Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kuninori Morimoto | 8640 | 97.32% | 113 | 74.34% |
Liam Girdwood | 55 | 0.62% | 2 | 1.32% |
Jiasheng Jiang | 50 | 0.56% | 1 | 0.66% |
Arnd Bergmann | 24 | 0.27% | 2 | 1.32% |
Lars-Peter Clausen | 21 | 0.24% | 3 | 1.97% |
Guennadi Liakhovetski | 20 | 0.23% | 4 | 2.63% |
Christophe Jaillet | 16 | 0.18% | 1 | 0.66% |
Uwe Kleine-König | 14 | 0.16% | 5 | 3.29% |
Dzianis Kahanovich | 9 | 0.10% | 1 | 0.66% |
Takashi Iwai | 4 | 0.05% | 2 | 1.32% |
Charles Keepax | 4 | 0.05% | 2 | 1.32% |
Geert Uytterhoeven | 3 | 0.03% | 2 | 1.32% |
Paul Gortmaker | 3 | 0.03% | 1 | 0.66% |
Axel Lin | 2 | 0.02% | 1 | 0.66% |
Bhumika Goyal | 2 | 0.02% | 2 | 1.32% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.66% |
Linus Torvalds | 1 | 0.01% | 1 | 0.66% |
Rob Herring | 1 | 0.01% | 1 | 0.66% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 0.66% |
Colin Ian King | 1 | 0.01% | 1 | 0.66% |
Fabian Frederick | 1 | 0.01% | 1 | 0.66% |
Christoph Hellwig | 1 | 0.01% | 1 | 0.66% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.66% |
Yong Zhang | 1 | 0.01% | 1 | 0.66% |
Flavio Suligoi | 1 | 0.01% | 1 | 0.66% |
Total | 8878 | 152 |
// SPDX-License-Identifier: GPL-2.0 // // Fifo-attached Serial Interface (FSI) support for SH7724 // // Copyright (C) 2009 Renesas Solutions Corp. // Kuninori Morimoto <morimoto.kuninori@renesas.com> // // Based on ssi.c // Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/pm_runtime.h> #include <linux/io.h> #include <linux/of.h> #include <linux/scatterlist.h> #include <linux/sh_dma.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/workqueue.h> #include <sound/soc.h> #include <sound/pcm_params.h> #include <sound/sh_fsi.h> /* PortA/PortB register */ #define REG_DO_FMT 0x0000 #define REG_DOFF_CTL 0x0004 #define REG_DOFF_ST 0x0008 #define REG_DI_FMT 0x000C #define REG_DIFF_CTL 0x0010 #define REG_DIFF_ST 0x0014 #define REG_CKG1 0x0018 #define REG_CKG2 0x001C #define REG_DIDT 0x0020 #define REG_DODT 0x0024 #define REG_MUTE_ST 0x0028 #define REG_OUT_DMAC 0x002C #define REG_OUT_SEL 0x0030 #define REG_IN_DMAC 0x0038 /* master register */ #define MST_CLK_RST 0x0210 #define MST_SOFT_RST 0x0214 #define MST_FIFO_SZ 0x0218 /* core register (depend on FSI version) */ #define A_MST_CTLR 0x0180 #define B_MST_CTLR 0x01A0 #define CPU_INT_ST 0x01F4 #define CPU_IEMSK 0x01F8 #define CPU_IMSK 0x01FC #define INT_ST 0x0200 #define IEMSK 0x0204 #define IMSK 0x0208 /* DO_FMT */ /* DI_FMT */ #define CR_BWS_MASK (0x3 << 20) /* FSI2 */ #define CR_BWS_24 (0x0 << 20) /* FSI2 */ #define CR_BWS_16 (0x1 << 20) /* FSI2 */ #define CR_BWS_20 (0x2 << 20) /* FSI2 */ #define CR_DTMD_PCM (0x0 << 8) /* FSI2 */ #define CR_DTMD_SPDIF_PCM (0x1 << 8) /* FSI2 */ #define CR_DTMD_SPDIF_STREAM (0x2 << 8) /* FSI2 */ #define CR_MONO (0x0 << 4) #define CR_MONO_D (0x1 << 4) #define CR_PCM (0x2 << 4) #define CR_I2S (0x3 << 4) #define CR_TDM (0x4 << 4) #define CR_TDM_D (0x5 << 4) /* OUT_DMAC */ /* IN_DMAC */ #define VDMD_MASK (0x3 << 4) #define VDMD_FRONT (0x0 << 4) /* Package in front */ #define VDMD_BACK (0x1 << 4) /* Package in back */ #define VDMD_STREAM (0x2 << 4) /* Stream mode(16bit * 2) */ #define DMA_ON (0x1 << 0) /* DOFF_CTL */ /* DIFF_CTL */ #define IRQ_HALF 0x00100000 #define FIFO_CLR 0x00000001 /* DOFF_ST */ #define ERR_OVER 0x00000010 #define ERR_UNDER 0x00000001 #define ST_ERR (ERR_OVER | ERR_UNDER) /* CKG1 */ #define ACKMD_MASK 0x00007000 #define BPFMD_MASK 0x00000700 #define DIMD (1 << 4) #define DOMD (1 << 0) /* A/B MST_CTLR */ #define BP (1 << 4) /* Fix the signal of Biphase output */ #define SE (1 << 0) /* Fix the master clock */ /* CLK_RST */ #define CRB (1 << 4) #define CRA (1 << 0) /* IO SHIFT / MACRO */ #define BI_SHIFT 12 #define BO_SHIFT 8 #define AI_SHIFT 4 #define AO_SHIFT 0 #define AB_IO(param, shift) (param << shift) /* SOFT_RST */ #define PBSR (1 << 12) /* Port B Software Reset */ #define PASR (1 << 8) /* Port A Software Reset */ #define IR (1 << 4) /* Interrupt Reset */ #define FSISR (1 << 0) /* Software Reset */ /* OUT_SEL (FSI2) */ #define DMMD (1 << 4) /* SPDIF output timing 0: Biphase only */ /* 1: Biphase and serial */ /* FIFO_SZ */ #define FIFO_SZ_MASK 0x7 #define FSI_RATES SNDRV_PCM_RATE_8000_96000 #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE) /* * bus options * * 0x000000BA * * A : sample widtht 16bit setting * B : sample widtht 24bit setting */ #define SHIFT_16DATA 0 #define SHIFT_24DATA 4 #define PACKAGE_24BITBUS_BACK 0 #define PACKAGE_24BITBUS_FRONT 1 #define PACKAGE_16BITBUS_STREAM 2 #define BUSOP_SET(s, a) ((a) << SHIFT_ ## s ## DATA) #define BUSOP_GET(s, a) (((a) >> SHIFT_ ## s ## DATA) & 0xF) /* * FSI driver use below type name for variable * * xxx_num : number of data * xxx_pos : position of data * xxx_capa : capacity of data */ /* * period/frame/sample image * * ex) PCM (2ch) * * period pos period pos * [n] [n + 1] * |<-------------------- period--------------------->| * ==|============================================ ... =|== * | | * ||<----- frame ----->|<------ frame ----->| ... | * |+--------------------+--------------------+- ... | * ||[ sample ][ sample ]|[ sample ][ sample ]| ... | * |+--------------------+--------------------+- ... | * ==|============================================ ... =|== */ /* * FSI FIFO image * * | | * | | * | [ sample ] | * | [ sample ] | * | [ sample ] | * | [ sample ] | * --> go to codecs */ /* * FSI clock * * FSIxCLK [CPG] (ick) -------> | * |-> FSI_DIV (div)-> FSI2 * FSIxCK [external] (xck) ---> | */ /* * struct */ struct fsi_stream_handler; struct fsi_stream { /* * these are initialized by fsi_stream_init() */ struct snd_pcm_substream *substream; int fifo_sample_capa; /* sample capacity of FSI FIFO */ int buff_sample_capa; /* sample capacity of ALSA buffer */ int buff_sample_pos; /* sample position of ALSA buffer */ int period_samples; /* sample number / 1 period */ int period_pos; /* current period position */ int sample_width; /* sample width */ int uerr_num; int oerr_num; /* * bus options */ u32 bus_option; /* * these are initialized by fsi_handler_init() */ struct fsi_stream_handler *handler; struct fsi_priv *priv; /* * these are for DMAEngine */ struct dma_chan *chan; int dma_id; }; struct fsi_clk { /* see [FSI clock] */ struct clk *own; struct clk *xck; struct clk *ick; struct clk *div; int (*set_rate)(struct device *dev, struct fsi_priv *fsi); unsigned long rate; unsigned int count; }; struct fsi_priv { void __iomem *base; phys_addr_t phys; struct fsi_master *master; struct fsi_stream playback; struct fsi_stream capture; struct fsi_clk clock; u32 fmt; int chan_num:16; unsigned int clk_master:1; unsigned int clk_cpg:1; unsigned int spdif:1; unsigned int enable_stream:1; unsigned int bit_clk_inv:1; unsigned int lr_clk_inv:1; }; struct fsi_stream_handler { int (*init)(struct fsi_priv *fsi, struct fsi_stream *io); int (*quit)(struct fsi_priv *fsi, struct fsi_stream *io); int (*probe)(struct fsi_priv *fsi, struct fsi_stream *io, struct device *dev); int (*transfer)(struct fsi_priv *fsi, struct fsi_stream *io); int (*remove)(struct fsi_priv *fsi, struct fsi_stream *io); int (*start_stop)(struct fsi_priv *fsi, struct fsi_stream *io, int enable); }; #define fsi_stream_handler_call(io, func, args...) \ (!(io) ? -ENODEV : \ !((io)->handler->func) ? 0 : \ (io)->handler->func(args)) struct fsi_core { int ver; u32 int_st; u32 iemsk; u32 imsk; u32 a_mclk; u32 b_mclk; }; struct fsi_master { void __iomem *base; struct fsi_priv fsia; struct fsi_priv fsib; const struct fsi_core *core; spinlock_t lock; }; static inline int fsi_stream_is_play(struct fsi_priv *fsi, struct fsi_stream *io) { return &fsi->playback == io; } /* * basic read write function */ static void __fsi_reg_write(u32 __iomem *reg, u32 data) { /* valid data area is 24bit */ data &= 0x00ffffff; __raw_writel(data, reg); } static u32 __fsi_reg_read(u32 __iomem *reg) { return __raw_readl(reg); } static void __fsi_reg_mask_set(u32 __iomem *reg, u32 mask, u32 data) { u32 val = __fsi_reg_read(reg); val &= ~mask; val |= data & mask; __fsi_reg_write(reg, val); } #define fsi_reg_write(p, r, d)\ __fsi_reg_write((p->base + REG_##r), d) #define fsi_reg_read(p, r)\ __fsi_reg_read((p->base + REG_##r)) #define fsi_reg_mask_set(p, r, m, d)\ __fsi_reg_mask_set((p->base + REG_##r), m, d) #define fsi_master_read(p, r) _fsi_master_read(p, MST_##r) #define fsi_core_read(p, r) _fsi_master_read(p, p->core->r) static u32 _fsi_master_read(struct fsi_master *master, u32 reg) { u32 ret; unsigned long flags; spin_lock_irqsave(&master->lock, flags); ret = __fsi_reg_read(master->base + reg); spin_unlock_irqrestore(&master->lock, flags); return ret; } #define fsi_master_mask_set(p, r, m, d) _fsi_master_mask_set(p, MST_##r, m, d) #define fsi_core_mask_set(p, r, m, d) _fsi_master_mask_set(p, p->core->r, m, d) static void _fsi_master_mask_set(struct fsi_master *master, u32 reg, u32 mask, u32 data) { unsigned long flags; spin_lock_irqsave(&master->lock, flags); __fsi_reg_mask_set(master->base + reg, mask, data); spin_unlock_irqrestore(&master->lock, flags); } /* * basic function */ static int fsi_version(struct fsi_master *master) { return master->core->ver; } static struct fsi_master *fsi_get_master(struct fsi_priv *fsi) { return fsi->master; } static int fsi_is_clk_master(struct fsi_priv *fsi) { return fsi->clk_master; } static int fsi_is_port_a(struct fsi_priv *fsi) { return fsi->master->base == fsi->base; } static int fsi_is_spdif(struct fsi_priv *fsi) { return fsi->spdif; } static int fsi_is_enable_stream(struct fsi_priv *fsi) { return fsi->enable_stream; } static int fsi_is_play(struct snd_pcm_substream *substream) { return substream->stream == SNDRV_PCM_STREAM_PLAYBACK; } static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); return snd_soc_rtd_to_cpu(rtd, 0); } static struct fsi_priv *fsi_get_priv_frm_dai(struct snd_soc_dai *dai) { struct fsi_master *master = snd_soc_dai_get_drvdata(dai); if (dai->id == 0) return &master->fsia; else return &master->fsib; } static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream) { return fsi_get_priv_frm_dai(fsi_get_dai(substream)); } static u32 fsi_get_port_shift(struct fsi_priv *fsi, struct fsi_stream *io) { int is_play = fsi_stream_is_play(fsi, io); int is_porta = fsi_is_port_a(fsi); u32 shift; if (is_porta) shift = is_play ? AO_SHIFT : AI_SHIFT; else shift = is_play ? BO_SHIFT : BI_SHIFT; return shift; } static int fsi_frame2sample(struct fsi_priv *fsi, int frames) { return frames * fsi->chan_num; } static int fsi_sample2frame(struct fsi_priv *fsi, int samples) { return samples / fsi->chan_num; } static int fsi_get_current_fifo_samples(struct fsi_priv *fsi, struct fsi_stream *io) { int is_play = fsi_stream_is_play(fsi, io); u32 status; int frames; status = is_play ? fsi_reg_read(fsi, DOFF_ST) : fsi_reg_read(fsi, DIFF_ST); frames = 0x1ff & (status >> 8); return fsi_frame2sample(fsi, frames); } static void fsi_count_fifo_err(struct fsi_priv *fsi) { u32 ostatus = fsi_reg_read(fsi, DOFF_ST); u32 istatus = fsi_reg_read(fsi, DIFF_ST); if (ostatus & ERR_OVER) fsi->playback.oerr_num++; if (ostatus & ERR_UNDER) fsi->playback.uerr_num++; if (istatus & ERR_OVER) fsi->capture.oerr_num++; if (istatus & ERR_UNDER) fsi->capture.uerr_num++; fsi_reg_write(fsi, DOFF_ST, 0); fsi_reg_write(fsi, DIFF_ST, 0); } /* * fsi_stream_xx() function */ static inline struct fsi_stream *fsi_stream_get(struct fsi_priv *fsi, struct snd_pcm_substream *substream) { return fsi_is_play(substream) ? &fsi->playback : &fsi->capture; } static int fsi_stream_is_working(struct fsi_priv *fsi, struct fsi_stream *io) { struct fsi_master *master = fsi_get_master(fsi); unsigned long flags; int ret; spin_lock_irqsave(&master->lock, flags); ret = !!(io->substream && io->substream->runtime); spin_unlock_irqrestore(&master->lock, flags); return ret; } static struct fsi_priv *fsi_stream_to_priv(struct fsi_stream *io) { return io->priv; } static void fsi_stream_init(struct fsi_priv *fsi, struct fsi_stream *io, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct fsi_master *master = fsi_get_master(fsi); unsigned long flags; spin_lock_irqsave(&master->lock, flags); io->substream = substream; io->buff_sample_capa = fsi_frame2sample(fsi, runtime->buffer_size); io->buff_sample_pos = 0; io->period_samples = fsi_frame2sample(fsi, runtime->period_size); io->period_pos = 0; io->sample_width = samples_to_bytes(runtime, 1); io->bus_option = 0; io->oerr_num = -1; /* ignore 1st err */ io->uerr_num = -1; /* ignore 1st err */ fsi_stream_handler_call(io, init, fsi, io); spin_unlock_irqrestore(&master->lock, flags); } static void fsi_stream_quit(struct fsi_priv *fsi, struct fsi_stream *io) { struct snd_soc_dai *dai = fsi_get_dai(io->substream); struct fsi_master *master = fsi_get_master(fsi); unsigned long flags; spin_lock_irqsave(&master->lock, flags); if (io->oerr_num > 0) dev_err(dai->dev, "over_run = %d\n", io->oerr_num); if (io->uerr_num > 0) dev_err(dai->dev, "under_run = %d\n", io->uerr_num); fsi_stream_handler_call(io, quit, fsi, io); io->substream = NULL; io->buff_sample_capa = 0; io->buff_sample_pos = 0; io->period_samples = 0; io->period_pos = 0; io->sample_width = 0; io->bus_option = 0; io->oerr_num = 0; io->uerr_num = 0; spin_unlock_irqrestore(&master->lock, flags); } static int fsi_stream_transfer(struct fsi_stream *io) { struct fsi_priv *fsi = fsi_stream_to_priv(io); if (!fsi) return -EIO; return fsi_stream_handler_call(io, transfer, fsi, io); } #define fsi_stream_start(fsi, io)\ fsi_stream_handler_call(io, start_stop, fsi, io, 1) #define fsi_stream_stop(fsi, io)\ fsi_stream_handler_call(io, start_stop, fsi, io, 0) static int fsi_stream_probe(struct fsi_priv *fsi, struct device *dev) { struct fsi_stream *io; int ret1, ret2; io = &fsi->playback; ret1 = fsi_stream_handler_call(io, probe, fsi, io, dev); io = &fsi->capture; ret2 = fsi_stream_handler_call(io, probe, fsi, io, dev); if (ret1 < 0) return ret1; if (ret2 < 0) return ret2; return 0; } static int fsi_stream_remove(struct fsi_priv *fsi) { struct fsi_stream *io; int ret1, ret2; io = &fsi->playback; ret1 = fsi_stream_handler_call(io, remove, fsi, io); io = &fsi->capture; ret2 = fsi_stream_handler_call(io, remove, fsi, io); if (ret1 < 0) return ret1; if (ret2 < 0) return ret2; return 0; } /* * format/bus/dma setting */ static void fsi_format_bus_setup(struct fsi_priv *fsi, struct fsi_stream *io, u32 bus, struct device *dev) { struct fsi_master *master = fsi_get_master(fsi); int is_play = fsi_stream_is_play(fsi, io); u32 fmt = fsi->fmt; if (fsi_version(master) >= 2) { u32 dma = 0; /* * FSI2 needs DMA/Bus setting */ switch (bus) { case PACKAGE_24BITBUS_FRONT: fmt |= CR_BWS_24; dma |= VDMD_FRONT; dev_dbg(dev, "24bit bus / package in front\n"); break; case PACKAGE_16BITBUS_STREAM: fmt |= CR_BWS_16; dma |= VDMD_STREAM; dev_dbg(dev, "16bit bus / stream mode\n"); break; case PACKAGE_24BITBUS_BACK: default: fmt |= CR_BWS_24; dma |= VDMD_BACK; dev_dbg(dev, "24bit bus / package in back\n"); break; } if (is_play) fsi_reg_write(fsi, OUT_DMAC, dma); else fsi_reg_write(fsi, IN_DMAC, dma); } if (is_play) fsi_reg_write(fsi, DO_FMT, fmt); else fsi_reg_write(fsi, DI_FMT, fmt); } /* * irq function */ static void fsi_irq_enable(struct fsi_priv *fsi, struct fsi_stream *io) { u32 data = AB_IO(1, fsi_get_port_shift(fsi, io)); struct fsi_master *master = fsi_get_master(fsi); fsi_core_mask_set(master, imsk, data, data); fsi_core_mask_set(master, iemsk, data, data); } static void fsi_irq_disable(struct fsi_priv *fsi, struct fsi_stream *io) { u32 data = AB_IO(1, fsi_get_port_shift(fsi, io)); struct fsi_master *master = fsi_get_master(fsi); fsi_core_mask_set(master, imsk, data, 0); fsi_core_mask_set(master, iemsk, data, 0); } static u32 fsi_irq_get_status(struct fsi_master *master) { return fsi_core_read(master, int_st); } static void fsi_irq_clear_status(struct fsi_priv *fsi) { u32 data = 0; struct fsi_master *master = fsi_get_master(fsi); data |= AB_IO(1, fsi_get_port_shift(fsi, &fsi->playback)); data |= AB_IO(1, fsi_get_port_shift(fsi, &fsi->capture)); /* clear interrupt factor */ fsi_core_mask_set(master, int_st, data, 0); } /* * SPDIF master clock function * * These functions are used later FSI2 */ static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable) { struct fsi_master *master = fsi_get_master(fsi); u32 mask, val; mask = BP | SE; val = enable ? mask : 0; fsi_is_port_a(fsi) ? fsi_core_mask_set(master, a_mclk, mask, val) : fsi_core_mask_set(master, b_mclk, mask, val); } /* * clock function */ static int fsi_clk_init(struct device *dev, struct fsi_priv *fsi, int xck, int ick, int div, int (*set_rate)(struct device *dev, struct fsi_priv *fsi)) { struct fsi_clk *clock = &fsi->clock; int is_porta = fsi_is_port_a(fsi); clock->xck = NULL; clock->ick = NULL; clock->div = NULL; clock->rate = 0; clock->count = 0; clock->set_rate = set_rate; clock->own = devm_clk_get(dev, NULL); if (IS_ERR(clock->own)) return -EINVAL; /* external clock */ if (xck) { clock->xck = devm_clk_get(dev, is_porta ? "xcka" : "xckb"); if (IS_ERR(clock->xck)) { dev_err(dev, "can't get xck clock\n"); return -EINVAL; } if (clock->xck == clock->own) { dev_err(dev, "cpu doesn't support xck clock\n"); return -EINVAL; } } /* FSIACLK/FSIBCLK */ if (ick) { clock->ick = devm_clk_get(dev, is_porta ? "icka" : "ickb"); if (IS_ERR(clock->ick)) { dev_err(dev, "can't get ick clock\n"); return -EINVAL; } if (clock->ick == clock->own) { dev_err(dev, "cpu doesn't support ick clock\n"); return -EINVAL; } } /* FSI-DIV */ if (div) { clock->div = devm_clk_get(dev, is_porta ? "diva" : "divb"); if (IS_ERR(clock->div)) { dev_err(dev, "can't get div clock\n"); return -EINVAL; } if (clock->div == clock->own) { dev_err(dev, "cpu doesn't support div clock\n"); return -EINVAL; } } return 0; } #define fsi_clk_invalid(fsi) fsi_clk_valid(fsi, 0) static void fsi_clk_valid(struct fsi_priv *fsi, unsigned long rate) { fsi->clock.rate = rate; } static int fsi_clk_is_valid(struct fsi_priv *fsi) { return fsi->clock.set_rate && fsi->clock.rate; } static int fsi_clk_enable(struct device *dev, struct fsi_priv *fsi) { struct fsi_clk *clock = &fsi->clock; int ret = -EINVAL; if (!fsi_clk_is_valid(fsi)) return ret; if (0 == clock->count) { ret = clock->set_rate(dev, fsi); if (ret < 0) { fsi_clk_invalid(fsi); return ret; } ret = clk_enable(clock->xck); if (ret) goto err; ret = clk_enable(clock->ick); if (ret) goto disable_xck; ret = clk_enable(clock->div); if (ret) goto disable_ick; clock->count++; } return ret; disable_ick: clk_disable(clock->ick); disable_xck: clk_disable(clock->xck); err: return ret; } static int fsi_clk_disable(struct device *dev, struct fsi_priv *fsi) { struct fsi_clk *clock = &fsi->clock; if (!fsi_clk_is_valid(fsi)) return -EINVAL; if (1 == clock->count--) { clk_disable(clock->xck); clk_disable(clock->ick); clk_disable(clock->div); } return 0; } static int fsi_clk_set_ackbpf(struct device *dev, struct fsi_priv *fsi, int ackmd, int bpfmd) { u32 data = 0; /* check ackmd/bpfmd relationship */ if (bpfmd > ackmd) { dev_err(dev, "unsupported rate (%d/%d)\n", ackmd, bpfmd); return -EINVAL; } /* ACKMD */ switch (ackmd) { case 512: data |= (0x0 << 12); break; case 256: data |= (0x1 << 12); break; case 128: data |= (0x2 << 12); break; case 64: data |= (0x3 << 12); break; case 32: data |= (0x4 << 12); break; default: dev_err(dev, "unsupported ackmd (%d)\n", ackmd); return -EINVAL; } /* BPFMD */ switch (bpfmd) { case 32: data |= (0x0 << 8); break; case 64: data |= (0x1 << 8); break; case 128: data |= (0x2 << 8); break; case 256: data |= (0x3 << 8); break; case 512: data |= (0x4 << 8); break; case 16: data |= (0x7 << 8); break; default: dev_err(dev, "unsupported bpfmd (%d)\n", bpfmd); return -EINVAL; } dev_dbg(dev, "ACKMD/BPFMD = %d/%d\n", ackmd, bpfmd); fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data); udelay(10); return 0; } static int fsi_clk_set_rate_external(struct device *dev, struct fsi_priv *fsi) { struct clk *xck = fsi->clock.xck; struct clk *ick = fsi->clock.ick; unsigned long rate = fsi->clock.rate; unsigned long xrate; int ackmd, bpfmd; int ret = 0; /* check clock rate */ xrate = clk_get_rate(xck); if (xrate % rate) { dev_err(dev, "unsupported clock rate\n"); return -EINVAL; } clk_set_parent(ick, xck); clk_set_rate(ick, xrate); bpfmd = fsi->chan_num * 32; ackmd = xrate / rate; dev_dbg(dev, "external/rate = %ld/%ld\n", xrate, rate); ret = fsi_clk_set_ackbpf(dev, fsi, ackmd, bpfmd); if (ret < 0) dev_err(dev, "%s failed", __func__); return ret; } static int fsi_clk_set_rate_cpg(struct device *dev, struct fsi_priv *fsi) { struct clk *ick = fsi->clock.ick; struct clk *div = fsi->clock.div; unsigned long rate = fsi->clock.rate; unsigned long target = 0; /* 12288000 or 11289600 */ unsigned long actual, cout; unsigned long diff, min; unsigned long best_cout, best_act; int adj; int ackmd, bpfmd; int ret = -EINVAL; if (!(12288000 % rate)) target = 12288000; if (!(11289600 % rate)) target = 11289600; if (!target) { dev_err(dev, "unsupported rate\n"); return ret; } bpfmd = fsi->chan_num * 32; ackmd = target / rate; ret = fsi_clk_set_ackbpf(dev, fsi, ackmd, bpfmd); if (ret < 0) { dev_err(dev, "%s failed", __func__); return ret; } /* * The clock flow is * * [CPG] = cout => [FSI_DIV] = audio => [FSI] => [codec] * * But, it needs to find best match of CPG and FSI_DIV * combination, since it is difficult to generate correct * frequency of audio clock from ick clock only. * Because ick is created from its parent clock. * * target = rate x [512/256/128/64]fs * cout = round(target x adjustment) * actual = cout / adjustment (by FSI-DIV) ~= target * audio = actual */ min = ~0; best_cout = 0; best_act = 0; for (adj = 1; adj < 0xffff; adj++) { cout = target * adj; if (cout > 100000000) /* max clock = 100MHz */ break; /* cout/actual audio clock */ cout = clk_round_rate(ick, cout); actual = cout / adj; /* find best frequency */ diff = abs(actual - target); if (diff < min) { min = diff; best_cout = cout; best_act = actual; } } ret = clk_set_rate(ick, best_cout); if (ret < 0) { dev_err(dev, "ick clock failed\n"); return -EIO; } ret = clk_set_rate(div, clk_round_rate(div, best_act)); if (ret < 0) { dev_err(dev, "div clock failed\n"); return -EIO; } dev_dbg(dev, "ick/div = %ld/%ld\n", clk_get_rate(ick), clk_get_rate(div)); return ret; } static void fsi_pointer_update(struct fsi_stream *io, int size) { io->buff_sample_pos += size; if (io->buff_sample_pos >= io->period_samples * (io->period_pos + 1)) { struct snd_pcm_substream *substream = io->substream; struct snd_pcm_runtime *runtime = substream->runtime; io->period_pos++; if (io->period_pos >= runtime->periods) { io->buff_sample_pos = 0; io->period_pos = 0; } snd_pcm_period_elapsed(substream); } } /* * pio data transfer handler */ static void fsi_pio_push16(struct fsi_priv *fsi, u8 *_buf, int samples) { int i; if (fsi_is_enable_stream(fsi)) { /* * stream mode * see * fsi_pio_push_init() */ u32 *buf = (u32 *)_buf; for (i = 0; i < samples / 2; i++) fsi_reg_write(fsi, DODT, buf[i]); } else { /* normal mode */ u16 *buf = (u16 *)_buf; for (i = 0; i < samples; i++) fsi_reg_write(fsi, DODT, ((u32)*(buf + i) << 8)); } } static void fsi_pio_pop16(struct fsi_priv *fsi, u8 *_buf, int samples) { u16 *buf = (u16 *)_buf; int i; for (i = 0; i < samples; i++) *(buf + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8); } static void fsi_pio_push32(struct fsi_priv *fsi, u8 *_buf, int samples) { u32 *buf = (u32 *)_buf; int i; for (i = 0; i < samples; i++) fsi_reg_write(fsi, DODT, *(buf + i)); } static void fsi_pio_pop32(struct fsi_priv *fsi, u8 *_buf, int samples) { u32 *buf = (u32 *)_buf; int i; for (i = 0; i < samples; i++) *(buf + i) = fsi_reg_read(fsi, DIDT); } static u8 *fsi_pio_get_area(struct fsi_priv *fsi, struct fsi_stream *io) { struct snd_pcm_runtime *runtime = io->substream->runtime; return runtime->dma_area + samples_to_bytes(runtime, io->buff_sample_pos); } static int fsi_pio_transfer(struct fsi_priv *fsi, struct fsi_stream *io, void (*run16)(struct fsi_priv *fsi, u8 *buf, int samples), void (*run32)(struct fsi_priv *fsi, u8 *buf, int samples), int samples) { u8 *buf; if (!fsi_stream_is_working(fsi, io)) return -EINVAL; buf = fsi_pio_get_area(fsi, io); switch (io->sample_width) { case 2: run16(fsi, buf, samples); break; case 4: run32(fsi, buf, samples); break; default: return -EINVAL; } fsi_pointer_update(io, samples); return 0; } static int fsi_pio_pop(struct fsi_priv *fsi, struct fsi_stream *io) { int sample_residues; /* samples in FSI fifo */ int sample_space; /* ALSA free samples space */ int samples; sample_residues = fsi_get_current_fifo_samples(fsi, io); sample_space = io->buff_sample_capa - io->buff_sample_pos; samples = min(sample_residues, sample_space); return fsi_pio_transfer(fsi, io, fsi_pio_pop16, fsi_pio_pop32, samples); } static int fsi_pio_push(struct fsi_priv *fsi, struct fsi_stream *io) { int sample_residues; /* ALSA residue samples */ int sample_space; /* FSI fifo free samples space */ int samples; sample_residues = io->buff_sample_capa - io->buff_sample_pos; sample_space = io->fifo_sample_capa - fsi_get_current_fifo_samples(fsi, io); samples = min(sample_residues, sample_space); return fsi_pio_transfer(fsi, io, fsi_pio_push16, fsi_pio_push32, samples); } static int fsi_pio_start_stop(struct fsi_priv *fsi, struct fsi_stream *io, int enable) { struct fsi_master *master = fsi_get_master(fsi); u32 clk = fsi_is_port_a(fsi) ? CRA : CRB; if (enable) fsi_irq_enable(fsi, io); else fsi_irq_disable(fsi, io); if (fsi_is_clk_master(fsi)) fsi_master_mask_set(master, CLK_RST, clk, (enable) ? clk : 0); return 0; } static int fsi_pio_push_init(struct fsi_priv *fsi, struct fsi_stream *io) { /* * we can use 16bit stream mode * when "playback" and "16bit data" * and platform allows "stream mode" * see * fsi_pio_push16() */ if (fsi_is_enable_stream(fsi)) io->bus_option = BUSOP_SET(24, PACKAGE_24BITBUS_BACK) | BUSOP_SET(16, PACKAGE_16BITBUS_STREAM); else io->bus_option = BUSOP_SET(24, PACKAGE_24BITBUS_BACK) | BUSOP_SET(16, PACKAGE_24BITBUS_BACK); return 0; } static int fsi_pio_pop_init(struct fsi_priv *fsi, struct fsi_stream *io) { /* * always 24bit bus, package back when "capture" */ io->bus_option = BUSOP_SET(24, PACKAGE_24BITBUS_BACK) | BUSOP_SET(16, PACKAGE_24BITBUS_BACK); return 0; } static struct fsi_stream_handler fsi_pio_push_handler = { .init = fsi_pio_push_init, .transfer = fsi_pio_push, .start_stop = fsi_pio_start_stop, }; static struct fsi_stream_handler fsi_pio_pop_handler = { .init = fsi_pio_pop_init, .transfer = fsi_pio_pop, .start_stop = fsi_pio_start_stop, }; static irqreturn_t fsi_interrupt(int irq, void *data) { struct fsi_master *master = data; u32 int_st = fsi_irq_get_status(master); /* clear irq status */ fsi_master_mask_set(master, SOFT_RST, IR, 0); fsi_master_mask_set(master, SOFT_RST, IR, IR); if (int_st & AB_IO(1, AO_SHIFT)) fsi_stream_transfer(&master->fsia.playback); if (int_st & AB_IO(1, BO_SHIFT)) fsi_stream_transfer(&master->fsib.playback); if (int_st & AB_IO(1, AI_SHIFT)) fsi_stream_transfer(&master->fsia.capture); if (int_st & AB_IO(1, BI_SHIFT)) fsi_stream_transfer(&master->fsib.capture); fsi_count_fifo_err(&master->fsia); fsi_count_fifo_err(&master->fsib); fsi_irq_clear_status(&master->fsia); fsi_irq_clear_status(&master->fsib); return IRQ_HANDLED; } /* * dma data transfer handler */ static int fsi_dma_init(struct fsi_priv *fsi, struct fsi_stream *io) { /* * 24bit data : 24bit bus / package in back * 16bit data : 16bit bus / stream mode */ io->bus_option = BUSOP_SET(24, PACKAGE_24BITBUS_BACK) | BUSOP_SET(16, PACKAGE_16BITBUS_STREAM); return 0; } static void fsi_dma_complete(void *data) { struct fsi_stream *io = (struct fsi_stream *)data; struct fsi_priv *fsi = fsi_stream_to_priv(io); fsi_pointer_update(io, io->period_samples); fsi_count_fifo_err(fsi); } static int fsi_dma_transfer(struct fsi_priv *fsi, struct fsi_stream *io) { struct snd_soc_dai *dai = fsi_get_dai(io->substream); struct snd_pcm_substream *substream = io->substream; struct dma_async_tx_descriptor *desc; int is_play = fsi_stream_is_play(fsi, io); enum dma_transfer_direction dir; int ret = -EIO; if (is_play) dir = DMA_MEM_TO_DEV; else dir = DMA_DEV_TO_MEM; desc = dmaengine_prep_dma_cyclic(io->chan, substream->runtime->dma_addr, snd_pcm_lib_buffer_bytes(substream), snd_pcm_lib_period_bytes(substream), dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(dai->dev, "dmaengine_prep_dma_cyclic() fail\n"); goto fsi_dma_transfer_err; } desc->callback = fsi_dma_complete; desc->callback_param = io; if (dmaengine_submit(desc) < 0) { dev_err(dai->dev, "tx_submit() fail\n"); goto fsi_dma_transfer_err; } dma_async_issue_pending(io->chan); /* * FIXME * * In DMAEngine case, codec and FSI cannot be started simultaneously * since FSI is using the scheduler work queue. * Therefore, in capture case, probably FSI FIFO will have got * overflow error in this point. * in that case, DMA cannot start transfer until error was cleared. */ if (!is_play) { if (ERR_OVER & fsi_reg_read(fsi, DIFF_ST)) { fsi_reg_mask_set(fsi, DIFF_CTL, FIFO_CLR, FIFO_CLR); fsi_reg_write(fsi, DIFF_ST, 0); } } ret = 0; fsi_dma_transfer_err: return ret; } static int fsi_dma_push_start_stop(struct fsi_priv *fsi, struct fsi_stream *io, int start) { struct fsi_master *master = fsi_get_master(fsi); u32 clk = fsi_is_port_a(fsi) ? CRA : CRB; u32 enable = start ? DMA_ON : 0; fsi_reg_mask_set(fsi, OUT_DMAC, DMA_ON, enable); dmaengine_terminate_all(io->chan); if (fsi_is_clk_master(fsi)) fsi_master_mask_set(master, CLK_RST, clk, (enable) ? clk : 0); return 0; } static int fsi_dma_probe(struct fsi_priv *fsi, struct fsi_stream *io, struct device *dev) { int is_play = fsi_stream_is_play(fsi, io); #ifdef CONFIG_SUPERH dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); io->chan = dma_request_channel(mask, shdma_chan_filter, (void *)io->dma_id); #else io->chan = dma_request_chan(dev, is_play ? "tx" : "rx"); if (IS_ERR(io->chan)) io->chan = NULL; #endif if (io->chan) { struct dma_slave_config cfg = {}; int ret; if (is_play) { cfg.dst_addr = fsi->phys + REG_DODT; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.direction = DMA_MEM_TO_DEV; } else { cfg.src_addr = fsi->phys + REG_DIDT; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.direction = DMA_DEV_TO_MEM; } ret = dmaengine_slave_config(io->chan, &cfg); if (ret < 0) { dma_release_channel(io->chan); io->chan = NULL; } } if (!io->chan) { /* switch to PIO handler */ if (is_play) fsi->playback.handler = &fsi_pio_push_handler; else fsi->capture.handler = &fsi_pio_pop_handler; dev_info(dev, "switch handler (dma => pio)\n"); /* probe again */ return fsi_stream_probe(fsi, dev); } return 0; } static int fsi_dma_remove(struct fsi_priv *fsi, struct fsi_stream *io) { fsi_stream_stop(fsi, io); if (io->chan) dma_release_channel(io->chan); io->chan = NULL; return 0; } static struct fsi_stream_handler fsi_dma_push_handler = { .init = fsi_dma_init, .probe = fsi_dma_probe, .transfer = fsi_dma_transfer, .remove = fsi_dma_remove, .start_stop = fsi_dma_push_start_stop, }; /* * dai ops */ static void fsi_fifo_init(struct fsi_priv *fsi, struct fsi_stream *io, struct device *dev) { struct fsi_master *master = fsi_get_master(fsi); int is_play = fsi_stream_is_play(fsi, io); u32 shift, i; int frame_capa; /* get on-chip RAM capacity */ shift = fsi_master_read(master, FIFO_SZ); shift >>= fsi_get_port_shift(fsi, io); shift &= FIFO_SZ_MASK; frame_capa = 256 << shift; dev_dbg(dev, "fifo = %d words\n", frame_capa); /* * The maximum number of sample data varies depending * on the number of channels selected for the format. * * FIFOs are used in 4-channel units in 3-channel mode * and in 8-channel units in 5- to 7-channel mode * meaning that more FIFOs than the required size of DPRAM * are used. * * ex) if 256 words of DP-RAM is connected * 1 channel: 256 (256 x 1 = 256) * 2 channels: 128 (128 x 2 = 256) * 3 channels: 64 ( 64 x 3 = 192) * 4 channels: 64 ( 64 x 4 = 256) * 5 channels: 32 ( 32 x 5 = 160) * 6 channels: 32 ( 32 x 6 = 192) * 7 channels: 32 ( 32 x 7 = 224) * 8 channels: 32 ( 32 x 8 = 256) */ for (i = 1; i < fsi->chan_num; i <<= 1) frame_capa >>= 1; dev_dbg(dev, "%d channel %d store\n", fsi->chan_num, frame_capa); io->fifo_sample_capa = fsi_frame2sample(fsi, frame_capa); /* * set interrupt generation factor * clear FIFO */ if (is_play) { fsi_reg_write(fsi, DOFF_CTL, IRQ_HALF); fsi_reg_mask_set(fsi, DOFF_CTL, FIFO_CLR, FIFO_CLR); } else { fsi_reg_write(fsi, DIFF_CTL, IRQ_HALF); fsi_reg_mask_set(fsi, DIFF_CTL, FIFO_CLR, FIFO_CLR); } } static int fsi_hw_startup(struct fsi_priv *fsi, struct fsi_stream *io, struct device *dev) { u32 data = 0; /* clock setting */ if (fsi_is_clk_master(fsi)) data = DIMD | DOMD; fsi_reg_mask_set(fsi, CKG1, (DIMD | DOMD), data); /* clock inversion (CKG2) */ data = 0; if (fsi->bit_clk_inv) data |= (1 << 0); if (fsi->lr_clk_inv) data |= (1 << 4); if (fsi_is_clk_master(fsi)) data <<= 8; fsi_reg_write(fsi, CKG2, data); /* spdif ? */ if (fsi_is_spdif(fsi)) { fsi_spdif_clk_ctrl(fsi, 1); fsi_reg_mask_set(fsi, OUT_SEL, DMMD, DMMD); } /* * get bus settings */ data = 0; switch (io->sample_width) { case 2: data = BUSOP_GET(16, io->bus_option); break; case 4: data = BUSOP_GET(24, io->bus_option); break; } fsi_format_bus_setup(fsi, io, data, dev); /* irq clear */ fsi_irq_disable(fsi, io); fsi_irq_clear_status(fsi); /* fifo init */ fsi_fifo_init(fsi, io, dev); /* start master clock */ if (fsi_is_clk_master(fsi)) return fsi_clk_enable(dev, fsi); return 0; } static int fsi_hw_shutdown(struct fsi_priv *fsi, struct device *dev) { /* stop master clock */ if (fsi_is_clk_master(fsi)) return fsi_clk_disable(dev, fsi); return 0; } static int fsi_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); fsi_clk_invalid(fsi); return 0; } static void fsi_dai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); fsi_clk_invalid(fsi); } static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); struct fsi_stream *io = fsi_stream_get(fsi, substream); int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: fsi_stream_init(fsi, io, substream); if (!ret) ret = fsi_hw_startup(fsi, io, dai->dev); if (!ret) ret = fsi_stream_start(fsi, io); if (!ret) ret = fsi_stream_transfer(io); break; case SNDRV_PCM_TRIGGER_STOP: if (!ret) ret = fsi_hw_shutdown(fsi, dai->dev); fsi_stream_stop(fsi, io); fsi_stream_quit(fsi, io); break; } return ret; } static int fsi_set_fmt_dai(struct fsi_priv *fsi, unsigned int fmt) { switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: fsi->fmt = CR_I2S; fsi->chan_num = 2; break; case SND_SOC_DAIFMT_LEFT_J: fsi->fmt = CR_PCM; fsi->chan_num = 2; break; default: return -EINVAL; } return 0; } static int fsi_set_fmt_spdif(struct fsi_priv *fsi) { struct fsi_master *master = fsi_get_master(fsi); if (fsi_version(master) < 2) return -EINVAL; fsi->fmt = CR_DTMD_SPDIF_PCM | CR_PCM; fsi->chan_num = 2; return 0; } static int fsi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct fsi_priv *fsi = fsi_get_priv_frm_dai(dai); int ret; /* set clock master audio interface */ switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BC_FC: break; case SND_SOC_DAIFMT_BP_FP: fsi->clk_master = 1; /* cpu is master */ break; default: return -EINVAL; } /* set clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_IF: fsi->bit_clk_inv = 0; fsi->lr_clk_inv = 1; break; case SND_SOC_DAIFMT_IB_NF: fsi->bit_clk_inv = 1; fsi->lr_clk_inv = 0; break; case SND_SOC_DAIFMT_IB_IF: fsi->bit_clk_inv = 1; fsi->lr_clk_inv = 1; break; case SND_SOC_DAIFMT_NB_NF: default: fsi->bit_clk_inv = 0; fsi->lr_clk_inv = 0; break; } if (fsi_is_clk_master(fsi)) { if (fsi->clk_cpg) fsi_clk_init(dai->dev, fsi, 0, 1, 1, fsi_clk_set_rate_cpg); else fsi_clk_init(dai->dev, fsi, 1, 1, 0, fsi_clk_set_rate_external); } /* set format */ if (fsi_is_spdif(fsi)) ret = fsi_set_fmt_spdif(fsi); else ret = fsi_set_fmt_dai(fsi, fmt & SND_SOC_DAIFMT_FORMAT_MASK); return ret; } static int fsi_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct fsi_priv *fsi = fsi_get_priv(substream); if (fsi_is_clk_master(fsi)) fsi_clk_valid(fsi, params_rate(params)); return 0; } /* * Select below from Sound Card, not auto * SND_SOC_DAIFMT_CBC_CFC * SND_SOC_DAIFMT_CBP_CFP */ static const u64 fsi_dai_formats = SND_SOC_POSSIBLE_DAIFMT_I2S | SND_SOC_POSSIBLE_DAIFMT_LEFT_J | SND_SOC_POSSIBLE_DAIFMT_NB_NF | SND_SOC_POSSIBLE_DAIFMT_NB_IF | SND_SOC_POSSIBLE_DAIFMT_IB_NF | SND_SOC_POSSIBLE_DAIFMT_IB_IF; static const struct snd_soc_dai_ops fsi_dai_ops = { .startup = fsi_dai_startup, .shutdown = fsi_dai_shutdown, .trigger = fsi_dai_trigger, .set_fmt = fsi_dai_set_fmt, .hw_params = fsi_dai_hw_params, .auto_selectable_formats = &fsi_dai_formats, .num_auto_selectable_formats = 1, }; /* * pcm ops */ static const struct snd_pcm_hardware fsi_pcm_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID, .buffer_bytes_max = 64 * 1024, .period_bytes_min = 32, .period_bytes_max = 8192, .periods_min = 1, .periods_max = 32, .fifo_size = 256, }; static int fsi_pcm_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; int ret = 0; snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware); ret = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); return ret; } static snd_pcm_uframes_t fsi_pointer(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct fsi_priv *fsi = fsi_get_priv(substream); struct fsi_stream *io = fsi_stream_get(fsi, substream); return fsi_sample2frame(fsi, io->buff_sample_pos); } /* * snd_soc_component */ #define PREALLOC_BUFFER (32 * 1024) #define PREALLOC_BUFFER_MAX (32 * 1024) static int fsi_pcm_new(struct snd_soc_component *component, struct snd_soc_pcm_runtime *rtd) { snd_pcm_set_managed_buffer_all( rtd->pcm, SNDRV_DMA_TYPE_DEV, rtd->card->snd_card->dev, PREALLOC_BUFFER, PREALLOC_BUFFER_MAX); return 0; } /* * alsa struct */ static struct snd_soc_dai_driver fsi_soc_dai[] = { { .name = "fsia-dai", .playback = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 2, .channels_max = 2, }, .capture = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 2, .channels_max = 2, }, .ops = &fsi_dai_ops, }, { .name = "fsib-dai", .playback = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 2, .channels_max = 2, }, .capture = { .rates = FSI_RATES, .formats = FSI_FMTS, .channels_min = 2, .channels_max = 2, }, .ops = &fsi_dai_ops, }, }; static const struct snd_soc_component_driver fsi_soc_component = { .name = "fsi", .open = fsi_pcm_open, .pointer = fsi_pointer, .pcm_construct = fsi_pcm_new, }; /* * platform function */ static void fsi_of_parse(char *name, struct device_node *np, struct sh_fsi_port_info *info, struct device *dev) { int i; char prop[128]; unsigned long flags = 0; struct { char *name; unsigned int val; } of_parse_property[] = { { "spdif-connection", SH_FSI_FMT_SPDIF }, { "stream-mode-support", SH_FSI_ENABLE_STREAM_MODE }, { "use-internal-clock", SH_FSI_CLK_CPG }, }; for (i = 0; i < ARRAY_SIZE(of_parse_property); i++) { sprintf(prop, "%s,%s", name, of_parse_property[i].name); if (of_property_present(np, prop)) flags |= of_parse_property[i].val; } info->flags = flags; dev_dbg(dev, "%s flags : %lx\n", name, info->flags); } static void fsi_port_info_init(struct fsi_priv *fsi, struct sh_fsi_port_info *info) { if (info->flags & SH_FSI_FMT_SPDIF) fsi->spdif = 1; if (info->flags & SH_FSI_CLK_CPG) fsi->clk_cpg = 1; if (info->flags & SH_FSI_ENABLE_STREAM_MODE) fsi->enable_stream = 1; } static void fsi_handler_init(struct fsi_priv *fsi, struct sh_fsi_port_info *info) { fsi->playback.handler = &fsi_pio_push_handler; /* default PIO */ fsi->playback.priv = fsi; fsi->capture.handler = &fsi_pio_pop_handler; /* default PIO */ fsi->capture.priv = fsi; if (info->tx_id) { fsi->playback.dma_id = info->tx_id; fsi->playback.handler = &fsi_dma_push_handler; } } static const struct fsi_core fsi1_core = { .ver = 1, /* Interrupt */ .int_st = INT_ST, .iemsk = IEMSK, .imsk = IMSK, }; static const struct fsi_core fsi2_core = { .ver = 2, /* Interrupt */ .int_st = CPU_INT_ST, .iemsk = CPU_IEMSK, .imsk = CPU_IMSK, .a_mclk = A_MST_CTLR, .b_mclk = B_MST_CTLR, }; static const struct of_device_id fsi_of_match[] = { { .compatible = "renesas,sh_fsi", .data = &fsi1_core}, { .compatible = "renesas,sh_fsi2", .data = &fsi2_core}, {}, }; MODULE_DEVICE_TABLE(of, fsi_of_match); static const struct platform_device_id fsi_id_table[] = { { "sh_fsi", (kernel_ulong_t)&fsi1_core }, {}, }; MODULE_DEVICE_TABLE(platform, fsi_id_table); static int fsi_probe(struct platform_device *pdev) { struct fsi_master *master; struct device_node *np = pdev->dev.of_node; struct sh_fsi_platform_info info; const struct fsi_core *core; struct fsi_priv *fsi; struct resource *res; unsigned int irq; int ret; memset(&info, 0, sizeof(info)); core = NULL; if (np) { core = of_device_get_match_data(&pdev->dev); fsi_of_parse("fsia", np, &info.port_a, &pdev->dev); fsi_of_parse("fsib", np, &info.port_b, &pdev->dev); } else { const struct platform_device_id *id_entry = pdev->id_entry; if (id_entry) core = (struct fsi_core *)id_entry->driver_data; if (pdev->dev.platform_data) memcpy(&info, pdev->dev.platform_data, sizeof(info)); } if (!core) { dev_err(&pdev->dev, "unknown fsi device\n"); return -ENODEV; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!res || (int)irq <= 0) { dev_err(&pdev->dev, "Not enough FSI platform resources.\n"); return -ENODEV; } master = devm_kzalloc(&pdev->dev, sizeof(*master), GFP_KERNEL); if (!master) return -ENOMEM; master->base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!master->base) { dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n"); return -ENXIO; } /* master setting */ master->core = core; spin_lock_init(&master->lock); /* FSI A setting */ fsi = &master->fsia; fsi->base = master->base; fsi->phys = res->start; fsi->master = master; fsi_port_info_init(fsi, &info.port_a); fsi_handler_init(fsi, &info.port_a); ret = fsi_stream_probe(fsi, &pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "FSIA stream probe failed\n"); return ret; } /* FSI B setting */ fsi = &master->fsib; fsi->base = master->base + 0x40; fsi->phys = res->start + 0x40; fsi->master = master; fsi_port_info_init(fsi, &info.port_b); fsi_handler_init(fsi, &info.port_b); ret = fsi_stream_probe(fsi, &pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "FSIB stream probe failed\n"); goto exit_fsia; } pm_runtime_enable(&pdev->dev); dev_set_drvdata(&pdev->dev, master); ret = devm_request_irq(&pdev->dev, irq, &fsi_interrupt, 0, dev_name(&pdev->dev), master); if (ret) { dev_err(&pdev->dev, "irq request err\n"); goto exit_fsib; } ret = devm_snd_soc_register_component(&pdev->dev, &fsi_soc_component, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai)); if (ret < 0) { dev_err(&pdev->dev, "cannot snd component register\n"); goto exit_fsib; } return ret; exit_fsib: pm_runtime_disable(&pdev->dev); fsi_stream_remove(&master->fsib); exit_fsia: fsi_stream_remove(&master->fsia); return ret; } static void fsi_remove(struct platform_device *pdev) { struct fsi_master *master; master = dev_get_drvdata(&pdev->dev); pm_runtime_disable(&pdev->dev); fsi_stream_remove(&master->fsia); fsi_stream_remove(&master->fsib); } static void __fsi_suspend(struct fsi_priv *fsi, struct fsi_stream *io, struct device *dev) { if (!fsi_stream_is_working(fsi, io)) return; fsi_stream_stop(fsi, io); fsi_hw_shutdown(fsi, dev); } static void __fsi_resume(struct fsi_priv *fsi, struct fsi_stream *io, struct device *dev) { if (!fsi_stream_is_working(fsi, io)) return; fsi_hw_startup(fsi, io, dev); fsi_stream_start(fsi, io); } static int fsi_suspend(struct device *dev) { struct fsi_master *master = dev_get_drvdata(dev); struct fsi_priv *fsia = &master->fsia; struct fsi_priv *fsib = &master->fsib; __fsi_suspend(fsia, &fsia->playback, dev); __fsi_suspend(fsia, &fsia->capture, dev); __fsi_suspend(fsib, &fsib->playback, dev); __fsi_suspend(fsib, &fsib->capture, dev); return 0; } static int fsi_resume(struct device *dev) { struct fsi_master *master = dev_get_drvdata(dev); struct fsi_priv *fsia = &master->fsia; struct fsi_priv *fsib = &master->fsib; __fsi_resume(fsia, &fsia->playback, dev); __fsi_resume(fsia, &fsia->capture, dev); __fsi_resume(fsib, &fsib->playback, dev); __fsi_resume(fsib, &fsib->capture, dev); return 0; } static const struct dev_pm_ops fsi_pm_ops = { .suspend = fsi_suspend, .resume = fsi_resume, }; static struct platform_driver fsi_driver = { .driver = { .name = "fsi-pcm-audio", .pm = &fsi_pm_ops, .of_match_table = fsi_of_match, }, .probe = fsi_probe, .remove_new = fsi_remove, .id_table = fsi_id_table, }; module_platform_driver(fsi_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("SuperH onchip FSI audio driver"); MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>"); MODULE_ALIAS("platform:fsi-pcm-audio");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1