Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kuninori Morimoto | 7758 | 92.99% | 215 | 86.00% |
Mikhail Durnev | 202 | 2.42% | 1 | 0.40% |
Jiada Wang | 91 | 1.09% | 4 | 1.60% |
Dragos Tarcatu | 83 | 0.99% | 3 | 1.20% |
Nilkanth Ahirrao | 46 | 0.55% | 1 | 0.40% |
Uwe Kleine-König | 39 | 0.47% | 2 | 0.80% |
Geert Uytterhoeven | 34 | 0.41% | 1 | 0.40% |
Mark Brown | 13 | 0.16% | 1 | 0.40% |
Timo Wischer | 11 | 0.13% | 1 | 0.40% |
Julia Lawall | 9 | 0.11% | 2 | 0.80% |
Shang XiaoJing | 8 | 0.10% | 1 | 0.40% |
Nikita Yushchenko | 7 | 0.08% | 1 | 0.40% |
Charles Keepax | 7 | 0.08% | 2 | 0.80% |
Junya Monden | 6 | 0.07% | 1 | 0.40% |
Kees Cook | 6 | 0.07% | 1 | 0.40% |
Christophe Jaillet | 5 | 0.06% | 1 | 0.40% |
Wolfram Sang | 4 | 0.05% | 1 | 0.40% |
Takashi Iwai | 3 | 0.04% | 1 | 0.40% |
Bhumika Goyal | 2 | 0.02% | 2 | 0.80% |
Arnd Bergmann | 2 | 0.02% | 1 | 0.40% |
Hiroyuki Yokoyama | 1 | 0.01% | 1 | 0.40% |
Fabian Frederick | 1 | 0.01% | 1 | 0.40% |
Joe Perches | 1 | 0.01% | 1 | 0.40% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 0.40% |
Mengdong Lin | 1 | 0.01% | 1 | 0.40% |
Arvind Yadav | 1 | 0.01% | 1 | 0.40% |
Pierre-Louis Bossart | 1 | 0.01% | 1 | 0.40% |
Total | 8343 | 250 |
// SPDX-License-Identifier: GPL-2.0 // // Renesas R-Car SRU/SCU/SSIU/SSI support // // Copyright (C) 2013 Renesas Solutions Corp. // Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> // // Based on fsi.c // Kuninori Morimoto <morimoto.kuninori@renesas.com> /* * Renesas R-Car sound device structure * * Gen1 * * SRU : Sound Routing Unit * - SRC : Sampling Rate Converter * - CMD * - CTU : Channel Count Conversion Unit * - MIX : Mixer * - DVC : Digital Volume and Mute Function * - SSI : Serial Sound Interface * * Gen2 * * SCU : Sampling Rate Converter Unit * - SRC : Sampling Rate Converter * - CMD * - CTU : Channel Count Conversion Unit * - MIX : Mixer * - DVC : Digital Volume and Mute Function * SSIU : Serial Sound Interface Unit * - SSI : Serial Sound Interface */ /* * driver data Image * * rsnd_priv * | * | ** this depends on Gen1/Gen2 * | * +- gen * | * | ** these depend on data path * | ** gen and platform data control it * | * +- rdai[0] * | | sru ssiu ssi * | +- playback -> [mod] -> [mod] -> [mod] -> ... * | | * | | sru ssiu ssi * | +- capture -> [mod] -> [mod] -> [mod] -> ... * | * +- rdai[1] * | | sru ssiu ssi * | +- playback -> [mod] -> [mod] -> [mod] -> ... * | | * | | sru ssiu ssi * | +- capture -> [mod] -> [mod] -> [mod] -> ... * ... * | * | ** these control ssi * | * +- ssi * | | * | +- ssi[0] * | +- ssi[1] * | +- ssi[2] * | ... * | * | ** these control src * | * +- src * | * +- src[0] * +- src[1] * +- src[2] * ... * * * for_each_rsnd_dai(xx, priv, xx) * rdai[0] => rdai[1] => rdai[2] => ... * * for_each_rsnd_mod(xx, rdai, xx) * [mod] => [mod] => [mod] => ... * * rsnd_dai_call(xxx, fn ) * [mod]->fn() -> [mod]->fn() -> [mod]->fn()... * */ #include <linux/pm_runtime.h> #include <linux/of_graph.h> #include "rsnd.h" #define RSND_RATES SNDRV_PCM_RATE_8000_192000 #define RSND_FMTS (SNDRV_PCM_FMTBIT_S8 |\ SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S24_LE) static const struct of_device_id rsnd_of_match[] = { { .compatible = "renesas,rcar_sound-gen1", .data = (void *)RSND_GEN1 }, { .compatible = "renesas,rcar_sound-gen2", .data = (void *)RSND_GEN2 }, { .compatible = "renesas,rcar_sound-gen3", .data = (void *)RSND_GEN3 }, { .compatible = "renesas,rcar_sound-gen4", .data = (void *)RSND_GEN4 }, /* Special Handling */ { .compatible = "renesas,rcar_sound-r8a77990", .data = (void *)(RSND_GEN3 | RSND_SOC_E) }, {}, }; MODULE_DEVICE_TABLE(of, rsnd_of_match); /* * rsnd_mod functions */ void rsnd_mod_make_sure(struct rsnd_mod *mod, enum rsnd_mod_type type) { if (mod->type != type) { struct rsnd_priv *priv = rsnd_mod_to_priv(mod); struct device *dev = rsnd_priv_to_dev(priv); dev_warn(dev, "%s is not your expected module\n", rsnd_mod_name(mod)); } } struct dma_chan *rsnd_mod_dma_req(struct rsnd_dai_stream *io, struct rsnd_mod *mod) { if (!mod || !mod->ops || !mod->ops->dma_req) return NULL; return mod->ops->dma_req(io, mod); } #define MOD_NAME_NUM 5 #define MOD_NAME_SIZE 16 char *rsnd_mod_name(struct rsnd_mod *mod) { static char names[MOD_NAME_NUM][MOD_NAME_SIZE]; static int num; char *name = names[num]; num++; if (num >= MOD_NAME_NUM) num = 0; /* * Let's use same char to avoid pointlessness memory * Thus, rsnd_mod_name() should be used immediately * Don't keep pointer */ if ((mod)->ops->id_sub) { snprintf(name, MOD_NAME_SIZE, "%s[%d%d]", mod->ops->name, rsnd_mod_id(mod), rsnd_mod_id_sub(mod)); } else { snprintf(name, MOD_NAME_SIZE, "%s[%d]", mod->ops->name, rsnd_mod_id(mod)); } return name; } u32 *rsnd_mod_get_status(struct rsnd_mod *mod, struct rsnd_dai_stream *io, enum rsnd_mod_type type) { return &mod->status; } int rsnd_mod_id_raw(struct rsnd_mod *mod) { return mod->id; } int rsnd_mod_id(struct rsnd_mod *mod) { if ((mod)->ops->id) return (mod)->ops->id(mod); return rsnd_mod_id_raw(mod); } int rsnd_mod_id_sub(struct rsnd_mod *mod) { if ((mod)->ops->id_sub) return (mod)->ops->id_sub(mod); return 0; } int rsnd_mod_init(struct rsnd_priv *priv, struct rsnd_mod *mod, struct rsnd_mod_ops *ops, struct clk *clk, enum rsnd_mod_type type, int id) { int ret = clk_prepare(clk); if (ret) return ret; mod->id = id; mod->ops = ops; mod->type = type; mod->clk = clk; mod->priv = priv; return 0; } void rsnd_mod_quit(struct rsnd_mod *mod) { clk_unprepare(mod->clk); mod->clk = NULL; } void rsnd_mod_interrupt(struct rsnd_mod *mod, void (*callback)(struct rsnd_mod *mod, struct rsnd_dai_stream *io)) { struct rsnd_priv *priv = rsnd_mod_to_priv(mod); struct rsnd_dai *rdai; int i; for_each_rsnd_dai(rdai, priv, i) { struct rsnd_dai_stream *io = &rdai->playback; if (mod == io->mod[mod->type]) callback(mod, io); io = &rdai->capture; if (mod == io->mod[mod->type]) callback(mod, io); } } int rsnd_io_is_working(struct rsnd_dai_stream *io) { /* see rsnd_dai_stream_init/quit() */ if (io->substream) return snd_pcm_running(io->substream); return 0; } int rsnd_runtime_channel_original_with_params(struct rsnd_dai_stream *io, struct snd_pcm_hw_params *params) { struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); /* * params will be added when refine * see * __rsnd_soc_hw_rule_rate() * __rsnd_soc_hw_rule_channels() */ if (params) return params_channels(params); else if (runtime) return runtime->channels; return 0; } int rsnd_runtime_channel_after_ctu_with_params(struct rsnd_dai_stream *io, struct snd_pcm_hw_params *params) { int chan = rsnd_runtime_channel_original_with_params(io, params); struct rsnd_mod *ctu_mod = rsnd_io_to_mod_ctu(io); if (ctu_mod) { u32 converted_chan = rsnd_io_converted_chan(io); /* * !! Note !! * * converted_chan will be used for CTU, * or TDM Split mode. * User shouldn't use CTU with TDM Split mode. */ if (rsnd_runtime_is_tdm_split(io)) { struct device *dev = rsnd_priv_to_dev(rsnd_io_to_priv(io)); dev_err(dev, "CTU and TDM Split should be used\n"); } if (converted_chan) return converted_chan; } return chan; } int rsnd_channel_normalization(int chan) { if (WARN_ON((chan > 8) || (chan < 0))) return 0; /* TDM Extend Mode needs 8ch */ if (chan == 6) chan = 8; return chan; } int rsnd_runtime_channel_for_ssi_with_params(struct rsnd_dai_stream *io, struct snd_pcm_hw_params *params) { struct rsnd_dai *rdai = rsnd_io_to_rdai(io); int chan = rsnd_io_is_play(io) ? rsnd_runtime_channel_after_ctu_with_params(io, params) : rsnd_runtime_channel_original_with_params(io, params); /* Use Multi SSI */ if (rsnd_runtime_is_multi_ssi(io)) chan /= rsnd_rdai_ssi_lane_get(rdai); return rsnd_channel_normalization(chan); } int rsnd_runtime_is_multi_ssi(struct rsnd_dai_stream *io) { struct rsnd_dai *rdai = rsnd_io_to_rdai(io); int lane = rsnd_rdai_ssi_lane_get(rdai); int chan = rsnd_io_is_play(io) ? rsnd_runtime_channel_after_ctu(io) : rsnd_runtime_channel_original(io); return (chan > 2) && (lane > 1); } int rsnd_runtime_is_tdm(struct rsnd_dai_stream *io) { return rsnd_runtime_channel_for_ssi(io) >= 6; } int rsnd_runtime_is_tdm_split(struct rsnd_dai_stream *io) { return !!rsnd_flags_has(io, RSND_STREAM_TDM_SPLIT); } /* * ADINR function */ u32 rsnd_get_adinr_bit(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { struct rsnd_priv *priv = rsnd_mod_to_priv(mod); struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); struct device *dev = rsnd_priv_to_dev(priv); switch (snd_pcm_format_width(runtime->format)) { case 8: return 16 << 16; case 16: return 8 << 16; case 24: return 0 << 16; } dev_warn(dev, "not supported sample bits\n"); return 0; } /* * DALIGN function */ u32 rsnd_get_dalign(struct rsnd_mod *mod, struct rsnd_dai_stream *io) { static const u32 dalign_values[8] = { 0x76543210, 0x00000032, 0x00007654, 0x00000076, 0xfedcba98, 0x000000ba, 0x0000fedc, 0x000000fe, }; int id = 0; struct rsnd_mod *ssiu = rsnd_io_to_mod_ssiu(io); struct rsnd_mod *target; struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); u32 dalign; /* * *Hardware* L/R and *Software* L/R are inverted for 16bit data. * 31..16 15...0 * HW: [L ch] [R ch] * SW: [R ch] [L ch] * We need to care about inversion timing to control * Playback/Capture correctly. * The point is [DVC] needs *Hardware* L/R, [MEM] needs *Software* L/R * * sL/R : software L/R * hL/R : hardware L/R * (*) : conversion timing * * Playback * sL/R (*) hL/R hL/R hL/R hL/R hL/R * [MEM] -> [SRC] -> [DVC] -> [CMD] -> [SSIU] -> [SSI] -> codec * * Capture * hL/R hL/R hL/R hL/R hL/R (*) sL/R * codec -> [SSI] -> [SSIU] -> [SRC] -> [DVC] -> [CMD] -> [MEM] */ if (rsnd_io_is_play(io)) { struct rsnd_mod *src = rsnd_io_to_mod_src(io); target = src ? src : ssiu; } else { struct rsnd_mod *cmd = rsnd_io_to_mod_cmd(io); target = cmd ? cmd : ssiu; } if (mod == ssiu) id = rsnd_mod_id_sub(mod); dalign = dalign_values[id]; if (mod == target && snd_pcm_format_width(runtime->format) == 16) { /* Target mod needs inverted DALIGN when 16bit */ dalign = (dalign & 0xf0f0f0f0) >> 4 | (dalign & 0x0f0f0f0f) << 4; } return dalign; } u32 rsnd_get_busif_shift(struct rsnd_dai_stream *io, struct rsnd_mod *mod) { static const enum rsnd_mod_type playback_mods[] = { RSND_MOD_SRC, RSND_MOD_CMD, RSND_MOD_SSIU, }; static const enum rsnd_mod_type capture_mods[] = { RSND_MOD_CMD, RSND_MOD_SRC, RSND_MOD_SSIU, }; struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); struct rsnd_mod *tmod = NULL; const enum rsnd_mod_type *mods = rsnd_io_is_play(io) ? playback_mods : capture_mods; int i; /* * This is needed for 24bit data * We need to shift 8bit * * Linux 24bit data is located as 0x00****** * HW 24bit data is located as 0x******00 * */ if (snd_pcm_format_width(runtime->format) != 24) return 0; for (i = 0; i < ARRAY_SIZE(playback_mods); i++) { tmod = rsnd_io_to_mod(io, mods[i]); if (tmod) break; } if (tmod != mod) return 0; if (rsnd_io_is_play(io)) return (0 << 20) | /* shift to Left */ (8 << 16); /* 8bit */ else return (1 << 20) | /* shift to Right */ (8 << 16); /* 8bit */ } /* * rsnd_dai functions */ struct rsnd_mod *rsnd_mod_next(int *iterator, struct rsnd_dai_stream *io, enum rsnd_mod_type *array, int array_size) { int max = array ? array_size : RSND_MOD_MAX; for (; *iterator < max; (*iterator)++) { enum rsnd_mod_type type = (array) ? array[*iterator] : *iterator; struct rsnd_mod *mod = rsnd_io_to_mod(io, type); if (mod) return mod; } return NULL; } static enum rsnd_mod_type rsnd_mod_sequence[][RSND_MOD_MAX] = { { /* CAPTURE */ RSND_MOD_AUDMAPP, RSND_MOD_AUDMA, RSND_MOD_DVC, RSND_MOD_MIX, RSND_MOD_CTU, RSND_MOD_CMD, RSND_MOD_SRC, RSND_MOD_SSIU, RSND_MOD_SSIM3, RSND_MOD_SSIM2, RSND_MOD_SSIM1, RSND_MOD_SSIP, RSND_MOD_SSI, }, { /* PLAYBACK */ RSND_MOD_AUDMAPP, RSND_MOD_AUDMA, RSND_MOD_SSIM3, RSND_MOD_SSIM2, RSND_MOD_SSIM1, RSND_MOD_SSIP, RSND_MOD_SSI, RSND_MOD_SSIU, RSND_MOD_DVC, RSND_MOD_MIX, RSND_MOD_CTU, RSND_MOD_CMD, RSND_MOD_SRC, }, }; static int rsnd_status_update(struct rsnd_dai_stream *io, struct rsnd_mod *mod, enum rsnd_mod_type type, int shift, int add, int timing) { u32 *status = mod->ops->get_status(mod, io, type); u32 mask = 0xF << shift; u8 val = (*status >> shift) & 0xF; u8 next_val = (val + add) & 0xF; int func_call = (val == timing); /* no status update */ if (add == 0 || shift == 28) return 1; if (next_val == 0xF) /* underflow case */ func_call = -1; else *status = (*status & ~mask) + (next_val << shift); return func_call; } #define rsnd_dai_call(fn, io, param...) \ ({ \ struct device *dev = rsnd_priv_to_dev(rsnd_io_to_priv(io)); \ struct rsnd_mod *mod; \ int is_play = rsnd_io_is_play(io); \ int ret = 0, i; \ enum rsnd_mod_type *types = rsnd_mod_sequence[is_play]; \ for_each_rsnd_mod_arrays(i, mod, io, types, RSND_MOD_MAX) { \ int tmp = 0; \ int func_call = rsnd_status_update(io, mod, types[i], \ __rsnd_mod_shift_##fn, \ __rsnd_mod_add_##fn, \ __rsnd_mod_call_##fn); \ if (func_call > 0 && (mod)->ops->fn) \ tmp = (mod)->ops->fn(mod, io, param); \ if (unlikely(func_call < 0) || \ unlikely(tmp && (tmp != -EPROBE_DEFER))) \ dev_err(dev, "%s : %s error (%d, %d)\n", \ rsnd_mod_name(mod), #fn, tmp, func_call);\ ret |= tmp; \ } \ ret; \ }) int rsnd_dai_connect(struct rsnd_mod *mod, struct rsnd_dai_stream *io, enum rsnd_mod_type type) { struct rsnd_priv *priv; struct device *dev; if (!mod) return -EIO; if (io->mod[type] == mod) return 0; if (io->mod[type]) return -EINVAL; priv = rsnd_mod_to_priv(mod); dev = rsnd_priv_to_dev(priv); io->mod[type] = mod; dev_dbg(dev, "%s is connected to io (%s)\n", rsnd_mod_name(mod), rsnd_io_is_play(io) ? "Playback" : "Capture"); return 0; } static void rsnd_dai_disconnect(struct rsnd_mod *mod, struct rsnd_dai_stream *io, enum rsnd_mod_type type) { io->mod[type] = NULL; } int rsnd_rdai_channels_ctrl(struct rsnd_dai *rdai, int max_channels) { if (max_channels > 0) rdai->max_channels = max_channels; return rdai->max_channels; } int rsnd_rdai_ssi_lane_ctrl(struct rsnd_dai *rdai, int ssi_lane) { if (ssi_lane > 0) rdai->ssi_lane = ssi_lane; return rdai->ssi_lane; } int rsnd_rdai_width_ctrl(struct rsnd_dai *rdai, int width) { if (width > 0) rdai->chan_width = width; return rdai->chan_width; } struct rsnd_dai *rsnd_rdai_get(struct rsnd_priv *priv, int id) { if ((id < 0) || (id >= rsnd_rdai_nr(priv))) return NULL; return priv->rdai + id; } static struct snd_soc_dai_driver *rsnd_daidrv_get(struct rsnd_priv *priv, int id) { if ((id < 0) || (id >= rsnd_rdai_nr(priv))) return NULL; return priv->daidrv + id; } #define rsnd_dai_to_priv(dai) snd_soc_dai_get_drvdata(dai) static struct rsnd_dai *rsnd_dai_to_rdai(struct snd_soc_dai *dai) { struct rsnd_priv *priv = rsnd_dai_to_priv(dai); return rsnd_rdai_get(priv, dai->id); } /* * rsnd_soc_dai functions */ void rsnd_dai_period_elapsed(struct rsnd_dai_stream *io) { struct snd_pcm_substream *substream = io->substream; /* * this function should be called... * * - if rsnd_dai_pointer_update() returns true * - without spin lock */ snd_pcm_period_elapsed(substream); } static void rsnd_dai_stream_init(struct rsnd_dai_stream *io, struct snd_pcm_substream *substream) { io->substream = substream; } static void rsnd_dai_stream_quit(struct rsnd_dai_stream *io) { io->substream = NULL; } static struct snd_soc_dai *rsnd_substream_to_dai(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); return snd_soc_rtd_to_cpu(rtd, 0); } static struct rsnd_dai_stream *rsnd_rdai_to_io(struct rsnd_dai *rdai, struct snd_pcm_substream *substream) { if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) return &rdai->playback; else return &rdai->capture; } static int rsnd_soc_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct rsnd_priv *priv = rsnd_dai_to_priv(dai); struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream); int ret; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: ret = rsnd_dai_call(init, io, priv); if (ret < 0) goto dai_trigger_end; ret = rsnd_dai_call(start, io, priv); if (ret < 0) goto dai_trigger_end; ret = rsnd_dai_call(irq, io, priv, 1); if (ret < 0) goto dai_trigger_end; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: ret = rsnd_dai_call(irq, io, priv, 0); ret |= rsnd_dai_call(stop, io, priv); ret |= rsnd_dai_call(quit, io, priv); break; default: ret = -EINVAL; } dai_trigger_end: spin_unlock_irqrestore(&priv->lock, flags); return ret; } static int rsnd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); /* set clock master for audio interface */ switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_BC_FC: rdai->clk_master = 0; break; case SND_SOC_DAIFMT_BP_FP: rdai->clk_master = 1; /* cpu is master */ break; default: return -EINVAL; } /* set format */ rdai->bit_clk_inv = 0; switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: rdai->sys_delay = 0; rdai->data_alignment = 0; rdai->frm_clk_inv = 0; break; case SND_SOC_DAIFMT_LEFT_J: case SND_SOC_DAIFMT_DSP_B: rdai->sys_delay = 1; rdai->data_alignment = 0; rdai->frm_clk_inv = 1; break; case SND_SOC_DAIFMT_RIGHT_J: rdai->sys_delay = 1; rdai->data_alignment = 1; rdai->frm_clk_inv = 1; break; case SND_SOC_DAIFMT_DSP_A: rdai->sys_delay = 0; rdai->data_alignment = 0; rdai->frm_clk_inv = 1; break; } /* set clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_IF: rdai->frm_clk_inv = !rdai->frm_clk_inv; break; case SND_SOC_DAIFMT_IB_NF: rdai->bit_clk_inv = !rdai->bit_clk_inv; break; case SND_SOC_DAIFMT_IB_IF: rdai->bit_clk_inv = !rdai->bit_clk_inv; rdai->frm_clk_inv = !rdai->frm_clk_inv; break; case SND_SOC_DAIFMT_NB_NF: default: break; } return 0; } static int rsnd_soc_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask, u32 rx_mask, int slots, int slot_width) { struct rsnd_priv *priv = rsnd_dai_to_priv(dai); struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); struct device *dev = rsnd_priv_to_dev(priv); switch (slot_width) { case 16: case 24: case 32: break; default: /* use default */ /* * Indicate warning if DT has "dai-tdm-slot-width" * but the value was not expected. */ if (slot_width) dev_warn(dev, "unsupported TDM slot width (%d), force to use default 32\n", slot_width); slot_width = 32; } switch (slots) { case 2: /* TDM Split Mode */ case 6: case 8: /* TDM Extend Mode */ rsnd_rdai_channels_set(rdai, slots); rsnd_rdai_ssi_lane_set(rdai, 1); rsnd_rdai_width_set(rdai, slot_width); break; default: dev_err(dev, "unsupported TDM slots (%d)\n", slots); return -EINVAL; } return 0; } static unsigned int rsnd_soc_hw_channels_list[] = { 2, 6, 8, }; static unsigned int rsnd_soc_hw_rate_list[] = { 8000, 11025, 16000, 22050, 32000, 44100, 48000, 64000, 88200, 96000, 176400, 192000, }; static int rsnd_soc_hw_rule(struct rsnd_dai *rdai, unsigned int *list, int list_num, struct snd_interval *baseline, struct snd_interval *iv, struct rsnd_dai_stream *io, char *unit) { struct snd_interval p; unsigned int rate; int i; snd_interval_any(&p); p.min = UINT_MAX; p.max = 0; for (i = 0; i < list_num; i++) { if (!snd_interval_test(iv, list[i])) continue; rate = rsnd_ssi_clk_query(rdai, baseline->min, list[i], NULL); if (rate > 0) { p.min = min(p.min, list[i]); p.max = max(p.max, list[i]); } rate = rsnd_ssi_clk_query(rdai, baseline->max, list[i], NULL); if (rate > 0) { p.min = min(p.min, list[i]); p.max = max(p.max, list[i]); } } /* Indicate error once if it can't handle */ if (!rsnd_flags_has(io, RSND_HW_RULE_ERR) && (p.min > p.max)) { struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai); struct device *dev = rsnd_priv_to_dev(priv); dev_warn(dev, "It can't handle %d %s <-> %d %s\n", baseline->min, unit, baseline->max, unit); rsnd_flags_set(io, RSND_HW_RULE_ERR); } return snd_interval_refine(iv, &p); } static int rsnd_soc_hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_interval *ic_ = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval *ir = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval ic; struct rsnd_dai_stream *io = rule->private; struct rsnd_dai *rdai = rsnd_io_to_rdai(io); /* * possible sampling rate limitation is same as * 2ch if it supports multi ssi * and same as 8ch if TDM 6ch (see rsnd_ssi_config_init()) */ ic = *ic_; ic.min = ic.max = rsnd_runtime_channel_for_ssi_with_params(io, params); return rsnd_soc_hw_rule(rdai, rsnd_soc_hw_rate_list, ARRAY_SIZE(rsnd_soc_hw_rate_list), &ic, ir, io, "ch"); } static int rsnd_soc_hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_interval *ic_ = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_interval *ir = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval ic; struct rsnd_dai_stream *io = rule->private; struct rsnd_dai *rdai = rsnd_io_to_rdai(io); /* * possible sampling rate limitation is same as * 2ch if it supports multi ssi * and same as 8ch if TDM 6ch (see rsnd_ssi_config_init()) */ ic = *ic_; ic.min = ic.max = rsnd_runtime_channel_for_ssi_with_params(io, params); return rsnd_soc_hw_rule(rdai, rsnd_soc_hw_channels_list, ARRAY_SIZE(rsnd_soc_hw_channels_list), ir, &ic, io, "Hz"); } static const struct snd_pcm_hardware rsnd_pcm_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID, .buffer_bytes_max = 64 * 1024, .period_bytes_min = 32, .period_bytes_max = 8192, .periods_min = 1, .periods_max = 32, .fifo_size = 256, }; static int rsnd_soc_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream); struct snd_pcm_hw_constraint_list *constraint = &rdai->constraint; struct snd_pcm_runtime *runtime = substream->runtime; unsigned int max_channels = rsnd_rdai_channels_get(rdai); int i; rsnd_flags_del(io, RSND_HW_RULE_ERR); rsnd_dai_stream_init(io, substream); /* * Channel Limitation * It depends on Platform design */ constraint->list = rsnd_soc_hw_channels_list; constraint->count = 0; constraint->mask = 0; for (i = 0; i < ARRAY_SIZE(rsnd_soc_hw_channels_list); i++) { if (rsnd_soc_hw_channels_list[i] > max_channels) break; constraint->count = i + 1; } snd_soc_set_runtime_hwparams(substream, &rsnd_pcm_hardware); snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, constraint); snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); /* * Sampling Rate / Channel Limitation * It depends on Clock Master Mode */ if (rsnd_rdai_is_clk_master(rdai)) { int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, rsnd_soc_hw_rule_rate, is_play ? &rdai->playback : &rdai->capture, SNDRV_PCM_HW_PARAM_CHANNELS, -1); snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, rsnd_soc_hw_rule_channels, is_play ? &rdai->playback : &rdai->capture, SNDRV_PCM_HW_PARAM_RATE, -1); } return 0; } static void rsnd_soc_dai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai); struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream); /* * call rsnd_dai_call without spinlock */ rsnd_dai_call(cleanup, io, priv); rsnd_dai_stream_quit(io); } static int rsnd_soc_dai_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct rsnd_priv *priv = rsnd_dai_to_priv(dai); struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream); return rsnd_dai_call(prepare, io, priv); } static const u64 rsnd_soc_dai_formats[] = { /* * 1st Priority * * Well tested formats. * Select below from Sound Card, not auto * SND_SOC_DAIFMT_CBC_CFC * SND_SOC_DAIFMT_CBP_CFP */ SND_SOC_POSSIBLE_DAIFMT_I2S | SND_SOC_POSSIBLE_DAIFMT_RIGHT_J | SND_SOC_POSSIBLE_DAIFMT_LEFT_J | SND_SOC_POSSIBLE_DAIFMT_NB_NF | SND_SOC_POSSIBLE_DAIFMT_NB_IF | SND_SOC_POSSIBLE_DAIFMT_IB_NF | SND_SOC_POSSIBLE_DAIFMT_IB_IF, /* * 2nd Priority * * Supported, but not well tested */ SND_SOC_POSSIBLE_DAIFMT_DSP_A | SND_SOC_POSSIBLE_DAIFMT_DSP_B, }; static void rsnd_parse_tdm_split_mode(struct rsnd_priv *priv, struct rsnd_dai_stream *io, struct device_node *dai_np) { struct device *dev = rsnd_priv_to_dev(priv); struct device_node *ssiu_np = rsnd_ssiu_of_node(priv); struct device_node *np; int is_play = rsnd_io_is_play(io); int i; if (!ssiu_np) return; /* * This driver assumes that it is TDM Split mode * if it includes ssiu node */ for (i = 0;; i++) { struct device_node *node = is_play ? of_parse_phandle(dai_np, "playback", i) : of_parse_phandle(dai_np, "capture", i); if (!node) break; for_each_child_of_node(ssiu_np, np) { if (np == node) { rsnd_flags_set(io, RSND_STREAM_TDM_SPLIT); dev_dbg(dev, "%s is part of TDM Split\n", io->name); } } of_node_put(node); } of_node_put(ssiu_np); } static void rsnd_parse_connect_simple(struct rsnd_priv *priv, struct rsnd_dai_stream *io, struct device_node *dai_np) { if (!rsnd_io_to_mod_ssi(io)) return; rsnd_parse_tdm_split_mode(priv, io, dai_np); } static void rsnd_parse_connect_graph(struct rsnd_priv *priv, struct rsnd_dai_stream *io, struct device_node *endpoint) { struct device *dev = rsnd_priv_to_dev(priv); struct device_node *remote_node; if (!rsnd_io_to_mod_ssi(io)) return; remote_node = of_graph_get_remote_port_parent(endpoint); /* HDMI0 */ if (strstr(remote_node->full_name, "hdmi@fead0000")) { rsnd_flags_set(io, RSND_STREAM_HDMI0); dev_dbg(dev, "%s connected to HDMI0\n", io->name); } /* HDMI1 */ if (strstr(remote_node->full_name, "hdmi@feae0000")) { rsnd_flags_set(io, RSND_STREAM_HDMI1); dev_dbg(dev, "%s connected to HDMI1\n", io->name); } rsnd_parse_tdm_split_mode(priv, io, endpoint); of_node_put(remote_node); } void rsnd_parse_connect_common(struct rsnd_dai *rdai, char *name, struct rsnd_mod* (*mod_get)(struct rsnd_priv *priv, int id), struct device_node *node, struct device_node *playback, struct device_node *capture) { struct rsnd_priv *priv = rsnd_rdai_to_priv(rdai); struct device *dev = rsnd_priv_to_dev(priv); struct device_node *np; int i; if (!node) return; i = 0; for_each_child_of_node(node, np) { struct rsnd_mod *mod; i = rsnd_node_fixed_index(dev, np, name, i); if (i < 0) { of_node_put(np); break; } mod = mod_get(priv, i); if (np == playback) rsnd_dai_connect(mod, &rdai->playback, mod->type); if (np == capture) rsnd_dai_connect(mod, &rdai->capture, mod->type); i++; } of_node_put(node); } int rsnd_node_fixed_index(struct device *dev, struct device_node *node, char *name, int idx) { char node_name[16]; /* * rsnd is assuming each device nodes are sequential numbering, * but some of them are not. * This function adjusts index for it. * * ex) * Normal case, special case * ssi-0 * ssi-1 * ssi-2 * ssi-3 ssi-3 * ssi-4 ssi-4 * ... * * assume Max 64 node */ for (; idx < 64; idx++) { snprintf(node_name, sizeof(node_name), "%s-%d", name, idx); if (strncmp(node_name, of_node_full_name(node), sizeof(node_name)) == 0) return idx; } dev_err(dev, "strange node numbering (%s)", of_node_full_name(node)); return -EINVAL; } int rsnd_node_count(struct rsnd_priv *priv, struct device_node *node, char *name) { struct device *dev = rsnd_priv_to_dev(priv); struct device_node *np; int i; i = 0; for_each_child_of_node(node, np) { i = rsnd_node_fixed_index(dev, np, name, i); if (i < 0) { of_node_put(np); return 0; } i++; } return i; } static int rsnd_dai_of_node(struct rsnd_priv *priv, int *is_graph) { struct device *dev = rsnd_priv_to_dev(priv); struct device_node *np = dev->of_node; struct device_node *ports, *node; int nr = 0; int i = 0; *is_graph = 0; /* * parse both previous dai (= rcar_sound,dai), and * graph dai (= ports/port) */ /* * Simple-Card */ node = of_get_child_by_name(np, RSND_NODE_DAI); if (!node) goto audio_graph; of_node_put(node); for_each_child_of_node(np, node) { if (!of_node_name_eq(node, RSND_NODE_DAI)) continue; priv->component_dais[i] = of_get_child_count(node); nr += priv->component_dais[i]; i++; if (i >= RSND_MAX_COMPONENT) { dev_info(dev, "reach to max component\n"); of_node_put(node); break; } } return nr; audio_graph: /* * Audio-Graph-Card */ for_each_child_of_node(np, ports) { if (!of_node_name_eq(ports, "ports") && !of_node_name_eq(ports, "port")) continue; priv->component_dais[i] = of_graph_get_endpoint_count(ports); nr += priv->component_dais[i]; i++; if (i >= RSND_MAX_COMPONENT) { dev_info(dev, "reach to max component\n"); of_node_put(ports); break; } } *is_graph = 1; return nr; } #define PREALLOC_BUFFER (32 * 1024) #define PREALLOC_BUFFER_MAX (32 * 1024) static int rsnd_preallocate_pages(struct snd_soc_pcm_runtime *rtd, struct rsnd_dai_stream *io, int stream) { struct rsnd_priv *priv = rsnd_io_to_priv(io); struct device *dev = rsnd_priv_to_dev(priv); struct snd_pcm_substream *substream; /* * use Audio-DMAC dev if we can use IPMMU * see * rsnd_dmaen_attach() */ if (io->dmac_dev) dev = io->dmac_dev; for (substream = rtd->pcm->streams[stream].substream; substream; substream = substream->next) { snd_pcm_set_managed_buffer(substream, SNDRV_DMA_TYPE_DEV, dev, PREALLOC_BUFFER, PREALLOC_BUFFER_MAX); } return 0; } static int rsnd_soc_dai_pcm_new(struct snd_soc_pcm_runtime *rtd, struct snd_soc_dai *dai) { struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); int ret; ret = rsnd_dai_call(pcm_new, &rdai->playback, rtd); if (ret) return ret; ret = rsnd_dai_call(pcm_new, &rdai->capture, rtd); if (ret) return ret; ret = rsnd_preallocate_pages(rtd, &rdai->playback, SNDRV_PCM_STREAM_PLAYBACK); if (ret) return ret; ret = rsnd_preallocate_pages(rtd, &rdai->capture, SNDRV_PCM_STREAM_CAPTURE); if (ret) return ret; return 0; } static const struct snd_soc_dai_ops rsnd_soc_dai_ops = { .pcm_new = rsnd_soc_dai_pcm_new, .startup = rsnd_soc_dai_startup, .shutdown = rsnd_soc_dai_shutdown, .trigger = rsnd_soc_dai_trigger, .set_fmt = rsnd_soc_dai_set_fmt, .set_tdm_slot = rsnd_soc_set_dai_tdm_slot, .prepare = rsnd_soc_dai_prepare, .auto_selectable_formats = rsnd_soc_dai_formats, .num_auto_selectable_formats = ARRAY_SIZE(rsnd_soc_dai_formats), }; static void __rsnd_dai_probe(struct rsnd_priv *priv, struct device_node *dai_np, struct device_node *node_np, uint32_t node_arg, int dai_i) { struct rsnd_dai_stream *io_playback; struct rsnd_dai_stream *io_capture; struct snd_soc_dai_driver *drv; struct rsnd_dai *rdai; struct device *dev = rsnd_priv_to_dev(priv); int playback_exist = 0, capture_exist = 0; int io_i; rdai = rsnd_rdai_get(priv, dai_i); drv = rsnd_daidrv_get(priv, dai_i); io_playback = &rdai->playback; io_capture = &rdai->capture; snprintf(rdai->name, RSND_DAI_NAME_SIZE, "rsnd-dai.%d", dai_i); /* for multi Component */ rdai->dai_args.np = node_np; rdai->dai_args.args_count = 1; rdai->dai_args.args[0] = node_arg; rdai->priv = priv; drv->name = rdai->name; drv->ops = &rsnd_soc_dai_ops; drv->id = dai_i; drv->dai_args = &rdai->dai_args; io_playback->rdai = rdai; io_capture->rdai = rdai; rsnd_rdai_channels_set(rdai, 2); /* default 2ch */ rsnd_rdai_ssi_lane_set(rdai, 1); /* default 1lane */ rsnd_rdai_width_set(rdai, 32); /* default 32bit width */ for (io_i = 0;; io_i++) { struct device_node *playback = of_parse_phandle(dai_np, "playback", io_i); struct device_node *capture = of_parse_phandle(dai_np, "capture", io_i); if (!playback && !capture) break; if (io_i == 0) { /* check whether playback/capture property exists */ if (playback) playback_exist = 1; if (capture) capture_exist = 1; } rsnd_parse_connect_ssi(rdai, playback, capture); rsnd_parse_connect_ssiu(rdai, playback, capture); rsnd_parse_connect_src(rdai, playback, capture); rsnd_parse_connect_ctu(rdai, playback, capture); rsnd_parse_connect_mix(rdai, playback, capture); rsnd_parse_connect_dvc(rdai, playback, capture); of_node_put(playback); of_node_put(capture); } if (playback_exist) { snprintf(io_playback->name, RSND_DAI_NAME_SIZE, "DAI%d Playback", dai_i); drv->playback.rates = RSND_RATES; drv->playback.formats = RSND_FMTS; drv->playback.channels_min = 2; drv->playback.channels_max = 8; drv->playback.stream_name = io_playback->name; } if (capture_exist) { snprintf(io_capture->name, RSND_DAI_NAME_SIZE, "DAI%d Capture", dai_i); drv->capture.rates = RSND_RATES; drv->capture.formats = RSND_FMTS; drv->capture.channels_min = 2; drv->capture.channels_max = 8; drv->capture.stream_name = io_capture->name; } if (rsnd_ssi_is_pin_sharing(io_capture) || rsnd_ssi_is_pin_sharing(io_playback)) { /* should have symmetric_rate if pin sharing */ drv->symmetric_rate = 1; } dev_dbg(dev, "%s (%s/%s)\n", rdai->name, rsnd_io_to_mod_ssi(io_playback) ? "play" : " -- ", rsnd_io_to_mod_ssi(io_capture) ? "capture" : " -- "); } static int rsnd_dai_probe(struct rsnd_priv *priv) { struct snd_soc_dai_driver *rdrv; struct device *dev = rsnd_priv_to_dev(priv); struct device_node *np = dev->of_node; struct rsnd_dai *rdai; int nr = 0; int is_graph; int dai_i; nr = rsnd_dai_of_node(priv, &is_graph); if (!nr) return -EINVAL; rdrv = devm_kcalloc(dev, nr, sizeof(*rdrv), GFP_KERNEL); rdai = devm_kcalloc(dev, nr, sizeof(*rdai), GFP_KERNEL); if (!rdrv || !rdai) return -ENOMEM; priv->rdai_nr = nr; priv->daidrv = rdrv; priv->rdai = rdai; /* * parse all dai */ dai_i = 0; if (is_graph) { struct device_node *ports; struct device_node *dai_np; for_each_child_of_node(np, ports) { if (!of_node_name_eq(ports, "ports") && !of_node_name_eq(ports, "port")) continue; for_each_endpoint_of_node(ports, dai_np) { __rsnd_dai_probe(priv, dai_np, dai_np, 0, dai_i); if (!rsnd_is_gen1(priv) && !rsnd_is_gen2(priv)) { rdai = rsnd_rdai_get(priv, dai_i); rsnd_parse_connect_graph(priv, &rdai->playback, dai_np); rsnd_parse_connect_graph(priv, &rdai->capture, dai_np); } dai_i++; } } } else { struct device_node *node; struct device_node *dai_np; for_each_child_of_node(np, node) { if (!of_node_name_eq(node, RSND_NODE_DAI)) continue; for_each_child_of_node(node, dai_np) { __rsnd_dai_probe(priv, dai_np, np, dai_i, dai_i); if (!rsnd_is_gen1(priv) && !rsnd_is_gen2(priv)) { rdai = rsnd_rdai_get(priv, dai_i); rsnd_parse_connect_simple(priv, &rdai->playback, dai_np); rsnd_parse_connect_simple(priv, &rdai->capture, dai_np); } dai_i++; } } } return 0; } /* * pcm ops */ static int rsnd_hw_update(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_soc_dai *dai = rsnd_substream_to_dai(substream); struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream); struct rsnd_priv *priv = rsnd_io_to_priv(io); unsigned long flags; int ret; spin_lock_irqsave(&priv->lock, flags); if (hw_params) ret = rsnd_dai_call(hw_params, io, substream, hw_params); else ret = rsnd_dai_call(hw_free, io, substream); spin_unlock_irqrestore(&priv->lock, flags); return ret; } static int rsnd_hw_params(struct snd_soc_component *component, struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_soc_dai *dai = rsnd_substream_to_dai(substream); struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream); struct snd_soc_pcm_runtime *fe = snd_soc_substream_to_rtd(substream); /* * rsnd assumes that it might be used under DPCM if user want to use * channel / rate convert. Then, rsnd should be FE. * And then, this function will be called *after* BE settings. * this means, each BE already has fixuped hw_params. * see * dpcm_fe_dai_hw_params() * dpcm_be_dai_hw_params() */ io->converted_rate = 0; io->converted_chan = 0; if (fe->dai_link->dynamic) { struct rsnd_priv *priv = rsnd_io_to_priv(io); struct device *dev = rsnd_priv_to_dev(priv); struct snd_soc_dpcm *dpcm; int stream = substream->stream; for_each_dpcm_be(fe, stream, dpcm) { struct snd_soc_pcm_runtime *be = dpcm->be; struct snd_pcm_hw_params *be_params = &be->dpcm[stream].hw_params; if (params_channels(hw_params) != params_channels(be_params)) io->converted_chan = params_channels(be_params); if (params_rate(hw_params) != params_rate(be_params)) io->converted_rate = params_rate(be_params); } if (io->converted_chan) dev_dbg(dev, "convert channels = %d\n", io->converted_chan); if (io->converted_rate) { /* * SRC supports convert rates from params_rate(hw_params)/k_down * to params_rate(hw_params)*k_up, where k_up is always 6, and * k_down depends on number of channels and SRC unit. * So all SRC units can upsample audio up to 6 times regardless * its number of channels. And all SRC units can downsample * 2 channel audio up to 6 times too. */ int k_up = 6; int k_down = 6; int channel; struct rsnd_mod *src_mod = rsnd_io_to_mod_src(io); dev_dbg(dev, "convert rate = %d\n", io->converted_rate); channel = io->converted_chan ? io->converted_chan : params_channels(hw_params); switch (rsnd_mod_id(src_mod)) { /* * SRC0 can downsample 4, 6 and 8 channel audio up to 4 times. * SRC1, SRC3 and SRC4 can downsample 4 channel audio * up to 4 times. * SRC1, SRC3 and SRC4 can downsample 6 and 8 channel audio * no more than twice. */ case 1: case 3: case 4: if (channel > 4) { k_down = 2; break; } fallthrough; case 0: if (channel > 2) k_down = 4; break; /* Other SRC units do not support more than 2 channels */ default: if (channel > 2) return -EINVAL; } if (params_rate(hw_params) > io->converted_rate * k_down) { hw_param_interval(hw_params, SNDRV_PCM_HW_PARAM_RATE)->min = io->converted_rate * k_down; hw_param_interval(hw_params, SNDRV_PCM_HW_PARAM_RATE)->max = io->converted_rate * k_down; hw_params->cmask |= SNDRV_PCM_HW_PARAM_RATE; } else if (params_rate(hw_params) * k_up < io->converted_rate) { hw_param_interval(hw_params, SNDRV_PCM_HW_PARAM_RATE)->min = DIV_ROUND_UP(io->converted_rate, k_up); hw_param_interval(hw_params, SNDRV_PCM_HW_PARAM_RATE)->max = DIV_ROUND_UP(io->converted_rate, k_up); hw_params->cmask |= SNDRV_PCM_HW_PARAM_RATE; } /* * TBD: Max SRC input and output rates also depend on number * of channels and SRC unit: * SRC1, SRC3 and SRC4 do not support more than 128kHz * for 6 channel and 96kHz for 8 channel audio. * Perhaps this function should return EINVAL if the input or * the output rate exceeds the limitation. */ } } return rsnd_hw_update(substream, hw_params); } static int rsnd_hw_free(struct snd_soc_component *component, struct snd_pcm_substream *substream) { return rsnd_hw_update(substream, NULL); } static snd_pcm_uframes_t rsnd_pointer(struct snd_soc_component *component, struct snd_pcm_substream *substream) { struct snd_soc_dai *dai = rsnd_substream_to_dai(substream); struct rsnd_dai *rdai = rsnd_dai_to_rdai(dai); struct rsnd_dai_stream *io = rsnd_rdai_to_io(rdai, substream); snd_pcm_uframes_t pointer = 0; rsnd_dai_call(pointer, io, &pointer); return pointer; } /* * snd_kcontrol */ static int rsnd_kctrl_info(struct snd_kcontrol *kctrl, struct snd_ctl_elem_info *uinfo) { struct rsnd_kctrl_cfg *cfg = snd_kcontrol_chip(kctrl); if (cfg->texts) { uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = cfg->size; uinfo->value.enumerated.items = cfg->max; if (uinfo->value.enumerated.item >= cfg->max) uinfo->value.enumerated.item = cfg->max - 1; strscpy(uinfo->value.enumerated.name, cfg->texts[uinfo->value.enumerated.item], sizeof(uinfo->value.enumerated.name)); } else { uinfo->count = cfg->size; uinfo->value.integer.min = 0; uinfo->value.integer.max = cfg->max; uinfo->type = (cfg->max == 1) ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; } return 0; } static int rsnd_kctrl_get(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *uc) { struct rsnd_kctrl_cfg *cfg = snd_kcontrol_chip(kctrl); int i; for (i = 0; i < cfg->size; i++) if (cfg->texts) uc->value.enumerated.item[i] = cfg->val[i]; else uc->value.integer.value[i] = cfg->val[i]; return 0; } static int rsnd_kctrl_put(struct snd_kcontrol *kctrl, struct snd_ctl_elem_value *uc) { struct rsnd_kctrl_cfg *cfg = snd_kcontrol_chip(kctrl); int i, change = 0; if (!cfg->accept(cfg->io)) return 0; for (i = 0; i < cfg->size; i++) { if (cfg->texts) { change |= (uc->value.enumerated.item[i] != cfg->val[i]); cfg->val[i] = uc->value.enumerated.item[i]; } else { change |= (uc->value.integer.value[i] != cfg->val[i]); cfg->val[i] = uc->value.integer.value[i]; } } if (change && cfg->update) cfg->update(cfg->io, cfg->mod); return change; } int rsnd_kctrl_accept_anytime(struct rsnd_dai_stream *io) { return 1; } int rsnd_kctrl_accept_runtime(struct rsnd_dai_stream *io) { struct snd_pcm_runtime *runtime = rsnd_io_to_runtime(io); struct rsnd_priv *priv = rsnd_io_to_priv(io); struct device *dev = rsnd_priv_to_dev(priv); if (!runtime) { dev_warn(dev, "Can't update kctrl when idle\n"); return 0; } return 1; } struct rsnd_kctrl_cfg *rsnd_kctrl_init_m(struct rsnd_kctrl_cfg_m *cfg) { cfg->cfg.val = cfg->val; return &cfg->cfg; } struct rsnd_kctrl_cfg *rsnd_kctrl_init_s(struct rsnd_kctrl_cfg_s *cfg) { cfg->cfg.val = &cfg->val; return &cfg->cfg; } const char * const volume_ramp_rate[] = { "128 dB/1 step", /* 00000 */ "64 dB/1 step", /* 00001 */ "32 dB/1 step", /* 00010 */ "16 dB/1 step", /* 00011 */ "8 dB/1 step", /* 00100 */ "4 dB/1 step", /* 00101 */ "2 dB/1 step", /* 00110 */ "1 dB/1 step", /* 00111 */ "0.5 dB/1 step", /* 01000 */ "0.25 dB/1 step", /* 01001 */ "0.125 dB/1 step", /* 01010 = VOLUME_RAMP_MAX_MIX */ "0.125 dB/2 steps", /* 01011 */ "0.125 dB/4 steps", /* 01100 */ "0.125 dB/8 steps", /* 01101 */ "0.125 dB/16 steps", /* 01110 */ "0.125 dB/32 steps", /* 01111 */ "0.125 dB/64 steps", /* 10000 */ "0.125 dB/128 steps", /* 10001 */ "0.125 dB/256 steps", /* 10010 */ "0.125 dB/512 steps", /* 10011 */ "0.125 dB/1024 steps", /* 10100 */ "0.125 dB/2048 steps", /* 10101 */ "0.125 dB/4096 steps", /* 10110 */ "0.125 dB/8192 steps", /* 10111 = VOLUME_RAMP_MAX_DVC */ }; int rsnd_kctrl_new(struct rsnd_mod *mod, struct rsnd_dai_stream *io, struct snd_soc_pcm_runtime *rtd, const unsigned char *name, int (*accept)(struct rsnd_dai_stream *io), void (*update)(struct rsnd_dai_stream *io, struct rsnd_mod *mod), struct rsnd_kctrl_cfg *cfg, const char * const *texts, int size, u32 max) { struct snd_card *card = rtd->card->snd_card; struct snd_kcontrol *kctrl; struct snd_kcontrol_new knew = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = name, .info = rsnd_kctrl_info, .index = rtd->num, .get = rsnd_kctrl_get, .put = rsnd_kctrl_put, }; int ret; /* * 1) Avoid duplicate register for DVC with MIX case * 2) Allow duplicate register for MIX * 3) re-register if card was rebinded */ list_for_each_entry(kctrl, &card->controls, list) { struct rsnd_kctrl_cfg *c = kctrl->private_data; if (c == cfg) return 0; } if (size > RSND_MAX_CHANNELS) return -EINVAL; kctrl = snd_ctl_new1(&knew, cfg); if (!kctrl) return -ENOMEM; ret = snd_ctl_add(card, kctrl); if (ret < 0) return ret; cfg->texts = texts; cfg->max = max; cfg->size = size; cfg->accept = accept; cfg->update = update; cfg->card = card; cfg->kctrl = kctrl; cfg->io = io; cfg->mod = mod; return 0; } /* * snd_soc_component */ static const struct snd_soc_component_driver rsnd_soc_component = { .name = "rsnd", .probe = rsnd_debugfs_probe, .hw_params = rsnd_hw_params, .hw_free = rsnd_hw_free, .pointer = rsnd_pointer, .legacy_dai_naming = 1, }; static int rsnd_rdai_continuance_probe(struct rsnd_priv *priv, struct rsnd_dai_stream *io) { int ret; ret = rsnd_dai_call(probe, io, priv); if (ret == -EAGAIN) { struct rsnd_mod *ssi_mod = rsnd_io_to_mod_ssi(io); struct rsnd_mod *mod; int i; /* * Fallback to PIO mode */ /* * call "remove" for SSI/SRC/DVC * SSI will be switch to PIO mode if it was DMA mode * see * rsnd_dma_init() * rsnd_ssi_fallback() */ rsnd_dai_call(remove, io, priv); /* * remove all mod from io * and, re connect ssi */ for_each_rsnd_mod(i, mod, io) rsnd_dai_disconnect(mod, io, i); rsnd_dai_connect(ssi_mod, io, RSND_MOD_SSI); /* * fallback */ rsnd_dai_call(fallback, io, priv); /* * retry to "probe". * DAI has SSI which is PIO mode only now. */ ret = rsnd_dai_call(probe, io, priv); } return ret; } /* * rsnd probe */ static int rsnd_probe(struct platform_device *pdev) { struct rsnd_priv *priv; struct device *dev = &pdev->dev; struct rsnd_dai *rdai; int (*probe_func[])(struct rsnd_priv *priv) = { rsnd_gen_probe, rsnd_dma_probe, rsnd_ssi_probe, rsnd_ssiu_probe, rsnd_src_probe, rsnd_ctu_probe, rsnd_mix_probe, rsnd_dvc_probe, rsnd_cmd_probe, rsnd_adg_probe, rsnd_dai_probe, }; int ret, i; int ci; /* * init priv data */ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENODEV; priv->pdev = pdev; priv->flags = (unsigned long)of_device_get_match_data(dev); spin_lock_init(&priv->lock); /* * init each module */ for (i = 0; i < ARRAY_SIZE(probe_func); i++) { ret = probe_func[i](priv); if (ret) return ret; } for_each_rsnd_dai(rdai, priv, i) { ret = rsnd_rdai_continuance_probe(priv, &rdai->playback); if (ret) goto exit_snd_probe; ret = rsnd_rdai_continuance_probe(priv, &rdai->capture); if (ret) goto exit_snd_probe; } dev_set_drvdata(dev, priv); /* * asoc register */ ci = 0; for (i = 0; priv->component_dais[i] > 0; i++) { int nr = priv->component_dais[i]; ret = devm_snd_soc_register_component(dev, &rsnd_soc_component, priv->daidrv + ci, nr); if (ret < 0) { dev_err(dev, "cannot snd component register\n"); goto exit_snd_probe; } ci += nr; } pm_runtime_enable(dev); dev_info(dev, "probed\n"); return ret; exit_snd_probe: for_each_rsnd_dai(rdai, priv, i) { rsnd_dai_call(remove, &rdai->playback, priv); rsnd_dai_call(remove, &rdai->capture, priv); } /* * adg is very special mod which can't use rsnd_dai_call(remove), * and it registers ADG clock on probe. * It should be unregister if probe failed. * Mainly it is assuming -EPROBE_DEFER case */ rsnd_adg_remove(priv); return ret; } static void rsnd_remove(struct platform_device *pdev) { struct rsnd_priv *priv = dev_get_drvdata(&pdev->dev); struct rsnd_dai *rdai; void (*remove_func[])(struct rsnd_priv *priv) = { rsnd_ssi_remove, rsnd_ssiu_remove, rsnd_src_remove, rsnd_ctu_remove, rsnd_mix_remove, rsnd_dvc_remove, rsnd_cmd_remove, rsnd_adg_remove, }; int i; pm_runtime_disable(&pdev->dev); for_each_rsnd_dai(rdai, priv, i) { int ret; ret = rsnd_dai_call(remove, &rdai->playback, priv); if (ret) dev_warn(&pdev->dev, "Failed to remove playback dai #%d\n", i); ret = rsnd_dai_call(remove, &rdai->capture, priv); if (ret) dev_warn(&pdev->dev, "Failed to remove capture dai #%d\n", i); } for (i = 0; i < ARRAY_SIZE(remove_func); i++) remove_func[i](priv); } static int __maybe_unused rsnd_suspend(struct device *dev) { struct rsnd_priv *priv = dev_get_drvdata(dev); rsnd_adg_clk_disable(priv); return 0; } static int __maybe_unused rsnd_resume(struct device *dev) { struct rsnd_priv *priv = dev_get_drvdata(dev); rsnd_adg_clk_enable(priv); return 0; } static const struct dev_pm_ops rsnd_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(rsnd_suspend, rsnd_resume) }; static struct platform_driver rsnd_driver = { .driver = { .name = "rcar_sound", .pm = &rsnd_pm_ops, .of_match_table = rsnd_of_match, }, .probe = rsnd_probe, .remove_new = rsnd_remove, }; module_platform_driver(rsnd_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Renesas R-Car audio driver"); MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>"); MODULE_ALIAS("platform:rcar-pcm-audio");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1