | 1 | 5.26% |
Thomas Gleixner | 1 | 0.03% | 1 | 5.26% |
Alexander A. Klimov | 1 | 0.03% | 1 | 5.26% |
Uwe Kleine-König | 1 | 0.03% | 1 | 5.26% |
Arvind Yadav | 1 | 0.03% | 1 | 5.26% |
Total | 3225 | 19 |
// SPDX-License-Identifier: GPL-2.0-only /* * tas5720.c - ALSA SoC Texas Instruments TAS5720 Mono Audio Amplifier * * Copyright (C)2015-2016 Texas Instruments Incorporated - https://www.ti.com * * Author: Andreas Dannenberg <dannenberg@ti.com> */ #include <linux/module.h> #include <linux/errno.h> #include <linux/device.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/regulator/consumer.h> #include <linux/delay.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/soc-dapm.h> #include <sound/tlv.h> #include "tas5720.h" /* Define how often to check (and clear) the fault status register (in ms) */ #define TAS5720_FAULT_CHECK_INTERVAL 200 enum tas572x_type { TAS5720, TAS5720A_Q1, TAS5722, }; static const char * const tas5720_supply_names[] = { "dvdd", /* Digital power supply. Connect to 3.3-V supply. */ "pvdd", /* Class-D amp and analog power supply (connected). */ }; #define TAS5720_NUM_SUPPLIES ARRAY_SIZE(tas5720_supply_names) struct tas5720_data { struct snd_soc_component *component; struct regmap *regmap; struct i2c_client *tas5720_client; enum tas572x_type devtype; struct regulator_bulk_data supplies[TAS5720_NUM_SUPPLIES]; struct delayed_work fault_check_work; unsigned int last_fault; }; static int tas5720_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; unsigned int rate = params_rate(params); bool ssz_ds; int ret; switch (rate) { case 44100: case 48000: ssz_ds = false; break; case 88200: case 96000: ssz_ds = true; break; default: dev_err(component->dev, "unsupported sample rate: %u\n", rate); return -EINVAL; } ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG, TAS5720_SSZ_DS, ssz_ds); if (ret < 0) { dev_err(component->dev, "error setting sample rate: %d\n", ret); return ret; } return 0; } static int tas5720_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *component = dai->component; u8 serial_format; int ret; if ((fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) != SND_SOC_DAIFMT_CBC_CFC) { dev_vdbg(component->dev, "DAI clocking invalid\n"); return -EINVAL; } switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK | SND_SOC_DAIFMT_INV_MASK)) { case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF): /* 1st data bit occur one BCLK cycle after the frame sync */ serial_format = TAS5720_SAIF_I2S; break; case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_NB_NF): /* * Note that although the TAS5720 does not have a dedicated DSP * mode it doesn't care about the LRCLK duty cycle during TDM * operation. Therefore we can use the device's I2S mode with * its delaying of the 1st data bit to receive DSP_A formatted * data. See device datasheet for additional details. */ serial_format = TAS5720_SAIF_I2S; break; case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_NB_NF): /* * Similar to DSP_A, we can use the fact that the TAS5720 does * not care about the LRCLK duty cycle during TDM to receive * DSP_B formatted data in LEFTJ mode (no delaying of the 1st * data bit). */ serial_format = TAS5720_SAIF_LEFTJ; break; case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF): /* No delay after the frame sync */ serial_format = TAS5720_SAIF_LEFTJ; break; default: dev_vdbg(component->dev, "DAI Format is not found\n"); return -EINVAL; } ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG, TAS5720_SAIF_FORMAT_MASK, serial_format); if (ret < 0) { dev_err(component->dev, "error setting SAIF format: %d\n", ret); return ret; } return 0; } static int tas5720_set_dai_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = dai->component; struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component); unsigned int first_slot; int ret; if (!tx_mask) { dev_err(component->dev, "tx masks must not be 0\n"); return -EINVAL; } /* * Determine the first slot that is being requested. We will only * use the first slot that is found since the TAS5720 is a mono * amplifier. */ first_slot = __ffs(tx_mask); if (first_slot > 7) { dev_err(component->dev, "slot selection out of bounds (%u)\n", first_slot); return -EINVAL; } /* * Enable manual TDM slot selection (instead of I2C ID based). * This is not applicable to TAS5720A-Q1. */ switch (tas5720->devtype) { case TAS5720A_Q1: break; default: ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL1_REG, TAS5720_TDM_CFG_SRC, TAS5720_TDM_CFG_SRC); if (ret < 0) goto error_snd_soc_component_update_bits; /* Configure the TDM slot to process audio from */ ret = snd_soc_component_update_bits(component, TAS5720_DIGITAL_CTRL2_REG, TAS5720_TDM_SLOT_SEL_MASK, first_slot); if (ret < 0) goto error_snd_soc_component_update_bits; break; } /* Configure TDM slot width. This is only applicable to TAS5722. */ switch (tas5720->devtype) { case TAS5722: ret = snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG, TAS5722_TDM_SLOT_16B, slot_width == 16 ? TAS5722_TDM_SLOT_16B : 0); if (ret < 0) goto error_snd_soc_component_update_bits; break; default: break; } return 0; error_snd_soc_component_update_bits: dev_err(component->dev, "error configuring TDM mode: %d\n", ret); return ret; } static int tas5720_mute_soc_component(struct snd_soc_component *component, int mute) { struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component); unsigned int reg, mask; int ret; switch (tas5720->devtype) { case TAS5720A_Q1: reg = TAS5720_Q1_VOLUME_CTRL_CFG_REG; mask = TAS5720_Q1_MUTE; break; default: reg = TAS5720_DIGITAL_CTRL2_REG; mask = TAS5720_MUTE; break; } ret = snd_soc_component_update_bits(component, reg, mask, mute ? mask : 0); if (ret < 0) { dev_err(component->dev, "error (un-)muting device: %d\n", ret); return ret; } return 0; } static int tas5720_mute(struct snd_soc_dai *dai, int mute, int direction) { return tas5720_mute_soc_component(dai->component, mute); } static void tas5720_fault_check_work(struct work_struct *work) { struct tas5720_data *tas5720 = container_of(work, struct tas5720_data, fault_check_work.work); struct device *dev = tas5720->component->dev; unsigned int curr_fault; int ret; ret = regmap_read(tas5720->regmap, TAS5720_FAULT_REG, &curr_fault); if (ret < 0) { dev_err(dev, "failed to read FAULT register: %d\n", ret); goto out; } /* Check/handle all errors except SAIF clock errors */ curr_fault &= TAS5720_OCE | TAS5720_DCE | TAS5720_OTE; /* * Only flag errors once for a given occurrence. This is needed as * the TAS5720 will take time clearing the fault condition internally * during which we don't want to bombard the system with the same * error message over and over. */ if ((curr_fault & TAS5720_OCE) && !(tas5720->last_fault & TAS5720_OCE)) dev_crit(dev, "experienced an over current hardware fault\n"); if ((curr_fault & TAS5720_DCE) && !(tas5720->last_fault & TAS5720_DCE)) dev_crit(dev, "experienced a DC detection fault\n"); if ((curr_fault & TAS5720_OTE) && !(tas5720->last_fault & TAS5720_OTE)) dev_crit(dev, "experienced an over temperature fault\n"); /* Store current fault value so we can detect any changes next time */ tas5720->last_fault = curr_fault; if (!curr_fault) goto out; /* * Periodically toggle SDZ (shutdown bit) H->L->H to clear any latching * faults as long as a fault condition persists. Always going through * the full sequence no matter the first return value to minimizes * chances for the device to end up in shutdown mode. */ ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG, TAS5720_SDZ, 0); if (ret < 0) dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret); ret = regmap_write_bits(tas5720->regmap, TAS5720_POWER_CTRL_REG, TAS5720_SDZ, TAS5720_SDZ); if (ret < 0) dev_err(dev, "failed to write POWER_CTRL register: %d\n", ret); out: /* Schedule the next fault check at the specified interval */ schedule_delayed_work(&tas5720->fault_check_work, msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL)); } static int tas5720_codec_probe(struct snd_soc_component *component) { struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component); unsigned int device_id, expected_device_id; int ret; tas5720->component = component; ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies), tas5720->supplies); if (ret != 0) { dev_err(component->dev, "failed to enable supplies: %d\n", ret); return ret; } /* * Take a liberal approach to checking the device ID to allow the * driver to be used even if the device ID does not match, however * issue a warning if there is a mismatch. */ ret = regmap_read(tas5720->regmap, TAS5720_DEVICE_ID_REG, &device_id); if (ret < 0) { dev_err(component->dev, "failed to read device ID register: %d\n", ret); goto probe_fail; } switch (tas5720->devtype) { case TAS5720: expected_device_id = TAS5720_DEVICE_ID; break; case TAS5720A_Q1: expected_device_id = TAS5720A_Q1_DEVICE_ID; break; case TAS5722: expected_device_id = TAS5722_DEVICE_ID; break; default: dev_err(component->dev, "unexpected private driver data\n"); ret = -EINVAL; goto probe_fail; } if (device_id != expected_device_id) dev_warn(component->dev, "wrong device ID. expected: %u read: %u\n", expected_device_id, device_id); /* Set device to mute */ ret = tas5720_mute_soc_component(component, 1); if (ret < 0) goto error_snd_soc_component_update_bits; /* Set Bit 7 in TAS5720_ANALOG_CTRL_REG to 1 for TAS5720A_Q1 */ switch (tas5720->devtype) { case TAS5720A_Q1: ret = snd_soc_component_update_bits(component, TAS5720_ANALOG_CTRL_REG, TAS5720_Q1_RESERVED7_BIT, TAS5720_Q1_RESERVED7_BIT); break; default: break; } if (ret < 0) goto error_snd_soc_component_update_bits; /* * Enter shutdown mode - our default when not playing audio - to * minimize current consumption. On the TAS5720 there is no real down * side doing so as all device registers are preserved and the wakeup * of the codec is rather quick which we do using a dapm widget. */ ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG, TAS5720_SDZ, 0); if (ret < 0) goto error_snd_soc_component_update_bits; INIT_DELAYED_WORK(&tas5720->fault_check_work, tas5720_fault_check_work); return 0; error_snd_soc_component_update_bits: dev_err(component->dev, "error configuring device registers: %d\n", ret); probe_fail: regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies), tas5720->supplies); return ret; } static void tas5720_codec_remove(struct snd_soc_component *component) { struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component); int ret; cancel_delayed_work_sync(&tas5720->fault_check_work); ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies), tas5720->supplies); if (ret < 0) dev_err(component->dev, "failed to disable supplies: %d\n", ret); }; static int tas5720_dac_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component); int ret; if (event & SND_SOC_DAPM_POST_PMU) { /* Take TAS5720 out of shutdown mode */ ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG, TAS5720_SDZ, TAS5720_SDZ); if (ret < 0) { dev_err(component->dev, "error waking component: %d\n", ret); return ret; } /* * Observe codec shutdown-to-active time. The datasheet only * lists a nominal value however just use-it as-is without * additional padding to minimize the delay introduced in * starting to play audio (actually there is other setup done * by the ASoC framework that will provide additional delays, * so we should always be safe). */ msleep(25); /* Turn on TAS5720 periodic fault checking/handling */ tas5720->last_fault = 0; schedule_delayed_work(&tas5720->fault_check_work, msecs_to_jiffies(TAS5720_FAULT_CHECK_INTERVAL)); } else if (event & SND_SOC_DAPM_PRE_PMD) { /* Disable TAS5720 periodic fault checking/handling */ cancel_delayed_work_sync(&tas5720->fault_check_work); /* Place TAS5720 in shutdown mode to minimize current draw */ ret = snd_soc_component_update_bits(component, TAS5720_POWER_CTRL_REG, TAS5720_SDZ, 0); if (ret < 0) { dev_err(component->dev, "error shutting down component: %d\n", ret); return ret; } } return 0; } #ifdef CONFIG_PM static int tas5720_suspend(struct snd_soc_component *component) { struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component); int ret; regcache_cache_only(tas5720->regmap, true); regcache_mark_dirty(tas5720->regmap); ret = regulator_bulk_disable(ARRAY_SIZE(tas5720->supplies), tas5720->supplies); if (ret < 0) dev_err(component->dev, "failed to disable supplies: %d\n", ret); return ret; } static int tas5720_resume(struct snd_soc_component *component) { struct tas5720_data *tas5720 = snd_soc_component_get_drvdata(component); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(tas5720->supplies), tas5720->supplies); if (ret < 0) { dev_err(component->dev, "failed to enable supplies: %d\n", ret); return ret; } regcache_cache_only(tas5720->regmap, false); ret = regcache_sync(tas5720->regmap); if (ret < 0) { dev_err(component->dev, "failed to sync regcache: %d\n", ret); return ret; } return 0; } #else #define tas5720_suspend NULL #define tas5720_resume NULL #endif static bool tas5720_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case TAS5720_DEVICE_ID_REG: case TAS5720_FAULT_REG: return true; default: return false; } } static const struct regmap_config tas5720_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = TAS5720_MAX_REG, .cache_type = REGCACHE_RBTREE, .volatile_reg = tas5720_is_volatile_reg, }; static const struct regmap_config tas5720a_q1_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = TAS5720_MAX_REG, .cache_type = REGCACHE_RBTREE, .volatile_reg = tas5720_is_volatile_reg, }; static const struct regmap_config tas5722_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = TAS5722_MAX_REG, .cache_type = REGCACHE_RBTREE, .volatile_reg = tas5720_is_volatile_reg, }; /* * DAC analog gain. There are four discrete values to select from, ranging * from 19.2 dB to 26.3dB. */ static const DECLARE_TLV_DB_RANGE(dac_analog_tlv, 0x0, 0x0, TLV_DB_SCALE_ITEM(1920, 0, 0), 0x1, 0x1, TLV_DB_SCALE_ITEM(2070, 0, 0), 0x2, 0x2, TLV_DB_SCALE_ITEM(2350, 0, 0), 0x3, 0x3, TLV_DB_SCALE_ITEM(2630, 0, 0), ); /* * DAC analog gain for TAS5720A-Q1. There are three discrete values to select from, ranging * from 19.2 dB to 25.0dB. */ static const DECLARE_TLV_DB_RANGE(dac_analog_tlv_a_q1, 0x0, 0x0, TLV_DB_SCALE_ITEM(1920, 0, 0), 0x1, 0x1, TLV_DB_SCALE_ITEM(2260, 0, 0), 0x2, 0x2, TLV_DB_SCALE_ITEM(2500, 0, 0), ); /* * DAC digital volumes. From -103.5 to 24 dB in 0.5 dB or 0.25 dB steps * depending on the device. Note that setting the gain below -100 dB * (register value <0x7) is effectively a MUTE as per device datasheet. * * Note that for the TAS5722 the digital volume controls are actually split * over two registers, so we need custom getters/setters for access. */ static DECLARE_TLV_DB_SCALE(tas5720_dac_tlv, -10350, 50, 0); static DECLARE_TLV_DB_SCALE(tas5722_dac_tlv, -10350, 25, 0); static int tas5722_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); unsigned int val; val = snd_soc_component_read(component, TAS5720_VOLUME_CTRL_REG); ucontrol->value.integer.value[0] = val << 1; val = snd_soc_component_read(component, TAS5722_DIGITAL_CTRL2_REG); ucontrol->value.integer.value[0] |= val & TAS5722_VOL_CONTROL_LSB; return 0; } static int tas5722_volume_set(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); unsigned int sel = ucontrol->value.integer.value[0]; snd_soc_component_write(component, TAS5720_VOLUME_CTRL_REG, sel >> 1); snd_soc_component_update_bits(component, TAS5722_DIGITAL_CTRL2_REG, TAS5722_VOL_CONTROL_LSB, sel); return 0; } static const struct snd_kcontrol_new tas5720_snd_controls[] = { SOC_SINGLE_TLV("Speaker Driver Playback Volume", TAS5720_VOLUME_CTRL_REG, 0, 0xff, 0, tas5720_dac_tlv), SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG, TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv), }; static const struct snd_kcontrol_new tas5720a_q1_snd_controls[] = { SOC_DOUBLE_R_TLV("Speaker Driver Playback Volume", TAS5720_Q1_VOLUME_CTRL_LEFT_REG, TAS5720_Q1_VOLUME_CTRL_RIGHT_REG, 0, 0xff, 0, tas5720_dac_tlv), SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG, TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv_a_q1), }; static const struct snd_kcontrol_new tas5722_snd_controls[] = { SOC_SINGLE_EXT_TLV("Speaker Driver Playback Volume", 0, 0, 511, 0, tas5722_volume_get, tas5722_volume_set, tas5722_dac_tlv), SOC_SINGLE_TLV("Speaker Driver Analog Gain", TAS5720_ANALOG_CTRL_REG, TAS5720_ANALOG_GAIN_SHIFT, 3, 0, dac_analog_tlv), }; static const struct snd_soc_dapm_widget tas5720_dapm_widgets[] = { SND_SOC_DAPM_AIF_IN("DAC IN", "Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC_E("DAC", NULL, SND_SOC_NOPM, 0, 0, tas5720_dac_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_OUTPUT("OUT") }; static const struct snd_soc_dapm_route tas5720_audio_map[] = { { "DAC", NULL, "DAC IN" }, { "OUT", NULL, "DAC" }, }; static const struct snd_soc_component_driver soc_component_dev_tas5720 = { .probe = tas5720_codec_probe, .remove = tas5720_codec_remove, .suspend = tas5720_suspend, .resume = tas5720_resume, .controls = tas5720_snd_controls, .num_controls = ARRAY_SIZE(tas5720_snd_controls), .dapm_widgets = tas5720_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(tas5720_dapm_widgets), .dapm_routes = tas5720_audio_map, .num_dapm_routes = ARRAY_SIZE(tas5720_audio_map), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static const struct snd_soc_component_driver soc_component_dev_tas5720_a_q1 = { .probe = tas5720_codec_probe, .remove = tas5720_codec_remove, .suspend = tas5720_suspend, .resume = tas5720_resume, .controls = tas5720a_q1_snd_controls, .num_controls = ARRAY_SIZE(tas5720a_q1_snd_controls), .dapm_widgets = tas5720_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(tas5720_dapm_widgets), .dapm_routes = tas5720_audio_map, .num_dapm_routes = ARRAY_SIZE(tas5720_audio_map), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; static const struct snd_soc_component_driver soc_component_dev_tas5722 = { .probe = tas5720_codec_probe, .remove = tas5720_codec_remove, .suspend = tas5720_suspend, .resume = tas5720_resume, .controls = tas5722_snd_controls, .num_controls = ARRAY_SIZE(tas5722_snd_controls), .dapm_widgets = tas5720_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(tas5720_dapm_widgets), .dapm_routes = tas5720_audio_map, .num_dapm_routes = ARRAY_SIZE(tas5720_audio_map), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, }; /* PCM rates supported by the TAS5720 driver */ #define TAS5720_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 |\ SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000) /* Formats supported by TAS5720 driver */ #define TAS5720_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE |\ SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_LE) static const struct snd_soc_dai_ops tas5720_speaker_dai_ops = { .hw_params = tas5720_hw_params, .set_fmt = tas5720_set_dai_fmt, .set_tdm_slot = tas5720_set_dai_tdm_slot, .mute_stream = tas5720_mute, .no_capture_mute = 1, }; /* * TAS5720 DAI structure * * Note that were are advertising .playback.channels_max = 2 despite this being * a mono amplifier. The reason for that is that some serial ports such as TI's * McASP module have a minimum number of channels (2) that they can output. * Advertising more channels than we have will allow us to interface with such * a serial port without really any negative side effects as the TAS5720 will * simply ignore any extra channel(s) asides from the one channel that is * configured to be played back. */ static struct snd_soc_dai_driver tas5720_dai[] = { { .name = "tas5720-amplifier", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = TAS5720_RATES, .formats = TAS5720_FORMATS, }, .ops = &tas5720_speaker_dai_ops, }, }; static const struct i2c_device_id tas5720_id[] = { { "tas5720", TAS5720 }, { "tas5720a-q1", TAS5720A_Q1 }, { "tas5722", TAS5722 }, { } }; MODULE_DEVICE_TABLE(i2c, tas5720_id); static int tas5720_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct tas5720_data *data; const struct regmap_config *regmap_config; const struct i2c_device_id *id; int ret; int i; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; id = i2c_match_id(tas5720_id, client); data->tas5720_client = client; data->devtype = id->driver_data; switch (id->driver_data) { case TAS5720: regmap_config = &tas5720_regmap_config; break; case TAS5720A_Q1: regmap_config = &tas5720a_q1_regmap_config; break; case TAS5722: regmap_config = &tas5722_regmap_config; break; default: dev_err(dev, "unexpected private driver data\n"); return -EINVAL; } data->regmap = devm_regmap_init_i2c(client, regmap_config); if (IS_ERR(data->regmap)) { ret = PTR_ERR(data->regmap); dev_err(dev, "failed to allocate register map: %d\n", ret); return ret; } for (i = 0; i < ARRAY_SIZE(data->supplies); i++) data->supplies[i].supply = tas5720_supply_names[i]; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->supplies), data->supplies); if (ret != 0) { dev_err(dev, "failed to request supplies: %d\n", ret); return ret; } dev_set_drvdata(dev, data); switch (id->driver_data) { case TAS5720: ret = devm_snd_soc_register_component(&client->dev, &soc_component_dev_tas5720, tas5720_dai, ARRAY_SIZE(tas5720_dai)); break; case TAS5720A_Q1: ret = devm_snd_soc_register_component(&client->dev, &soc_component_dev_tas5720_a_q1, tas5720_dai, ARRAY_SIZE(tas5720_dai)); break; case TAS5722: ret = devm_snd_soc_register_component(&client->dev, &soc_component_dev_tas5722, tas5720_dai, ARRAY_SIZE(tas5720_dai)); break; default: dev_err(dev, "unexpected private driver data\n"); return -EINVAL; } if (ret < 0) { dev_err(dev, "failed to register component: %d\n", ret); return ret; } return 0; } #if IS_ENABLED(CONFIG_OF) static const struct of_device_id tas5720_of_match[] = { { .compatible = "ti,tas5720", }, { .compatible = "ti,tas5720a-q1", }, { .compatible = "ti,tas5722", }, { }, }; MODULE_DEVICE_TABLE(of, tas5720_of_match); #endif static struct i2c_driver tas5720_i2c_driver = { .driver = { .name = "tas5720", .of_match_table = of_match_ptr(tas5720_of_match), }, .probe = tas5720_probe, .id_table = tas5720_id, }; module_i2c_driver(tas5720_i2c_driver); MODULE_AUTHOR("Andreas Dannenberg <dannenberg@ti.com>"); MODULE_DESCRIPTION("TAS5720 Audio amplifier driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1