Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Peter Ujfalusi | 5876 | 87.78% | 45 | 56.96% |
Kuninori Morimoto | 358 | 5.35% | 5 | 6.33% |
Ilkka Koskinen | 201 | 3.00% | 1 | 1.27% |
Liam Girdwood | 126 | 1.88% | 1 | 1.27% |
Mark Brown | 52 | 0.78% | 5 | 6.33% |
Takashi Iwai | 27 | 0.40% | 2 | 2.53% |
Lars-Peter Clausen | 17 | 0.25% | 5 | 6.33% |
Axel Lin | 16 | 0.24% | 3 | 3.80% |
Bhaktipriya Shridhar | 6 | 0.09% | 1 | 1.27% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.27% |
Uwe Kleine-König | 2 | 0.03% | 2 | 2.53% |
Fabio Estevam | 2 | 0.03% | 1 | 1.27% |
Pierre-Louis Bossart | 2 | 0.03% | 1 | 1.27% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 1.27% |
Lucas De Marchi | 1 | 0.01% | 1 | 1.27% |
Sachin Kamat | 1 | 0.01% | 1 | 1.27% |
Linus Torvalds | 1 | 0.01% | 1 | 1.27% |
Felipe Balbi | 1 | 0.01% | 1 | 1.27% |
Bhumika Goyal | 1 | 0.01% | 1 | 1.27% |
Total | 6694 | 79 |
// SPDX-License-Identifier: GPL-2.0-only /* * ALSA SoC Texas Instruments TLV320DAC33 codec driver * * Author: Peter Ujfalusi <peter.ujfalusi@ti.com> * * Copyright: (C) 2009 Nokia Corporation */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/gpio.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/initval.h> #include <sound/tlv.h> #include <sound/tlv320dac33-plat.h> #include "tlv320dac33.h" /* * The internal FIFO is 24576 bytes long * It can be configured to hold 16bit or 24bit samples * In 16bit configuration the FIFO can hold 6144 stereo samples * In 24bit configuration the FIFO can hold 4096 stereo samples */ #define DAC33_FIFO_SIZE_16BIT 6144 #define DAC33_FIFO_SIZE_24BIT 4096 #define DAC33_MODE7_MARGIN 10 /* Safety margin for FIFO in Mode7 */ #define BURST_BASEFREQ_HZ 49152000 #define SAMPLES_TO_US(rate, samples) \ (1000000000 / (((rate) * 1000) / (samples))) #define US_TO_SAMPLES(rate, us) \ ((rate) / (1000000 / ((us) < 1000000 ? (us) : 1000000))) #define UTHR_FROM_PERIOD_SIZE(samples, playrate, burstrate) \ (((samples)*5000) / (((burstrate)*5000) / ((burstrate) - (playrate)))) static void dac33_calculate_times(struct snd_pcm_substream *substream, struct snd_soc_component *component); static int dac33_prepare_chip(struct snd_pcm_substream *substream, struct snd_soc_component *component); enum dac33_state { DAC33_IDLE = 0, DAC33_PREFILL, DAC33_PLAYBACK, DAC33_FLUSH, }; enum dac33_fifo_modes { DAC33_FIFO_BYPASS = 0, DAC33_FIFO_MODE1, DAC33_FIFO_MODE7, DAC33_FIFO_LAST_MODE, }; #define DAC33_NUM_SUPPLIES 3 static const char *dac33_supply_names[DAC33_NUM_SUPPLIES] = { "AVDD", "DVDD", "IOVDD", }; struct tlv320dac33_priv { struct mutex mutex; struct work_struct work; struct snd_soc_component *component; struct regulator_bulk_data supplies[DAC33_NUM_SUPPLIES]; struct snd_pcm_substream *substream; int power_gpio; int chip_power; int irq; unsigned int refclk; unsigned int alarm_threshold; /* set to be half of LATENCY_TIME_MS */ enum dac33_fifo_modes fifo_mode;/* FIFO mode selection */ unsigned int fifo_size; /* Size of the FIFO in samples */ unsigned int nsample; /* burst read amount from host */ int mode1_latency; /* latency caused by the i2c writes in * us */ u8 burst_bclkdiv; /* BCLK divider value in burst mode */ u8 *reg_cache; unsigned int burst_rate; /* Interface speed in Burst modes */ int keep_bclk; /* Keep the BCLK continuously running * in FIFO modes */ spinlock_t lock; unsigned long long t_stamp1; /* Time stamp for FIFO modes to */ unsigned long long t_stamp2; /* calculate the FIFO caused delay */ unsigned int mode1_us_burst; /* Time to burst read n number of * samples */ unsigned int mode7_us_to_lthr; /* Time to reach lthr from uthr */ unsigned int uthr; enum dac33_state state; struct i2c_client *i2c; }; static const u8 dac33_reg[DAC33_CACHEREGNUM] = { 0x00, 0x00, 0x00, 0x00, /* 0x00 - 0x03 */ 0x00, 0x00, 0x00, 0x00, /* 0x04 - 0x07 */ 0x00, 0x00, 0x00, 0x00, /* 0x08 - 0x0b */ 0x00, 0x00, 0x00, 0x00, /* 0x0c - 0x0f */ 0x00, 0x00, 0x00, 0x00, /* 0x10 - 0x13 */ 0x00, 0x00, 0x00, 0x00, /* 0x14 - 0x17 */ 0x00, 0x00, 0x00, 0x00, /* 0x18 - 0x1b */ 0x00, 0x00, 0x00, 0x00, /* 0x1c - 0x1f */ 0x00, 0x00, 0x00, 0x00, /* 0x20 - 0x23 */ 0x00, 0x00, 0x00, 0x00, /* 0x24 - 0x27 */ 0x00, 0x00, 0x00, 0x00, /* 0x28 - 0x2b */ 0x00, 0x00, 0x00, 0x80, /* 0x2c - 0x2f */ 0x80, 0x00, 0x00, 0x00, /* 0x30 - 0x33 */ 0x00, 0x00, 0x00, 0x00, /* 0x34 - 0x37 */ 0x00, 0x00, /* 0x38 - 0x39 */ /* Registers 0x3a - 0x3f are reserved */ 0x00, 0x00, /* 0x3a - 0x3b */ 0x00, 0x00, 0x00, 0x00, /* 0x3c - 0x3f */ 0x00, 0x00, 0x00, 0x00, /* 0x40 - 0x43 */ 0x00, 0x80, /* 0x44 - 0x45 */ /* Registers 0x46 - 0x47 are reserved */ 0x80, 0x80, /* 0x46 - 0x47 */ 0x80, 0x00, 0x00, /* 0x48 - 0x4a */ /* Registers 0x4b - 0x7c are reserved */ 0x00, /* 0x4b */ 0x00, 0x00, 0x00, 0x00, /* 0x4c - 0x4f */ 0x00, 0x00, 0x00, 0x00, /* 0x50 - 0x53 */ 0x00, 0x00, 0x00, 0x00, /* 0x54 - 0x57 */ 0x00, 0x00, 0x00, 0x00, /* 0x58 - 0x5b */ 0x00, 0x00, 0x00, 0x00, /* 0x5c - 0x5f */ 0x00, 0x00, 0x00, 0x00, /* 0x60 - 0x63 */ 0x00, 0x00, 0x00, 0x00, /* 0x64 - 0x67 */ 0x00, 0x00, 0x00, 0x00, /* 0x68 - 0x6b */ 0x00, 0x00, 0x00, 0x00, /* 0x6c - 0x6f */ 0x00, 0x00, 0x00, 0x00, /* 0x70 - 0x73 */ 0x00, 0x00, 0x00, 0x00, /* 0x74 - 0x77 */ 0x00, 0x00, 0x00, 0x00, /* 0x78 - 0x7b */ 0x00, /* 0x7c */ 0xda, 0x33, 0x03, /* 0x7d - 0x7f */ }; /* Register read and write */ static inline unsigned int dac33_read_reg_cache(struct snd_soc_component *component, unsigned reg) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); u8 *cache = dac33->reg_cache; if (reg >= DAC33_CACHEREGNUM) return 0; return cache[reg]; } static inline void dac33_write_reg_cache(struct snd_soc_component *component, u8 reg, u8 value) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); u8 *cache = dac33->reg_cache; if (reg >= DAC33_CACHEREGNUM) return; cache[reg] = value; } static int dac33_read(struct snd_soc_component *component, unsigned int reg, u8 *value) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); int val, ret = 0; *value = reg & 0xff; /* If powered off, return the cached value */ if (dac33->chip_power) { val = i2c_smbus_read_byte_data(dac33->i2c, value[0]); if (val < 0) { dev_err(component->dev, "Read failed (%d)\n", val); value[0] = dac33_read_reg_cache(component, reg); ret = val; } else { value[0] = val; dac33_write_reg_cache(component, reg, val); } } else { value[0] = dac33_read_reg_cache(component, reg); } return ret; } static int dac33_write(struct snd_soc_component *component, unsigned int reg, unsigned int value) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); u8 data[2]; int ret = 0; /* * data is * D15..D8 dac33 register offset * D7...D0 register data */ data[0] = reg & 0xff; data[1] = value & 0xff; dac33_write_reg_cache(component, data[0], data[1]); if (dac33->chip_power) { ret = i2c_master_send(dac33->i2c, data, 2); if (ret != 2) dev_err(component->dev, "Write failed (%d)\n", ret); else ret = 0; } return ret; } static int dac33_write_locked(struct snd_soc_component *component, unsigned int reg, unsigned int value) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); int ret; mutex_lock(&dac33->mutex); ret = dac33_write(component, reg, value); mutex_unlock(&dac33->mutex); return ret; } #define DAC33_I2C_ADDR_AUTOINC 0x80 static int dac33_write16(struct snd_soc_component *component, unsigned int reg, unsigned int value) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); u8 data[3]; int ret = 0; /* * data is * D23..D16 dac33 register offset * D15..D8 register data MSB * D7...D0 register data LSB */ data[0] = reg & 0xff; data[1] = (value >> 8) & 0xff; data[2] = value & 0xff; dac33_write_reg_cache(component, data[0], data[1]); dac33_write_reg_cache(component, data[0] + 1, data[2]); if (dac33->chip_power) { /* We need to set autoincrement mode for 16 bit writes */ data[0] |= DAC33_I2C_ADDR_AUTOINC; ret = i2c_master_send(dac33->i2c, data, 3); if (ret != 3) dev_err(component->dev, "Write failed (%d)\n", ret); else ret = 0; } return ret; } static void dac33_init_chip(struct snd_soc_component *component) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); if (unlikely(!dac33->chip_power)) return; /* A : DAC sample rate Fsref/1.5 */ dac33_write(component, DAC33_DAC_CTRL_A, DAC33_DACRATE(0)); /* B : DAC src=normal, not muted */ dac33_write(component, DAC33_DAC_CTRL_B, DAC33_DACSRCR_RIGHT | DAC33_DACSRCL_LEFT); /* C : (defaults) */ dac33_write(component, DAC33_DAC_CTRL_C, 0x00); /* 73 : volume soft stepping control, clock source = internal osc (?) */ dac33_write(component, DAC33_ANA_VOL_SOFT_STEP_CTRL, DAC33_VOLCLKEN); /* Restore only selected registers (gains mostly) */ dac33_write(component, DAC33_LDAC_DIG_VOL_CTRL, dac33_read_reg_cache(component, DAC33_LDAC_DIG_VOL_CTRL)); dac33_write(component, DAC33_RDAC_DIG_VOL_CTRL, dac33_read_reg_cache(component, DAC33_RDAC_DIG_VOL_CTRL)); dac33_write(component, DAC33_LINEL_TO_LLO_VOL, dac33_read_reg_cache(component, DAC33_LINEL_TO_LLO_VOL)); dac33_write(component, DAC33_LINER_TO_RLO_VOL, dac33_read_reg_cache(component, DAC33_LINER_TO_RLO_VOL)); dac33_write(component, DAC33_OUT_AMP_CTRL, dac33_read_reg_cache(component, DAC33_OUT_AMP_CTRL)); dac33_write(component, DAC33_LDAC_PWR_CTRL, dac33_read_reg_cache(component, DAC33_LDAC_PWR_CTRL)); dac33_write(component, DAC33_RDAC_PWR_CTRL, dac33_read_reg_cache(component, DAC33_RDAC_PWR_CTRL)); } static inline int dac33_read_id(struct snd_soc_component *component) { int i, ret = 0; u8 reg; for (i = 0; i < 3; i++) { ret = dac33_read(component, DAC33_DEVICE_ID_MSB + i, ®); if (ret < 0) break; } return ret; } static inline void dac33_soft_power(struct snd_soc_component *component, int power) { u8 reg; reg = dac33_read_reg_cache(component, DAC33_PWR_CTRL); if (power) reg |= DAC33_PDNALLB; else reg &= ~(DAC33_PDNALLB | DAC33_OSCPDNB | DAC33_DACRPDNB | DAC33_DACLPDNB); dac33_write(component, DAC33_PWR_CTRL, reg); } static inline void dac33_disable_digital(struct snd_soc_component *component) { u8 reg; /* Stop the DAI clock */ reg = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B); reg &= ~DAC33_BCLKON; dac33_write(component, DAC33_SER_AUDIOIF_CTRL_B, reg); /* Power down the Oscillator, and DACs */ reg = dac33_read_reg_cache(component, DAC33_PWR_CTRL); reg &= ~(DAC33_OSCPDNB | DAC33_DACRPDNB | DAC33_DACLPDNB); dac33_write(component, DAC33_PWR_CTRL, reg); } static int dac33_hard_power(struct snd_soc_component *component, int power) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); int ret = 0; mutex_lock(&dac33->mutex); /* Safety check */ if (unlikely(power == dac33->chip_power)) { dev_dbg(component->dev, "Trying to set the same power state: %s\n", power ? "ON" : "OFF"); goto exit; } if (power) { ret = regulator_bulk_enable(ARRAY_SIZE(dac33->supplies), dac33->supplies); if (ret != 0) { dev_err(component->dev, "Failed to enable supplies: %d\n", ret); goto exit; } if (dac33->power_gpio >= 0) gpio_set_value(dac33->power_gpio, 1); dac33->chip_power = 1; } else { dac33_soft_power(component, 0); if (dac33->power_gpio >= 0) gpio_set_value(dac33->power_gpio, 0); ret = regulator_bulk_disable(ARRAY_SIZE(dac33->supplies), dac33->supplies); if (ret != 0) { dev_err(component->dev, "Failed to disable supplies: %d\n", ret); goto exit; } dac33->chip_power = 0; } exit: mutex_unlock(&dac33->mutex); return ret; } static int dac33_playback_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); switch (event) { case SND_SOC_DAPM_PRE_PMU: if (likely(dac33->substream)) { dac33_calculate_times(dac33->substream, component); dac33_prepare_chip(dac33->substream, component); } break; case SND_SOC_DAPM_POST_PMD: dac33_disable_digital(component); break; } return 0; } static int dac33_get_fifo_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); ucontrol->value.enumerated.item[0] = dac33->fifo_mode; return 0; } static int dac33_set_fifo_mode(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); int ret = 0; if (dac33->fifo_mode == ucontrol->value.enumerated.item[0]) return 0; /* Do not allow changes while stream is running*/ if (snd_soc_component_active(component)) return -EPERM; if (ucontrol->value.enumerated.item[0] >= DAC33_FIFO_LAST_MODE) ret = -EINVAL; else dac33->fifo_mode = ucontrol->value.enumerated.item[0]; return ret; } /* Codec operation modes */ static const char *dac33_fifo_mode_texts[] = { "Bypass", "Mode 1", "Mode 7" }; static SOC_ENUM_SINGLE_EXT_DECL(dac33_fifo_mode_enum, dac33_fifo_mode_texts); /* L/R Line Output Gain */ static const char *lr_lineout_gain_texts[] = { "Line -12dB DAC 0dB", "Line -6dB DAC 6dB", "Line 0dB DAC 12dB", "Line 6dB DAC 18dB", }; static SOC_ENUM_SINGLE_DECL(l_lineout_gain_enum, DAC33_LDAC_PWR_CTRL, 0, lr_lineout_gain_texts); static SOC_ENUM_SINGLE_DECL(r_lineout_gain_enum, DAC33_RDAC_PWR_CTRL, 0, lr_lineout_gain_texts); /* * DACL/R digital volume control: * from 0 dB to -63.5 in 0.5 dB steps * Need to be inverted later on: * 0x00 == 0 dB * 0x7f == -63.5 dB */ static DECLARE_TLV_DB_SCALE(dac_digivol_tlv, -6350, 50, 0); static const struct snd_kcontrol_new dac33_snd_controls[] = { SOC_DOUBLE_R_TLV("DAC Digital Playback Volume", DAC33_LDAC_DIG_VOL_CTRL, DAC33_RDAC_DIG_VOL_CTRL, 0, 0x7f, 1, dac_digivol_tlv), SOC_DOUBLE_R("DAC Digital Playback Switch", DAC33_LDAC_DIG_VOL_CTRL, DAC33_RDAC_DIG_VOL_CTRL, 7, 1, 1), SOC_DOUBLE_R("Line to Line Out Volume", DAC33_LINEL_TO_LLO_VOL, DAC33_LINER_TO_RLO_VOL, 0, 127, 1), SOC_ENUM("Left Line Output Gain", l_lineout_gain_enum), SOC_ENUM("Right Line Output Gain", r_lineout_gain_enum), }; static const struct snd_kcontrol_new dac33_mode_snd_controls[] = { SOC_ENUM_EXT("FIFO Mode", dac33_fifo_mode_enum, dac33_get_fifo_mode, dac33_set_fifo_mode), }; /* Analog bypass */ static const struct snd_kcontrol_new dac33_dapm_abypassl_control = SOC_DAPM_SINGLE("Switch", DAC33_LINEL_TO_LLO_VOL, 7, 1, 1); static const struct snd_kcontrol_new dac33_dapm_abypassr_control = SOC_DAPM_SINGLE("Switch", DAC33_LINER_TO_RLO_VOL, 7, 1, 1); /* LOP L/R invert selection */ static const char *dac33_lr_lom_texts[] = {"DAC", "LOP"}; static SOC_ENUM_SINGLE_DECL(dac33_left_lom_enum, DAC33_OUT_AMP_CTRL, 3, dac33_lr_lom_texts); static const struct snd_kcontrol_new dac33_dapm_left_lom_control = SOC_DAPM_ENUM("Route", dac33_left_lom_enum); static SOC_ENUM_SINGLE_DECL(dac33_right_lom_enum, DAC33_OUT_AMP_CTRL, 2, dac33_lr_lom_texts); static const struct snd_kcontrol_new dac33_dapm_right_lom_control = SOC_DAPM_ENUM("Route", dac33_right_lom_enum); static const struct snd_soc_dapm_widget dac33_dapm_widgets[] = { SND_SOC_DAPM_OUTPUT("LEFT_LO"), SND_SOC_DAPM_OUTPUT("RIGHT_LO"), SND_SOC_DAPM_INPUT("LINEL"), SND_SOC_DAPM_INPUT("LINER"), SND_SOC_DAPM_DAC("DACL", "Left Playback", SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("DACR", "Right Playback", SND_SOC_NOPM, 0, 0), /* Analog bypass */ SND_SOC_DAPM_SWITCH("Analog Left Bypass", SND_SOC_NOPM, 0, 0, &dac33_dapm_abypassl_control), SND_SOC_DAPM_SWITCH("Analog Right Bypass", SND_SOC_NOPM, 0, 0, &dac33_dapm_abypassr_control), SND_SOC_DAPM_MUX("Left LOM Inverted From", SND_SOC_NOPM, 0, 0, &dac33_dapm_left_lom_control), SND_SOC_DAPM_MUX("Right LOM Inverted From", SND_SOC_NOPM, 0, 0, &dac33_dapm_right_lom_control), /* * For DAPM path, when only the anlog bypass path is enabled, and the * LOP inverted from the corresponding DAC side. * This is needed, so we can attach the DAC power supply in this case. */ SND_SOC_DAPM_PGA("Left Bypass PGA", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Bypass PGA", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_REG(snd_soc_dapm_mixer, "Output Left Amplifier", DAC33_OUT_AMP_PWR_CTRL, 6, 3, 3, 0), SND_SOC_DAPM_REG(snd_soc_dapm_mixer, "Output Right Amplifier", DAC33_OUT_AMP_PWR_CTRL, 4, 3, 3, 0), SND_SOC_DAPM_SUPPLY("Left DAC Power", DAC33_LDAC_PWR_CTRL, 2, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Right DAC Power", DAC33_RDAC_PWR_CTRL, 2, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Codec Power", DAC33_PWR_CTRL, 4, 0, NULL, 0), SND_SOC_DAPM_PRE("Pre Playback", dac33_playback_event), SND_SOC_DAPM_POST("Post Playback", dac33_playback_event), }; static const struct snd_soc_dapm_route audio_map[] = { /* Analog bypass */ {"Analog Left Bypass", "Switch", "LINEL"}, {"Analog Right Bypass", "Switch", "LINER"}, {"Output Left Amplifier", NULL, "DACL"}, {"Output Right Amplifier", NULL, "DACR"}, {"Left Bypass PGA", NULL, "Analog Left Bypass"}, {"Right Bypass PGA", NULL, "Analog Right Bypass"}, {"Left LOM Inverted From", "DAC", "Left Bypass PGA"}, {"Right LOM Inverted From", "DAC", "Right Bypass PGA"}, {"Left LOM Inverted From", "LOP", "Analog Left Bypass"}, {"Right LOM Inverted From", "LOP", "Analog Right Bypass"}, {"Output Left Amplifier", NULL, "Left LOM Inverted From"}, {"Output Right Amplifier", NULL, "Right LOM Inverted From"}, {"DACL", NULL, "Left DAC Power"}, {"DACR", NULL, "Right DAC Power"}, {"Left Bypass PGA", NULL, "Left DAC Power"}, {"Right Bypass PGA", NULL, "Right DAC Power"}, /* output */ {"LEFT_LO", NULL, "Output Left Amplifier"}, {"RIGHT_LO", NULL, "Output Right Amplifier"}, {"LEFT_LO", NULL, "Codec Power"}, {"RIGHT_LO", NULL, "Codec Power"}, }; static int dac33_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { int ret; switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: break; case SND_SOC_BIAS_STANDBY: if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) { /* Coming from OFF, switch on the component */ ret = dac33_hard_power(component, 1); if (ret != 0) return ret; dac33_init_chip(component); } break; case SND_SOC_BIAS_OFF: /* Do not power off, when the component is already off */ if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) return 0; ret = dac33_hard_power(component, 0); if (ret != 0) return ret; break; } return 0; } static inline void dac33_prefill_handler(struct tlv320dac33_priv *dac33) { struct snd_soc_component *component = dac33->component; unsigned int delay; unsigned long flags; switch (dac33->fifo_mode) { case DAC33_FIFO_MODE1: dac33_write16(component, DAC33_NSAMPLE_MSB, DAC33_THRREG(dac33->nsample)); /* Take the timestamps */ spin_lock_irqsave(&dac33->lock, flags); dac33->t_stamp2 = ktime_to_us(ktime_get()); dac33->t_stamp1 = dac33->t_stamp2; spin_unlock_irqrestore(&dac33->lock, flags); dac33_write16(component, DAC33_PREFILL_MSB, DAC33_THRREG(dac33->alarm_threshold)); /* Enable Alarm Threshold IRQ with a delay */ delay = SAMPLES_TO_US(dac33->burst_rate, dac33->alarm_threshold) + 1000; usleep_range(delay, delay + 500); dac33_write(component, DAC33_FIFO_IRQ_MASK, DAC33_MAT); break; case DAC33_FIFO_MODE7: /* Take the timestamp */ spin_lock_irqsave(&dac33->lock, flags); dac33->t_stamp1 = ktime_to_us(ktime_get()); /* Move back the timestamp with drain time */ dac33->t_stamp1 -= dac33->mode7_us_to_lthr; spin_unlock_irqrestore(&dac33->lock, flags); dac33_write16(component, DAC33_PREFILL_MSB, DAC33_THRREG(DAC33_MODE7_MARGIN)); /* Enable Upper Threshold IRQ */ dac33_write(component, DAC33_FIFO_IRQ_MASK, DAC33_MUT); break; default: dev_warn(component->dev, "Unhandled FIFO mode: %d\n", dac33->fifo_mode); break; } } static inline void dac33_playback_handler(struct tlv320dac33_priv *dac33) { struct snd_soc_component *component = dac33->component; unsigned long flags; switch (dac33->fifo_mode) { case DAC33_FIFO_MODE1: /* Take the timestamp */ spin_lock_irqsave(&dac33->lock, flags); dac33->t_stamp2 = ktime_to_us(ktime_get()); spin_unlock_irqrestore(&dac33->lock, flags); dac33_write16(component, DAC33_NSAMPLE_MSB, DAC33_THRREG(dac33->nsample)); break; case DAC33_FIFO_MODE7: /* At the moment we are not using interrupts in mode7 */ break; default: dev_warn(component->dev, "Unhandled FIFO mode: %d\n", dac33->fifo_mode); break; } } static void dac33_work(struct work_struct *work) { struct snd_soc_component *component; struct tlv320dac33_priv *dac33; u8 reg; dac33 = container_of(work, struct tlv320dac33_priv, work); component = dac33->component; mutex_lock(&dac33->mutex); switch (dac33->state) { case DAC33_PREFILL: dac33->state = DAC33_PLAYBACK; dac33_prefill_handler(dac33); break; case DAC33_PLAYBACK: dac33_playback_handler(dac33); break; case DAC33_IDLE: break; case DAC33_FLUSH: dac33->state = DAC33_IDLE; /* Mask all interrupts from dac33 */ dac33_write(component, DAC33_FIFO_IRQ_MASK, 0); /* flush fifo */ reg = dac33_read_reg_cache(component, DAC33_FIFO_CTRL_A); reg |= DAC33_FIFOFLUSH; dac33_write(component, DAC33_FIFO_CTRL_A, reg); break; } mutex_unlock(&dac33->mutex); } static irqreturn_t dac33_interrupt_handler(int irq, void *dev) { struct snd_soc_component *component = dev; struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); unsigned long flags; spin_lock_irqsave(&dac33->lock, flags); dac33->t_stamp1 = ktime_to_us(ktime_get()); spin_unlock_irqrestore(&dac33->lock, flags); /* Do not schedule the workqueue in Mode7 */ if (dac33->fifo_mode != DAC33_FIFO_MODE7) schedule_work(&dac33->work); return IRQ_HANDLED; } static void dac33_oscwait(struct snd_soc_component *component) { int timeout = 60; u8 reg; do { usleep_range(1000, 2000); dac33_read(component, DAC33_INT_OSC_STATUS, ®); } while (((reg & 0x03) != DAC33_OSCSTATUS_NORMAL) && timeout--); if ((reg & 0x03) != DAC33_OSCSTATUS_NORMAL) dev_err(component->dev, "internal oscillator calibration failed\n"); } static int dac33_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); /* Stream started, save the substream pointer */ dac33->substream = substream; return 0; } static void dac33_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); dac33->substream = NULL; } #define CALC_BURST_RATE(bclkdiv, bclk_per_sample) \ (BURST_BASEFREQ_HZ / bclkdiv / bclk_per_sample) static int dac33_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); /* Check parameters for validity */ switch (params_rate(params)) { case 44100: case 48000: break; default: dev_err(component->dev, "unsupported rate %d\n", params_rate(params)); return -EINVAL; } switch (params_width(params)) { case 16: dac33->fifo_size = DAC33_FIFO_SIZE_16BIT; dac33->burst_rate = CALC_BURST_RATE(dac33->burst_bclkdiv, 32); break; case 32: dac33->fifo_size = DAC33_FIFO_SIZE_24BIT; dac33->burst_rate = CALC_BURST_RATE(dac33->burst_bclkdiv, 64); break; default: dev_err(component->dev, "unsupported width %d\n", params_width(params)); return -EINVAL; } return 0; } #define CALC_OSCSET(rate, refclk) ( \ ((((rate * 10000) / refclk) * 4096) + 7000) / 10000) #define CALC_RATIOSET(rate, refclk) ( \ ((((refclk * 100000) / rate) * 16384) + 50000) / 100000) /* * tlv320dac33 is strict on the sequence of the register writes, if the register * writes happens in different order, than dac33 might end up in unknown state. * Use the known, working sequence of register writes to initialize the dac33. */ static int dac33_prepare_chip(struct snd_pcm_substream *substream, struct snd_soc_component *component) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); unsigned int oscset, ratioset, pwr_ctrl, reg_tmp; u8 aictrl_a, aictrl_b, fifoctrl_a; switch (substream->runtime->rate) { case 44100: case 48000: oscset = CALC_OSCSET(substream->runtime->rate, dac33->refclk); ratioset = CALC_RATIOSET(substream->runtime->rate, dac33->refclk); break; default: dev_err(component->dev, "unsupported rate %d\n", substream->runtime->rate); return -EINVAL; } aictrl_a = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_A); aictrl_a &= ~(DAC33_NCYCL_MASK | DAC33_WLEN_MASK); /* Read FIFO control A, and clear FIFO flush bit */ fifoctrl_a = dac33_read_reg_cache(component, DAC33_FIFO_CTRL_A); fifoctrl_a &= ~DAC33_FIFOFLUSH; fifoctrl_a &= ~DAC33_WIDTH; switch (substream->runtime->format) { case SNDRV_PCM_FORMAT_S16_LE: aictrl_a |= (DAC33_NCYCL_16 | DAC33_WLEN_16); fifoctrl_a |= DAC33_WIDTH; break; case SNDRV_PCM_FORMAT_S32_LE: aictrl_a |= (DAC33_NCYCL_32 | DAC33_WLEN_24); break; default: dev_err(component->dev, "unsupported format %d\n", substream->runtime->format); return -EINVAL; } mutex_lock(&dac33->mutex); if (!dac33->chip_power) { /* * Chip is not powered yet. * Do the init in the dac33_set_bias_level later. */ mutex_unlock(&dac33->mutex); return 0; } dac33_soft_power(component, 0); dac33_soft_power(component, 1); reg_tmp = dac33_read_reg_cache(component, DAC33_INT_OSC_CTRL); dac33_write(component, DAC33_INT_OSC_CTRL, reg_tmp); /* Write registers 0x08 and 0x09 (MSB, LSB) */ dac33_write16(component, DAC33_INT_OSC_FREQ_RAT_A, oscset); /* OSC calibration time */ dac33_write(component, DAC33_CALIB_TIME, 96); /* adjustment treshold & step */ dac33_write(component, DAC33_INT_OSC_CTRL_B, DAC33_ADJTHRSHLD(2) | DAC33_ADJSTEP(1)); /* div=4 / gain=1 / div */ dac33_write(component, DAC33_INT_OSC_CTRL_C, DAC33_REFDIV(4)); pwr_ctrl = dac33_read_reg_cache(component, DAC33_PWR_CTRL); pwr_ctrl |= DAC33_OSCPDNB | DAC33_DACRPDNB | DAC33_DACLPDNB; dac33_write(component, DAC33_PWR_CTRL, pwr_ctrl); dac33_oscwait(component); if (dac33->fifo_mode) { /* Generic for all FIFO modes */ /* 50-51 : ASRC Control registers */ dac33_write(component, DAC33_ASRC_CTRL_A, DAC33_SRCLKDIV(1)); dac33_write(component, DAC33_ASRC_CTRL_B, 1); /* ??? */ /* Write registers 0x34 and 0x35 (MSB, LSB) */ dac33_write16(component, DAC33_SRC_REF_CLK_RATIO_A, ratioset); /* Set interrupts to high active */ dac33_write(component, DAC33_INTP_CTRL_A, DAC33_INTPM_AHIGH); } else { /* FIFO bypass mode */ /* 50-51 : ASRC Control registers */ dac33_write(component, DAC33_ASRC_CTRL_A, DAC33_SRCBYP); dac33_write(component, DAC33_ASRC_CTRL_B, 0); /* ??? */ } /* Interrupt behaviour configuration */ switch (dac33->fifo_mode) { case DAC33_FIFO_MODE1: dac33_write(component, DAC33_FIFO_IRQ_MODE_B, DAC33_ATM(DAC33_FIFO_IRQ_MODE_LEVEL)); break; case DAC33_FIFO_MODE7: dac33_write(component, DAC33_FIFO_IRQ_MODE_A, DAC33_UTM(DAC33_FIFO_IRQ_MODE_LEVEL)); break; default: /* in FIFO bypass mode, the interrupts are not used */ break; } aictrl_b = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B); switch (dac33->fifo_mode) { case DAC33_FIFO_MODE1: /* * For mode1: * Disable the FIFO bypass (Enable the use of FIFO) * Select nSample mode * BCLK is only running when data is needed by DAC33 */ fifoctrl_a &= ~DAC33_FBYPAS; fifoctrl_a &= ~DAC33_FAUTO; if (dac33->keep_bclk) aictrl_b |= DAC33_BCLKON; else aictrl_b &= ~DAC33_BCLKON; break; case DAC33_FIFO_MODE7: /* * For mode1: * Disable the FIFO bypass (Enable the use of FIFO) * Select Threshold mode * BCLK is only running when data is needed by DAC33 */ fifoctrl_a &= ~DAC33_FBYPAS; fifoctrl_a |= DAC33_FAUTO; if (dac33->keep_bclk) aictrl_b |= DAC33_BCLKON; else aictrl_b &= ~DAC33_BCLKON; break; default: /* * For FIFO bypass mode: * Enable the FIFO bypass (Disable the FIFO use) * Set the BCLK as continuous */ fifoctrl_a |= DAC33_FBYPAS; aictrl_b |= DAC33_BCLKON; break; } dac33_write(component, DAC33_FIFO_CTRL_A, fifoctrl_a); dac33_write(component, DAC33_SER_AUDIOIF_CTRL_A, aictrl_a); dac33_write(component, DAC33_SER_AUDIOIF_CTRL_B, aictrl_b); /* * BCLK divide ratio * 0: 1.5 * 1: 1 * 2: 2 * ... * 254: 254 * 255: 255 */ if (dac33->fifo_mode) dac33_write(component, DAC33_SER_AUDIOIF_CTRL_C, dac33->burst_bclkdiv); else if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE) dac33_write(component, DAC33_SER_AUDIOIF_CTRL_C, 32); else dac33_write(component, DAC33_SER_AUDIOIF_CTRL_C, 16); switch (dac33->fifo_mode) { case DAC33_FIFO_MODE1: dac33_write16(component, DAC33_ATHR_MSB, DAC33_THRREG(dac33->alarm_threshold)); break; case DAC33_FIFO_MODE7: /* * Configure the threshold levels, and leave 10 sample space * at the bottom, and also at the top of the FIFO */ dac33_write16(component, DAC33_UTHR_MSB, DAC33_THRREG(dac33->uthr)); dac33_write16(component, DAC33_LTHR_MSB, DAC33_THRREG(DAC33_MODE7_MARGIN)); break; default: break; } mutex_unlock(&dac33->mutex); return 0; } static void dac33_calculate_times(struct snd_pcm_substream *substream, struct snd_soc_component *component) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); unsigned int period_size = substream->runtime->period_size; unsigned int rate = substream->runtime->rate; unsigned int nsample_limit; /* In bypass mode we don't need to calculate */ if (!dac33->fifo_mode) return; switch (dac33->fifo_mode) { case DAC33_FIFO_MODE1: /* Number of samples under i2c latency */ dac33->alarm_threshold = US_TO_SAMPLES(rate, dac33->mode1_latency); nsample_limit = dac33->fifo_size - dac33->alarm_threshold; if (period_size <= dac33->alarm_threshold) /* * Configure nSamaple to number of periods, * which covers the latency requironment. */ dac33->nsample = period_size * ((dac33->alarm_threshold / period_size) + ((dac33->alarm_threshold % period_size) ? 1 : 0)); else if (period_size > nsample_limit) dac33->nsample = nsample_limit; else dac33->nsample = period_size; dac33->mode1_us_burst = SAMPLES_TO_US(dac33->burst_rate, dac33->nsample); dac33->t_stamp1 = 0; dac33->t_stamp2 = 0; break; case DAC33_FIFO_MODE7: dac33->uthr = UTHR_FROM_PERIOD_SIZE(period_size, rate, dac33->burst_rate) + 9; if (dac33->uthr > (dac33->fifo_size - DAC33_MODE7_MARGIN)) dac33->uthr = dac33->fifo_size - DAC33_MODE7_MARGIN; if (dac33->uthr < (DAC33_MODE7_MARGIN + 10)) dac33->uthr = (DAC33_MODE7_MARGIN + 10); dac33->mode7_us_to_lthr = SAMPLES_TO_US(substream->runtime->rate, dac33->uthr - DAC33_MODE7_MARGIN + 1); dac33->t_stamp1 = 0; break; default: break; } } static int dac33_pcm_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: if (dac33->fifo_mode) { dac33->state = DAC33_PREFILL; schedule_work(&dac33->work); } break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: if (dac33->fifo_mode) { dac33->state = DAC33_FLUSH; schedule_work(&dac33->work); } break; default: ret = -EINVAL; } return ret; } static snd_pcm_sframes_t dac33_dai_delay( struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); unsigned long long t0, t1, t_now; unsigned int time_delta, uthr; int samples_out, samples_in, samples; snd_pcm_sframes_t delay = 0; unsigned long flags; switch (dac33->fifo_mode) { case DAC33_FIFO_BYPASS: break; case DAC33_FIFO_MODE1: spin_lock_irqsave(&dac33->lock, flags); t0 = dac33->t_stamp1; t1 = dac33->t_stamp2; spin_unlock_irqrestore(&dac33->lock, flags); t_now = ktime_to_us(ktime_get()); /* We have not started to fill the FIFO yet, delay is 0 */ if (!t1) goto out; if (t0 > t1) { /* * Phase 1: * After Alarm threshold, and before nSample write */ time_delta = t_now - t0; samples_out = time_delta ? US_TO_SAMPLES( substream->runtime->rate, time_delta) : 0; if (likely(dac33->alarm_threshold > samples_out)) delay = dac33->alarm_threshold - samples_out; else delay = 0; } else if ((t_now - t1) <= dac33->mode1_us_burst) { /* * Phase 2: * After nSample write (during burst operation) */ time_delta = t_now - t0; samples_out = time_delta ? US_TO_SAMPLES( substream->runtime->rate, time_delta) : 0; time_delta = t_now - t1; samples_in = time_delta ? US_TO_SAMPLES( dac33->burst_rate, time_delta) : 0; samples = dac33->alarm_threshold; samples += (samples_in - samples_out); if (likely(samples > 0)) delay = samples; else delay = 0; } else { /* * Phase 3: * After burst operation, before next alarm threshold */ time_delta = t_now - t0; samples_out = time_delta ? US_TO_SAMPLES( substream->runtime->rate, time_delta) : 0; samples_in = dac33->nsample; samples = dac33->alarm_threshold; samples += (samples_in - samples_out); if (likely(samples > 0)) delay = samples > dac33->fifo_size ? dac33->fifo_size : samples; else delay = 0; } break; case DAC33_FIFO_MODE7: spin_lock_irqsave(&dac33->lock, flags); t0 = dac33->t_stamp1; uthr = dac33->uthr; spin_unlock_irqrestore(&dac33->lock, flags); t_now = ktime_to_us(ktime_get()); /* We have not started to fill the FIFO yet, delay is 0 */ if (!t0) goto out; if (t_now <= t0) { /* * Either the timestamps are messed or equal. Report * maximum delay */ delay = uthr; goto out; } time_delta = t_now - t0; if (time_delta <= dac33->mode7_us_to_lthr) { /* * Phase 1: * After burst (draining phase) */ samples_out = US_TO_SAMPLES( substream->runtime->rate, time_delta); if (likely(uthr > samples_out)) delay = uthr - samples_out; else delay = 0; } else { /* * Phase 2: * During burst operation */ time_delta = time_delta - dac33->mode7_us_to_lthr; samples_out = US_TO_SAMPLES( substream->runtime->rate, time_delta); samples_in = US_TO_SAMPLES( dac33->burst_rate, time_delta); delay = DAC33_MODE7_MARGIN + samples_in - samples_out; if (unlikely(delay > uthr)) delay = uthr; } break; default: dev_warn(component->dev, "Unhandled FIFO mode: %d\n", dac33->fifo_mode); break; } out: return delay; } static int dac33_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = codec_dai->component; struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); u8 ioc_reg, asrcb_reg; ioc_reg = dac33_read_reg_cache(component, DAC33_INT_OSC_CTRL); asrcb_reg = dac33_read_reg_cache(component, DAC33_ASRC_CTRL_B); switch (clk_id) { case TLV320DAC33_MCLK: ioc_reg |= DAC33_REFSEL; asrcb_reg |= DAC33_SRCREFSEL; break; case TLV320DAC33_SLEEPCLK: ioc_reg &= ~DAC33_REFSEL; asrcb_reg &= ~DAC33_SRCREFSEL; break; default: dev_err(component->dev, "Invalid clock ID (%d)\n", clk_id); break; } dac33->refclk = freq; dac33_write_reg_cache(component, DAC33_INT_OSC_CTRL, ioc_reg); dac33_write_reg_cache(component, DAC33_ASRC_CTRL_B, asrcb_reg); return 0; } static int dac33_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_component *component = codec_dai->component; struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); u8 aictrl_a, aictrl_b; aictrl_a = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_A); aictrl_b = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B); switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_CBP_CFP: aictrl_a |= (DAC33_MSBCLK | DAC33_MSWCLK); break; case SND_SOC_DAIFMT_CBC_CFC: if (dac33->fifo_mode) { dev_err(component->dev, "FIFO mode requires provider mode\n"); return -EINVAL; } else aictrl_a &= ~(DAC33_MSBCLK | DAC33_MSWCLK); break; default: return -EINVAL; } aictrl_a &= ~DAC33_AFMT_MASK; switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: aictrl_a |= DAC33_AFMT_I2S; break; case SND_SOC_DAIFMT_DSP_A: aictrl_a |= DAC33_AFMT_DSP; aictrl_b &= ~DAC33_DATA_DELAY_MASK; aictrl_b |= DAC33_DATA_DELAY(0); break; case SND_SOC_DAIFMT_RIGHT_J: aictrl_a |= DAC33_AFMT_RIGHT_J; break; case SND_SOC_DAIFMT_LEFT_J: aictrl_a |= DAC33_AFMT_LEFT_J; break; default: dev_err(component->dev, "Unsupported format (%u)\n", fmt & SND_SOC_DAIFMT_FORMAT_MASK); return -EINVAL; } dac33_write_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_A, aictrl_a); dac33_write_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B, aictrl_b); return 0; } static int dac33_soc_probe(struct snd_soc_component *component) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); int ret = 0; dac33->component = component; /* Read the tlv320dac33 ID registers */ ret = dac33_hard_power(component, 1); if (ret != 0) { dev_err(component->dev, "Failed to power up component: %d\n", ret); goto err_power; } ret = dac33_read_id(component); dac33_hard_power(component, 0); if (ret < 0) { dev_err(component->dev, "Failed to read chip ID: %d\n", ret); ret = -ENODEV; goto err_power; } /* Check if the IRQ number is valid and request it */ if (dac33->irq >= 0) { ret = request_irq(dac33->irq, dac33_interrupt_handler, IRQF_TRIGGER_RISING, component->name, component); if (ret < 0) { dev_err(component->dev, "Could not request IRQ%d (%d)\n", dac33->irq, ret); dac33->irq = -1; } if (dac33->irq != -1) { INIT_WORK(&dac33->work, dac33_work); } } /* Only add the FIFO controls, if we have valid IRQ number */ if (dac33->irq >= 0) snd_soc_add_component_controls(component, dac33_mode_snd_controls, ARRAY_SIZE(dac33_mode_snd_controls)); err_power: return ret; } static void dac33_soc_remove(struct snd_soc_component *component) { struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component); if (dac33->irq >= 0) { free_irq(dac33->irq, dac33->component); flush_work(&dac33->work); } } static const struct snd_soc_component_driver soc_component_dev_tlv320dac33 = { .read = dac33_read_reg_cache, .write = dac33_write_locked, .set_bias_level = dac33_set_bias_level, .probe = dac33_soc_probe, .remove = dac33_soc_remove, .controls = dac33_snd_controls, .num_controls = ARRAY_SIZE(dac33_snd_controls), .dapm_widgets = dac33_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(dac33_dapm_widgets), .dapm_routes = audio_map, .num_dapm_routes = ARRAY_SIZE(audio_map), .use_pmdown_time = 1, .endianness = 1, }; #define DAC33_RATES (SNDRV_PCM_RATE_44100 | \ SNDRV_PCM_RATE_48000) #define DAC33_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops dac33_dai_ops = { .startup = dac33_startup, .shutdown = dac33_shutdown, .hw_params = dac33_hw_params, .trigger = dac33_pcm_trigger, .delay = dac33_dai_delay, .set_sysclk = dac33_set_dai_sysclk, .set_fmt = dac33_set_dai_fmt, }; static struct snd_soc_dai_driver dac33_dai = { .name = "tlv320dac33-hifi", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 2, .rates = DAC33_RATES, .formats = DAC33_FORMATS, .sig_bits = 24, }, .ops = &dac33_dai_ops, }; static int dac33_i2c_probe(struct i2c_client *client) { struct tlv320dac33_platform_data *pdata; struct tlv320dac33_priv *dac33; int ret, i; if (client->dev.platform_data == NULL) { dev_err(&client->dev, "Platform data not set\n"); return -ENODEV; } pdata = client->dev.platform_data; dac33 = devm_kzalloc(&client->dev, sizeof(struct tlv320dac33_priv), GFP_KERNEL); if (dac33 == NULL) return -ENOMEM; dac33->reg_cache = devm_kmemdup(&client->dev, dac33_reg, ARRAY_SIZE(dac33_reg) * sizeof(u8), GFP_KERNEL); if (!dac33->reg_cache) return -ENOMEM; dac33->i2c = client; mutex_init(&dac33->mutex); spin_lock_init(&dac33->lock); i2c_set_clientdata(client, dac33); dac33->power_gpio = pdata->power_gpio; dac33->burst_bclkdiv = pdata->burst_bclkdiv; dac33->keep_bclk = pdata->keep_bclk; dac33->mode1_latency = pdata->mode1_latency; if (!dac33->mode1_latency) dac33->mode1_latency = 10000; /* 10ms */ dac33->irq = client->irq; /* Disable FIFO use by default */ dac33->fifo_mode = DAC33_FIFO_BYPASS; /* Check if the reset GPIO number is valid and request it */ if (dac33->power_gpio >= 0) { ret = gpio_request(dac33->power_gpio, "tlv320dac33 reset"); if (ret < 0) { dev_err(&client->dev, "Failed to request reset GPIO (%d)\n", dac33->power_gpio); goto err_gpio; } gpio_direction_output(dac33->power_gpio, 0); } for (i = 0; i < ARRAY_SIZE(dac33->supplies); i++) dac33->supplies[i].supply = dac33_supply_names[i]; ret = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(dac33->supplies), dac33->supplies); if (ret != 0) { dev_err(&client->dev, "Failed to request supplies: %d\n", ret); goto err_get; } ret = devm_snd_soc_register_component(&client->dev, &soc_component_dev_tlv320dac33, &dac33_dai, 1); if (ret < 0) goto err_get; return ret; err_get: if (dac33->power_gpio >= 0) gpio_free(dac33->power_gpio); err_gpio: return ret; } static void dac33_i2c_remove(struct i2c_client *client) { struct tlv320dac33_priv *dac33 = i2c_get_clientdata(client); if (unlikely(dac33->chip_power)) dac33_hard_power(dac33->component, 0); if (dac33->power_gpio >= 0) gpio_free(dac33->power_gpio); } static const struct i2c_device_id tlv320dac33_i2c_id[] = { { .name = "tlv320dac33", .driver_data = 0, }, { }, }; MODULE_DEVICE_TABLE(i2c, tlv320dac33_i2c_id); static struct i2c_driver tlv320dac33_i2c_driver = { .driver = { .name = "tlv320dac33-codec", }, .probe = dac33_i2c_probe, .remove = dac33_i2c_remove, .id_table = tlv320dac33_i2c_id, }; module_i2c_driver(tlv320dac33_i2c_driver); MODULE_DESCRIPTION("ASoC TLV320DAC33 codec driver"); MODULE_AUTHOR("Peter Ujfalusi <peter.ujfalusi@ti.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1