Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kuninori Morimoto | 3222 | 60.88% | 84 | 58.33% |
Lars-Peter Clausen | 667 | 12.60% | 7 | 4.86% |
Charles Keepax | 239 | 4.52% | 6 | 4.17% |
Mark Brown | 199 | 3.76% | 10 | 6.94% |
Liam Girdwood | 198 | 3.74% | 7 | 4.86% |
Richard Fitzgerald | 167 | 3.16% | 1 | 0.69% |
Srinivas Kandagatla | 164 | 3.10% | 3 | 2.08% |
Takashi Iwai | 148 | 2.80% | 7 | 4.86% |
Namarta Kohli | 96 | 1.81% | 1 | 0.69% |
Atsushi Nemoto | 48 | 0.91% | 1 | 0.69% |
Mengdong Lin | 25 | 0.47% | 1 | 0.69% |
Cezary Rojewski | 25 | 0.47% | 1 | 0.69% |
Shengjiu Wang | 24 | 0.45% | 2 | 1.39% |
Peter Ujfalusi | 24 | 0.45% | 3 | 2.08% |
Astrid Rost | 17 | 0.32% | 1 | 0.69% |
Jeeja KP | 6 | 0.11% | 1 | 0.69% |
Bard Liao | 5 | 0.09% | 1 | 0.69% |
Jerome Brunet | 5 | 0.09% | 1 | 0.69% |
Graeme Gregory | 5 | 0.09% | 1 | 0.69% |
Ranjani Sridharan | 3 | 0.06% | 1 | 0.69% |
Krzysztof Kozlowski | 2 | 0.04% | 2 | 1.39% |
Jean-François Moine | 2 | 0.04% | 1 | 0.69% |
Richard Purdie | 1 | 0.02% | 1 | 0.69% |
Total | 5292 | 144 |
// SPDX-License-Identifier: GPL-2.0 // // soc-component.c // // Copyright 2009-2011 Wolfson Microelectronics PLC. // Copyright (C) 2019 Renesas Electronics Corp. // // Mark Brown <broonie@opensource.wolfsonmicro.com> // Kuninori Morimoto <kuninori.morimoto.gx@renesas.com> // #include <linux/module.h> #include <linux/pm_runtime.h> #include <sound/soc.h> #include <linux/bitops.h> #define soc_component_ret(dai, ret) _soc_component_ret(dai, __func__, ret, -1) #define soc_component_ret_reg_rw(dai, ret, reg) _soc_component_ret(dai, __func__, ret, reg) static inline int _soc_component_ret(struct snd_soc_component *component, const char *func, int ret, int reg) { /* Positive/Zero values are not errors */ if (ret >= 0) return ret; /* Negative values might be errors */ switch (ret) { case -EPROBE_DEFER: case -ENOTSUPP: break; default: if (reg == -1) dev_err(component->dev, "ASoC: error at %s on %s: %d\n", func, component->name, ret); else dev_err(component->dev, "ASoC: error at %s on %s for register: [0x%08x] %d\n", func, component->name, reg, ret); } return ret; } static inline int soc_component_field_shift(struct snd_soc_component *component, unsigned int mask) { if (!mask) { dev_err(component->dev, "ASoC: error field mask is zero for %s\n", component->name); return 0; } return (ffs(mask) - 1); } /* * We might want to check substream by using list. * In such case, we can update these macros. */ #define soc_component_mark_push(component, substream, tgt) ((component)->mark_##tgt = substream) #define soc_component_mark_pop(component, substream, tgt) ((component)->mark_##tgt = NULL) #define soc_component_mark_match(component, substream, tgt) ((component)->mark_##tgt == substream) void snd_soc_component_set_aux(struct snd_soc_component *component, struct snd_soc_aux_dev *aux) { component->init = (aux) ? aux->init : NULL; } int snd_soc_component_init(struct snd_soc_component *component) { int ret = 0; if (component->init) ret = component->init(component); return soc_component_ret(component, ret); } /** * snd_soc_component_set_sysclk - configure COMPONENT system or master clock. * @component: COMPONENT * @clk_id: DAI specific clock ID * @source: Source for the clock * @freq: new clock frequency in Hz * @dir: new clock direction - input/output. * * Configures the CODEC master (MCLK) or system (SYSCLK) clocking. */ int snd_soc_component_set_sysclk(struct snd_soc_component *component, int clk_id, int source, unsigned int freq, int dir) { int ret = -ENOTSUPP; if (component->driver->set_sysclk) ret = component->driver->set_sysclk(component, clk_id, source, freq, dir); return soc_component_ret(component, ret); } EXPORT_SYMBOL_GPL(snd_soc_component_set_sysclk); /* * snd_soc_component_set_pll - configure component PLL. * @component: COMPONENT * @pll_id: DAI specific PLL ID * @source: DAI specific source for the PLL * @freq_in: PLL input clock frequency in Hz * @freq_out: requested PLL output clock frequency in Hz * * Configures and enables PLL to generate output clock based on input clock. */ int snd_soc_component_set_pll(struct snd_soc_component *component, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { int ret = -EINVAL; if (component->driver->set_pll) ret = component->driver->set_pll(component, pll_id, source, freq_in, freq_out); return soc_component_ret(component, ret); } EXPORT_SYMBOL_GPL(snd_soc_component_set_pll); void snd_soc_component_seq_notifier(struct snd_soc_component *component, enum snd_soc_dapm_type type, int subseq) { if (component->driver->seq_notifier) component->driver->seq_notifier(component, type, subseq); } int snd_soc_component_stream_event(struct snd_soc_component *component, int event) { int ret = 0; if (component->driver->stream_event) ret = component->driver->stream_event(component, event); return soc_component_ret(component, ret); } int snd_soc_component_set_bias_level(struct snd_soc_component *component, enum snd_soc_bias_level level) { int ret = 0; if (component->driver->set_bias_level) ret = component->driver->set_bias_level(component, level); return soc_component_ret(component, ret); } int snd_soc_component_enable_pin(struct snd_soc_component *component, const char *pin) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); return snd_soc_dapm_enable_pin(dapm, pin); } EXPORT_SYMBOL_GPL(snd_soc_component_enable_pin); int snd_soc_component_enable_pin_unlocked(struct snd_soc_component *component, const char *pin) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); return snd_soc_dapm_enable_pin_unlocked(dapm, pin); } EXPORT_SYMBOL_GPL(snd_soc_component_enable_pin_unlocked); int snd_soc_component_disable_pin(struct snd_soc_component *component, const char *pin) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); return snd_soc_dapm_disable_pin(dapm, pin); } EXPORT_SYMBOL_GPL(snd_soc_component_disable_pin); int snd_soc_component_disable_pin_unlocked(struct snd_soc_component *component, const char *pin) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); return snd_soc_dapm_disable_pin_unlocked(dapm, pin); } EXPORT_SYMBOL_GPL(snd_soc_component_disable_pin_unlocked); int snd_soc_component_nc_pin(struct snd_soc_component *component, const char *pin) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); return snd_soc_dapm_nc_pin(dapm, pin); } EXPORT_SYMBOL_GPL(snd_soc_component_nc_pin); int snd_soc_component_nc_pin_unlocked(struct snd_soc_component *component, const char *pin) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); return snd_soc_dapm_nc_pin_unlocked(dapm, pin); } EXPORT_SYMBOL_GPL(snd_soc_component_nc_pin_unlocked); int snd_soc_component_get_pin_status(struct snd_soc_component *component, const char *pin) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); return snd_soc_dapm_get_pin_status(dapm, pin); } EXPORT_SYMBOL_GPL(snd_soc_component_get_pin_status); int snd_soc_component_force_enable_pin(struct snd_soc_component *component, const char *pin) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); return snd_soc_dapm_force_enable_pin(dapm, pin); } EXPORT_SYMBOL_GPL(snd_soc_component_force_enable_pin); int snd_soc_component_force_enable_pin_unlocked( struct snd_soc_component *component, const char *pin) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); return snd_soc_dapm_force_enable_pin_unlocked(dapm, pin); } EXPORT_SYMBOL_GPL(snd_soc_component_force_enable_pin_unlocked); static void soc_get_kcontrol_name(struct snd_soc_component *component, char *buf, int size, const char * const ctl) { /* When updating, change also snd_soc_dapm_widget_name_cmp() */ if (component->name_prefix) snprintf(buf, size, "%s %s", component->name_prefix, ctl); else snprintf(buf, size, "%s", ctl); } struct snd_kcontrol *snd_soc_component_get_kcontrol(struct snd_soc_component *component, const char * const ctl) { char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN]; soc_get_kcontrol_name(component, name, ARRAY_SIZE(name), ctl); return snd_soc_card_get_kcontrol(component->card, name); } EXPORT_SYMBOL_GPL(snd_soc_component_get_kcontrol); struct snd_kcontrol * snd_soc_component_get_kcontrol_locked(struct snd_soc_component *component, const char * const ctl) { char name[SNDRV_CTL_ELEM_ID_NAME_MAXLEN]; soc_get_kcontrol_name(component, name, ARRAY_SIZE(name), ctl); return snd_soc_card_get_kcontrol_locked(component->card, name); } EXPORT_SYMBOL_GPL(snd_soc_component_get_kcontrol_locked); int snd_soc_component_notify_control(struct snd_soc_component *component, const char * const ctl) { struct snd_kcontrol *kctl; kctl = snd_soc_component_get_kcontrol(component, ctl); if (!kctl) return soc_component_ret(component, -EINVAL); snd_ctl_notify(component->card->snd_card, SNDRV_CTL_EVENT_MASK_VALUE, &kctl->id); return 0; } EXPORT_SYMBOL_GPL(snd_soc_component_notify_control); /** * snd_soc_component_set_jack - configure component jack. * @component: COMPONENTs * @jack: structure to use for the jack * @data: can be used if codec driver need extra data for configuring jack * * Configures and enables jack detection function. */ int snd_soc_component_set_jack(struct snd_soc_component *component, struct snd_soc_jack *jack, void *data) { int ret = -ENOTSUPP; if (component->driver->set_jack) ret = component->driver->set_jack(component, jack, data); return soc_component_ret(component, ret); } EXPORT_SYMBOL_GPL(snd_soc_component_set_jack); /** * snd_soc_component_get_jack_type * @component: COMPONENTs * * Returns the jack type of the component * This can either be the supported type or one read from * devicetree with the property: jack-type. */ int snd_soc_component_get_jack_type( struct snd_soc_component *component) { int ret = -ENOTSUPP; if (component->driver->get_jack_type) ret = component->driver->get_jack_type(component); return soc_component_ret(component, ret); } EXPORT_SYMBOL_GPL(snd_soc_component_get_jack_type); int snd_soc_component_module_get(struct snd_soc_component *component, void *mark, int upon_open) { int ret = 0; if (component->driver->module_get_upon_open == !!upon_open && !try_module_get(component->dev->driver->owner)) ret = -ENODEV; /* mark module if succeeded */ if (ret == 0) soc_component_mark_push(component, mark, module); return soc_component_ret(component, ret); } void snd_soc_component_module_put(struct snd_soc_component *component, void *mark, int upon_open, int rollback) { if (rollback && !soc_component_mark_match(component, mark, module)) return; if (component->driver->module_get_upon_open == !!upon_open) module_put(component->dev->driver->owner); /* remove the mark from module */ soc_component_mark_pop(component, mark, module); } int snd_soc_component_open(struct snd_soc_component *component, struct snd_pcm_substream *substream) { int ret = 0; if (component->driver->open) ret = component->driver->open(component, substream); /* mark substream if succeeded */ if (ret == 0) soc_component_mark_push(component, substream, open); return soc_component_ret(component, ret); } int snd_soc_component_close(struct snd_soc_component *component, struct snd_pcm_substream *substream, int rollback) { int ret = 0; if (rollback && !soc_component_mark_match(component, substream, open)) return 0; if (component->driver->close) ret = component->driver->close(component, substream); /* remove marked substream */ soc_component_mark_pop(component, substream, open); return soc_component_ret(component, ret); } void snd_soc_component_suspend(struct snd_soc_component *component) { if (component->driver->suspend) component->driver->suspend(component); component->suspended = 1; } void snd_soc_component_resume(struct snd_soc_component *component) { if (component->driver->resume) component->driver->resume(component); component->suspended = 0; } int snd_soc_component_is_suspended(struct snd_soc_component *component) { return component->suspended; } int snd_soc_component_probe(struct snd_soc_component *component) { int ret = 0; if (component->driver->probe) ret = component->driver->probe(component); return soc_component_ret(component, ret); } void snd_soc_component_remove(struct snd_soc_component *component) { if (component->driver->remove) component->driver->remove(component); } int snd_soc_component_of_xlate_dai_id(struct snd_soc_component *component, struct device_node *ep) { int ret = -ENOTSUPP; if (component->driver->of_xlate_dai_id) ret = component->driver->of_xlate_dai_id(component, ep); return soc_component_ret(component, ret); } int snd_soc_component_of_xlate_dai_name(struct snd_soc_component *component, const struct of_phandle_args *args, const char **dai_name) { if (component->driver->of_xlate_dai_name) return component->driver->of_xlate_dai_name(component, args, dai_name); /* * Don't use soc_component_ret here because we may not want to report * the error just yet. If a device has more than one component, the * first may not match and we don't want spam the log with this. */ return -ENOTSUPP; } void snd_soc_component_setup_regmap(struct snd_soc_component *component) { int val_bytes = regmap_get_val_bytes(component->regmap); /* Errors are legitimate for non-integer byte multiples */ if (val_bytes > 0) component->val_bytes = val_bytes; } #ifdef CONFIG_REGMAP /** * snd_soc_component_init_regmap() - Initialize regmap instance for the * component * @component: The component for which to initialize the regmap instance * @regmap: The regmap instance that should be used by the component * * This function allows deferred assignment of the regmap instance that is * associated with the component. Only use this if the regmap instance is not * yet ready when the component is registered. The function must also be called * before the first IO attempt of the component. */ void snd_soc_component_init_regmap(struct snd_soc_component *component, struct regmap *regmap) { component->regmap = regmap; snd_soc_component_setup_regmap(component); } EXPORT_SYMBOL_GPL(snd_soc_component_init_regmap); /** * snd_soc_component_exit_regmap() - De-initialize regmap instance for the * component * @component: The component for which to de-initialize the regmap instance * * Calls regmap_exit() on the regmap instance associated to the component and * removes the regmap instance from the component. * * This function should only be used if snd_soc_component_init_regmap() was used * to initialize the regmap instance. */ void snd_soc_component_exit_regmap(struct snd_soc_component *component) { regmap_exit(component->regmap); component->regmap = NULL; } EXPORT_SYMBOL_GPL(snd_soc_component_exit_regmap); #endif int snd_soc_component_compr_open(struct snd_soc_component *component, struct snd_compr_stream *cstream) { int ret = 0; if (component->driver->compress_ops && component->driver->compress_ops->open) ret = component->driver->compress_ops->open(component, cstream); /* mark substream if succeeded */ if (ret == 0) soc_component_mark_push(component, cstream, compr_open); return soc_component_ret(component, ret); } EXPORT_SYMBOL_GPL(snd_soc_component_compr_open); void snd_soc_component_compr_free(struct snd_soc_component *component, struct snd_compr_stream *cstream, int rollback) { if (rollback && !soc_component_mark_match(component, cstream, compr_open)) return; if (component->driver->compress_ops && component->driver->compress_ops->free) component->driver->compress_ops->free(component, cstream); /* remove marked substream */ soc_component_mark_pop(component, cstream, compr_open); } EXPORT_SYMBOL_GPL(snd_soc_component_compr_free); int snd_soc_component_compr_trigger(struct snd_compr_stream *cstream, int cmd) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->trigger) { ret = component->driver->compress_ops->trigger( component, cstream, cmd); if (ret < 0) return soc_component_ret(component, ret); } } return 0; } EXPORT_SYMBOL_GPL(snd_soc_component_compr_trigger); int snd_soc_component_compr_set_params(struct snd_compr_stream *cstream, struct snd_compr_params *params) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->set_params) { ret = component->driver->compress_ops->set_params( component, cstream, params); if (ret < 0) return soc_component_ret(component, ret); } } return 0; } EXPORT_SYMBOL_GPL(snd_soc_component_compr_set_params); int snd_soc_component_compr_get_params(struct snd_compr_stream *cstream, struct snd_codec *params) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->get_params) { ret = component->driver->compress_ops->get_params( component, cstream, params); return soc_component_ret(component, ret); } } return 0; } EXPORT_SYMBOL_GPL(snd_soc_component_compr_get_params); int snd_soc_component_compr_get_caps(struct snd_compr_stream *cstream, struct snd_compr_caps *caps) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret = 0; snd_soc_dpcm_mutex_lock(rtd); for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->get_caps) { ret = component->driver->compress_ops->get_caps( component, cstream, caps); break; } } snd_soc_dpcm_mutex_unlock(rtd); return soc_component_ret(component, ret); } EXPORT_SYMBOL_GPL(snd_soc_component_compr_get_caps); int snd_soc_component_compr_get_codec_caps(struct snd_compr_stream *cstream, struct snd_compr_codec_caps *codec) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret = 0; snd_soc_dpcm_mutex_lock(rtd); for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->get_codec_caps) { ret = component->driver->compress_ops->get_codec_caps( component, cstream, codec); break; } } snd_soc_dpcm_mutex_unlock(rtd); return soc_component_ret(component, ret); } EXPORT_SYMBOL_GPL(snd_soc_component_compr_get_codec_caps); int snd_soc_component_compr_ack(struct snd_compr_stream *cstream, size_t bytes) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->ack) { ret = component->driver->compress_ops->ack( component, cstream, bytes); if (ret < 0) return soc_component_ret(component, ret); } } return 0; } EXPORT_SYMBOL_GPL(snd_soc_component_compr_ack); int snd_soc_component_compr_pointer(struct snd_compr_stream *cstream, struct snd_compr_tstamp *tstamp) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->pointer) { ret = component->driver->compress_ops->pointer( component, cstream, tstamp); return soc_component_ret(component, ret); } } return 0; } EXPORT_SYMBOL_GPL(snd_soc_component_compr_pointer); int snd_soc_component_compr_copy(struct snd_compr_stream *cstream, char __user *buf, size_t count) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret = 0; snd_soc_dpcm_mutex_lock(rtd); for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->copy) { ret = component->driver->compress_ops->copy( component, cstream, buf, count); break; } } snd_soc_dpcm_mutex_unlock(rtd); return soc_component_ret(component, ret); } EXPORT_SYMBOL_GPL(snd_soc_component_compr_copy); int snd_soc_component_compr_set_metadata(struct snd_compr_stream *cstream, struct snd_compr_metadata *metadata) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->set_metadata) { ret = component->driver->compress_ops->set_metadata( component, cstream, metadata); if (ret < 0) return soc_component_ret(component, ret); } } return 0; } EXPORT_SYMBOL_GPL(snd_soc_component_compr_set_metadata); int snd_soc_component_compr_get_metadata(struct snd_compr_stream *cstream, struct snd_compr_metadata *metadata) { struct snd_soc_pcm_runtime *rtd = cstream->private_data; struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->compress_ops && component->driver->compress_ops->get_metadata) { ret = component->driver->compress_ops->get_metadata( component, cstream, metadata); return soc_component_ret(component, ret); } } return 0; } EXPORT_SYMBOL_GPL(snd_soc_component_compr_get_metadata); static unsigned int soc_component_read_no_lock( struct snd_soc_component *component, unsigned int reg) { int ret; unsigned int val = 0; if (component->regmap) ret = regmap_read(component->regmap, reg, &val); else if (component->driver->read) { ret = 0; val = component->driver->read(component, reg); } else ret = -EIO; if (ret < 0) return soc_component_ret_reg_rw(component, ret, reg); return val; } /** * snd_soc_component_read() - Read register value * @component: Component to read from * @reg: Register to read * * Return: read value */ unsigned int snd_soc_component_read(struct snd_soc_component *component, unsigned int reg) { unsigned int val; mutex_lock(&component->io_mutex); val = soc_component_read_no_lock(component, reg); mutex_unlock(&component->io_mutex); return val; } EXPORT_SYMBOL_GPL(snd_soc_component_read); static int soc_component_write_no_lock( struct snd_soc_component *component, unsigned int reg, unsigned int val) { int ret = -EIO; if (component->regmap) ret = regmap_write(component->regmap, reg, val); else if (component->driver->write) ret = component->driver->write(component, reg, val); return soc_component_ret_reg_rw(component, ret, reg); } /** * snd_soc_component_write() - Write register value * @component: Component to write to * @reg: Register to write * @val: Value to write to the register * * Return: 0 on success, a negative error code otherwise. */ int snd_soc_component_write(struct snd_soc_component *component, unsigned int reg, unsigned int val) { int ret; mutex_lock(&component->io_mutex); ret = soc_component_write_no_lock(component, reg, val); mutex_unlock(&component->io_mutex); return ret; } EXPORT_SYMBOL_GPL(snd_soc_component_write); static int snd_soc_component_update_bits_legacy( struct snd_soc_component *component, unsigned int reg, unsigned int mask, unsigned int val, bool *change) { unsigned int old, new; int ret = 0; mutex_lock(&component->io_mutex); old = soc_component_read_no_lock(component, reg); new = (old & ~mask) | (val & mask); *change = old != new; if (*change) ret = soc_component_write_no_lock(component, reg, new); mutex_unlock(&component->io_mutex); return soc_component_ret_reg_rw(component, ret, reg); } /** * snd_soc_component_update_bits() - Perform read/modify/write cycle * @component: Component to update * @reg: Register to update * @mask: Mask that specifies which bits to update * @val: New value for the bits specified by mask * * Return: 1 if the operation was successful and the value of the register * changed, 0 if the operation was successful, but the value did not change. * Returns a negative error code otherwise. */ int snd_soc_component_update_bits(struct snd_soc_component *component, unsigned int reg, unsigned int mask, unsigned int val) { bool change; int ret; if (component->regmap) ret = regmap_update_bits_check(component->regmap, reg, mask, val, &change); else ret = snd_soc_component_update_bits_legacy(component, reg, mask, val, &change); if (ret < 0) return soc_component_ret_reg_rw(component, ret, reg); return change; } EXPORT_SYMBOL_GPL(snd_soc_component_update_bits); /** * snd_soc_component_update_bits_async() - Perform asynchronous * read/modify/write cycle * @component: Component to update * @reg: Register to update * @mask: Mask that specifies which bits to update * @val: New value for the bits specified by mask * * This function is similar to snd_soc_component_update_bits(), but the update * operation is scheduled asynchronously. This means it may not be completed * when the function returns. To make sure that all scheduled updates have been * completed snd_soc_component_async_complete() must be called. * * Return: 1 if the operation was successful and the value of the register * changed, 0 if the operation was successful, but the value did not change. * Returns a negative error code otherwise. */ int snd_soc_component_update_bits_async(struct snd_soc_component *component, unsigned int reg, unsigned int mask, unsigned int val) { bool change; int ret; if (component->regmap) ret = regmap_update_bits_check_async(component->regmap, reg, mask, val, &change); else ret = snd_soc_component_update_bits_legacy(component, reg, mask, val, &change); if (ret < 0) return soc_component_ret_reg_rw(component, ret, reg); return change; } EXPORT_SYMBOL_GPL(snd_soc_component_update_bits_async); /** * snd_soc_component_read_field() - Read register field value * @component: Component to read from * @reg: Register to read * @mask: mask of the register field * * Return: read value of register field. */ unsigned int snd_soc_component_read_field(struct snd_soc_component *component, unsigned int reg, unsigned int mask) { unsigned int val; val = snd_soc_component_read(component, reg); val = (val & mask) >> soc_component_field_shift(component, mask); return val; } EXPORT_SYMBOL_GPL(snd_soc_component_read_field); /** * snd_soc_component_write_field() - write to register field * @component: Component to write to * @reg: Register to write * @mask: mask of the register field to update * @val: value of the field to write * * Return: 1 for change, otherwise 0. */ int snd_soc_component_write_field(struct snd_soc_component *component, unsigned int reg, unsigned int mask, unsigned int val) { val = (val << soc_component_field_shift(component, mask)) & mask; return snd_soc_component_update_bits(component, reg, mask, val); } EXPORT_SYMBOL_GPL(snd_soc_component_write_field); /** * snd_soc_component_async_complete() - Ensure asynchronous I/O has completed * @component: Component for which to wait * * This function blocks until all asynchronous I/O which has previously been * scheduled using snd_soc_component_update_bits_async() has completed. */ void snd_soc_component_async_complete(struct snd_soc_component *component) { if (component->regmap) regmap_async_complete(component->regmap); } EXPORT_SYMBOL_GPL(snd_soc_component_async_complete); /** * snd_soc_component_test_bits - Test register for change * @component: component * @reg: Register to test * @mask: Mask that specifies which bits to test * @value: Value to test against * * Tests a register with a new value and checks if the new value is * different from the old value. * * Return: 1 for change, otherwise 0. */ int snd_soc_component_test_bits(struct snd_soc_component *component, unsigned int reg, unsigned int mask, unsigned int value) { unsigned int old, new; old = snd_soc_component_read(component, reg); new = (old & ~mask) | value; return old != new; } EXPORT_SYMBOL_GPL(snd_soc_component_test_bits); int snd_soc_pcm_component_pointer(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i; /* FIXME: use 1st pointer */ for_each_rtd_components(rtd, i, component) if (component->driver->pointer) return component->driver->pointer(component, substream); return 0; } static bool snd_soc_component_is_codec_on_rtd(struct snd_soc_pcm_runtime *rtd, struct snd_soc_component *component) { struct snd_soc_dai *dai; int i; for_each_rtd_codec_dais(rtd, i, dai) { if (dai->component == component) return true; } return false; } void snd_soc_pcm_component_delay(struct snd_pcm_substream *substream, snd_pcm_sframes_t *cpu_delay, snd_pcm_sframes_t *codec_delay) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; snd_pcm_sframes_t delay; int i; /* * We're looking for the delay through the full audio path so it needs to * be the maximum of the Components doing transmit and the maximum of the * Components doing receive (ie, all CPUs and all CODECs) rather than * just the maximum of all Components. */ for_each_rtd_components(rtd, i, component) { if (!component->driver->delay) continue; delay = component->driver->delay(component, substream); if (snd_soc_component_is_codec_on_rtd(rtd, component)) *codec_delay = max(*codec_delay, delay); else *cpu_delay = max(*cpu_delay, delay); } } int snd_soc_pcm_component_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i; /* FIXME: use 1st ioctl */ for_each_rtd_components(rtd, i, component) if (component->driver->ioctl) return soc_component_ret( component, component->driver->ioctl(component, substream, cmd, arg)); return snd_pcm_lib_ioctl(substream, cmd, arg); } int snd_soc_pcm_component_sync_stop(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->sync_stop) { ret = component->driver->sync_stop(component, substream); if (ret < 0) return soc_component_ret(component, ret); } } return 0; } int snd_soc_pcm_component_copy(struct snd_pcm_substream *substream, int channel, unsigned long pos, struct iov_iter *iter, unsigned long bytes) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i; /* FIXME. it returns 1st copy now */ for_each_rtd_components(rtd, i, component) if (component->driver->copy) return soc_component_ret(component, component->driver->copy(component, substream, channel, pos, iter, bytes)); return -EINVAL; } struct page *snd_soc_pcm_component_page(struct snd_pcm_substream *substream, unsigned long offset) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; struct page *page; int i; /* FIXME. it returns 1st page now */ for_each_rtd_components(rtd, i, component) { if (component->driver->page) { page = component->driver->page(component, substream, offset); if (page) return page; } } return NULL; } int snd_soc_pcm_component_mmap(struct snd_pcm_substream *substream, struct vm_area_struct *vma) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i; /* FIXME. it returns 1st mmap now */ for_each_rtd_components(rtd, i, component) if (component->driver->mmap) return soc_component_ret( component, component->driver->mmap(component, substream, vma)); return -EINVAL; } int snd_soc_pcm_component_new(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component; int ret; int i; for_each_rtd_components(rtd, i, component) { if (component->driver->pcm_construct) { ret = component->driver->pcm_construct(component, rtd); if (ret < 0) return soc_component_ret(component, ret); } } return 0; } void snd_soc_pcm_component_free(struct snd_soc_pcm_runtime *rtd) { struct snd_soc_component *component; int i; if (!rtd->pcm) return; for_each_rtd_components(rtd, i, component) if (component->driver->pcm_destruct) component->driver->pcm_destruct(component, rtd->pcm); } int snd_soc_pcm_component_prepare(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->prepare) { ret = component->driver->prepare(component, substream); if (ret < 0) return soc_component_ret(component, ret); } } return 0; } int snd_soc_pcm_component_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (component->driver->hw_params) { ret = component->driver->hw_params(component, substream, params); if (ret < 0) return soc_component_ret(component, ret); } /* mark substream if succeeded */ soc_component_mark_push(component, substream, hw_params); } return 0; } void snd_soc_pcm_component_hw_free(struct snd_pcm_substream *substream, int rollback) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i, ret; for_each_rtd_components(rtd, i, component) { if (rollback && !soc_component_mark_match(component, substream, hw_params)) continue; if (component->driver->hw_free) { ret = component->driver->hw_free(component, substream); if (ret < 0) soc_component_ret(component, ret); } /* remove marked substream */ soc_component_mark_pop(component, substream, hw_params); } } static int soc_component_trigger(struct snd_soc_component *component, struct snd_pcm_substream *substream, int cmd) { int ret = 0; if (component->driver->trigger) ret = component->driver->trigger(component, substream, cmd); return soc_component_ret(component, ret); } int snd_soc_pcm_component_trigger(struct snd_pcm_substream *substream, int cmd, int rollback) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i, r, ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: for_each_rtd_components(rtd, i, component) { ret = soc_component_trigger(component, substream, cmd); if (ret < 0) break; soc_component_mark_push(component, substream, trigger); } break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: for_each_rtd_components(rtd, i, component) { if (rollback && !soc_component_mark_match(component, substream, trigger)) continue; r = soc_component_trigger(component, substream, cmd); if (r < 0) ret = r; /* use last ret */ soc_component_mark_pop(component, substream, trigger); } } return ret; } int snd_soc_pcm_component_pm_runtime_get(struct snd_soc_pcm_runtime *rtd, void *stream) { struct snd_soc_component *component; int i; for_each_rtd_components(rtd, i, component) { int ret = pm_runtime_get_sync(component->dev); if (ret < 0 && ret != -EACCES) { pm_runtime_put_noidle(component->dev); return soc_component_ret(component, ret); } /* mark stream if succeeded */ soc_component_mark_push(component, stream, pm); } return 0; } void snd_soc_pcm_component_pm_runtime_put(struct snd_soc_pcm_runtime *rtd, void *stream, int rollback) { struct snd_soc_component *component; int i; for_each_rtd_components(rtd, i, component) { if (rollback && !soc_component_mark_match(component, stream, pm)) continue; pm_runtime_mark_last_busy(component->dev); pm_runtime_put_autosuspend(component->dev); /* remove marked stream */ soc_component_mark_pop(component, stream, pm); } } int snd_soc_pcm_component_ack(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct snd_soc_component *component; int i; /* FIXME: use 1st pointer */ for_each_rtd_components(rtd, i, component) if (component->driver->ack) return component->driver->ack(component, substream); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1