Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pierre-Louis Bossart | 2096 | 32.67% | 29 | 27.36% |
Liam Girdwood | 2014 | 31.40% | 7 | 6.60% |
Ranjani Sridharan | 1097 | 17.10% | 21 | 19.81% |
Peter Ujfalusi | 295 | 4.60% | 12 | 11.32% |
Keyon Jie | 262 | 4.08% | 6 | 5.66% |
Rander Wang | 214 | 3.34% | 7 | 6.60% |
Kai Vehmanen | 208 | 3.24% | 5 | 4.72% |
Zhu Yingjiang | 66 | 1.03% | 3 | 2.83% |
Bard Liao | 40 | 0.62% | 2 | 1.89% |
Marcin Rajwa | 34 | 0.53% | 2 | 1.89% |
Libin Yang | 31 | 0.48% | 1 | 0.94% |
Guennadi Liakhovetski | 18 | 0.28% | 3 | 2.83% |
Pan Xiuli | 13 | 0.20% | 2 | 1.89% |
Kai-Heng Feng | 12 | 0.19% | 2 | 1.89% |
Fred Oh | 9 | 0.14% | 1 | 0.94% |
Daniel Baluta | 3 | 0.05% | 1 | 0.94% |
Julia Lawall | 2 | 0.03% | 1 | 0.94% |
Curtis Malainey | 1 | 0.02% | 1 | 0.94% |
Total | 6415 | 106 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) // // This file is provided under a dual BSD/GPLv2 license. When using or // redistributing this file, you may do so under either license. // // Copyright(c) 2018 Intel Corporation // // Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com> // Ranjani Sridharan <ranjani.sridharan@linux.intel.com> // Rander Wang <rander.wang@intel.com> // Keyon Jie <yang.jie@linux.intel.com> // /* * Hardware interface for generic Intel audio DSP HDA IP */ #include <linux/module.h> #include <sound/hdaudio_ext.h> #include <sound/hda_register.h> #include <sound/hda-mlink.h> #include <trace/events/sof_intel.h> #include <sound/sof/xtensa.h> #include "../sof-audio.h" #include "../ops.h" #include "hda.h" #include "mtl.h" #include "hda-ipc.h" #define EXCEPT_MAX_HDR_SIZE 0x400 #define HDA_EXT_ROM_STATUS_SIZE 8 struct hda_dsp_msg_code { u32 code; const char *text; }; static bool hda_enable_trace_D0I3_S0; #if IS_ENABLED(CONFIG_SND_SOC_SOF_DEBUG) module_param_named(enable_trace_D0I3_S0, hda_enable_trace_D0I3_S0, bool, 0444); MODULE_PARM_DESC(enable_trace_D0I3_S0, "SOF HDA enable trace when the DSP is in D0I3 in S0"); #endif static void hda_get_interfaces(struct snd_sof_dev *sdev, u32 *interface_mask) { const struct sof_intel_dsp_desc *chip; chip = get_chip_info(sdev->pdata); switch (chip->hw_ip_version) { case SOF_INTEL_TANGIER: case SOF_INTEL_BAYTRAIL: case SOF_INTEL_BROADWELL: interface_mask[SOF_DAI_DSP_ACCESS] = BIT(SOF_DAI_INTEL_SSP); break; case SOF_INTEL_CAVS_1_5: case SOF_INTEL_CAVS_1_5_PLUS: interface_mask[SOF_DAI_DSP_ACCESS] = BIT(SOF_DAI_INTEL_SSP) | BIT(SOF_DAI_INTEL_DMIC) | BIT(SOF_DAI_INTEL_HDA); interface_mask[SOF_DAI_HOST_ACCESS] = BIT(SOF_DAI_INTEL_HDA); break; case SOF_INTEL_CAVS_1_8: case SOF_INTEL_CAVS_2_0: case SOF_INTEL_CAVS_2_5: case SOF_INTEL_ACE_1_0: interface_mask[SOF_DAI_DSP_ACCESS] = BIT(SOF_DAI_INTEL_SSP) | BIT(SOF_DAI_INTEL_DMIC) | BIT(SOF_DAI_INTEL_HDA) | BIT(SOF_DAI_INTEL_ALH); interface_mask[SOF_DAI_HOST_ACCESS] = BIT(SOF_DAI_INTEL_HDA); break; case SOF_INTEL_ACE_2_0: interface_mask[SOF_DAI_DSP_ACCESS] = BIT(SOF_DAI_INTEL_SSP) | BIT(SOF_DAI_INTEL_DMIC) | BIT(SOF_DAI_INTEL_HDA) | BIT(SOF_DAI_INTEL_ALH); /* all interfaces accessible without DSP */ interface_mask[SOF_DAI_HOST_ACCESS] = interface_mask[SOF_DAI_DSP_ACCESS]; break; default: break; } } u32 hda_get_interface_mask(struct snd_sof_dev *sdev) { u32 interface_mask[SOF_DAI_ACCESS_NUM] = { 0 }; hda_get_interfaces(sdev, interface_mask); return interface_mask[sdev->dspless_mode_selected]; } EXPORT_SYMBOL_NS(hda_get_interface_mask, SND_SOC_SOF_INTEL_HDA_COMMON); bool hda_is_chain_dma_supported(struct snd_sof_dev *sdev, u32 dai_type) { u32 interface_mask[SOF_DAI_ACCESS_NUM] = { 0 }; const struct sof_intel_dsp_desc *chip; if (sdev->dspless_mode_selected) return false; hda_get_interfaces(sdev, interface_mask); if (!(interface_mask[SOF_DAI_DSP_ACCESS] & BIT(dai_type))) return false; if (dai_type == SOF_DAI_INTEL_HDA) return true; switch (dai_type) { case SOF_DAI_INTEL_SSP: case SOF_DAI_INTEL_DMIC: case SOF_DAI_INTEL_ALH: chip = get_chip_info(sdev->pdata); if (chip->hw_ip_version < SOF_INTEL_ACE_2_0) return false; return true; default: return false; } } EXPORT_SYMBOL_NS(hda_is_chain_dma_supported, SND_SOC_SOF_INTEL_HDA_COMMON); /* * DSP Core control. */ static int hda_dsp_core_reset_enter(struct snd_sof_dev *sdev, unsigned int core_mask) { u32 adspcs; u32 reset; int ret; /* set reset bits for cores */ reset = HDA_DSP_ADSPCS_CRST_MASK(core_mask); snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, reset, reset); /* poll with timeout to check if operation successful */ ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, adspcs, ((adspcs & reset) == reset), HDA_DSP_REG_POLL_INTERVAL_US, HDA_DSP_RESET_TIMEOUT_US); if (ret < 0) { dev_err(sdev->dev, "error: %s: timeout on HDA_DSP_REG_ADSPCS read\n", __func__); return ret; } /* has core entered reset ? */ adspcs = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS); if ((adspcs & HDA_DSP_ADSPCS_CRST_MASK(core_mask)) != HDA_DSP_ADSPCS_CRST_MASK(core_mask)) { dev_err(sdev->dev, "error: reset enter failed: core_mask %x adspcs 0x%x\n", core_mask, adspcs); ret = -EIO; } return ret; } static int hda_dsp_core_reset_leave(struct snd_sof_dev *sdev, unsigned int core_mask) { unsigned int crst; u32 adspcs; int ret; /* clear reset bits for cores */ snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, HDA_DSP_ADSPCS_CRST_MASK(core_mask), 0); /* poll with timeout to check if operation successful */ crst = HDA_DSP_ADSPCS_CRST_MASK(core_mask); ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, adspcs, !(adspcs & crst), HDA_DSP_REG_POLL_INTERVAL_US, HDA_DSP_RESET_TIMEOUT_US); if (ret < 0) { dev_err(sdev->dev, "error: %s: timeout on HDA_DSP_REG_ADSPCS read\n", __func__); return ret; } /* has core left reset ? */ adspcs = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS); if ((adspcs & HDA_DSP_ADSPCS_CRST_MASK(core_mask)) != 0) { dev_err(sdev->dev, "error: reset leave failed: core_mask %x adspcs 0x%x\n", core_mask, adspcs); ret = -EIO; } return ret; } int hda_dsp_core_stall_reset(struct snd_sof_dev *sdev, unsigned int core_mask) { /* stall core */ snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, HDA_DSP_ADSPCS_CSTALL_MASK(core_mask), HDA_DSP_ADSPCS_CSTALL_MASK(core_mask)); /* set reset state */ return hda_dsp_core_reset_enter(sdev, core_mask); } EXPORT_SYMBOL_NS(hda_dsp_core_stall_reset, SND_SOC_SOF_INTEL_HDA_COMMON); bool hda_dsp_core_is_enabled(struct snd_sof_dev *sdev, unsigned int core_mask) { int val; bool is_enable; val = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS); #define MASK_IS_EQUAL(v, m, field) ({ \ u32 _m = field(m); \ ((v) & _m) == _m; \ }) is_enable = MASK_IS_EQUAL(val, core_mask, HDA_DSP_ADSPCS_CPA_MASK) && MASK_IS_EQUAL(val, core_mask, HDA_DSP_ADSPCS_SPA_MASK) && !(val & HDA_DSP_ADSPCS_CRST_MASK(core_mask)) && !(val & HDA_DSP_ADSPCS_CSTALL_MASK(core_mask)); #undef MASK_IS_EQUAL dev_dbg(sdev->dev, "DSP core(s) enabled? %d : core_mask %x\n", is_enable, core_mask); return is_enable; } EXPORT_SYMBOL_NS(hda_dsp_core_is_enabled, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_core_run(struct snd_sof_dev *sdev, unsigned int core_mask) { int ret; /* leave reset state */ ret = hda_dsp_core_reset_leave(sdev, core_mask); if (ret < 0) return ret; /* run core */ dev_dbg(sdev->dev, "unstall/run core: core_mask = %x\n", core_mask); snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, HDA_DSP_ADSPCS_CSTALL_MASK(core_mask), 0); /* is core now running ? */ if (!hda_dsp_core_is_enabled(sdev, core_mask)) { hda_dsp_core_stall_reset(sdev, core_mask); dev_err(sdev->dev, "error: DSP start core failed: core_mask %x\n", core_mask); ret = -EIO; } return ret; } EXPORT_SYMBOL_NS(hda_dsp_core_run, SND_SOC_SOF_INTEL_HDA_COMMON); /* * Power Management. */ int hda_dsp_core_power_up(struct snd_sof_dev *sdev, unsigned int core_mask) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; unsigned int cpa; u32 adspcs; int ret; /* restrict core_mask to host managed cores mask */ core_mask &= chip->host_managed_cores_mask; /* return if core_mask is not valid */ if (!core_mask) return 0; /* update bits */ snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, HDA_DSP_ADSPCS_SPA_MASK(core_mask), HDA_DSP_ADSPCS_SPA_MASK(core_mask)); /* poll with timeout to check if operation successful */ cpa = HDA_DSP_ADSPCS_CPA_MASK(core_mask); ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, adspcs, (adspcs & cpa) == cpa, HDA_DSP_REG_POLL_INTERVAL_US, HDA_DSP_RESET_TIMEOUT_US); if (ret < 0) { dev_err(sdev->dev, "error: %s: timeout on HDA_DSP_REG_ADSPCS read\n", __func__); return ret; } /* did core power up ? */ adspcs = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS); if ((adspcs & HDA_DSP_ADSPCS_CPA_MASK(core_mask)) != HDA_DSP_ADSPCS_CPA_MASK(core_mask)) { dev_err(sdev->dev, "error: power up core failed core_mask %xadspcs 0x%x\n", core_mask, adspcs); ret = -EIO; } return ret; } EXPORT_SYMBOL_NS(hda_dsp_core_power_up, SND_SOC_SOF_INTEL_HDA_COMMON); static int hda_dsp_core_power_down(struct snd_sof_dev *sdev, unsigned int core_mask) { u32 adspcs; int ret; /* update bits */ snd_sof_dsp_update_bits_unlocked(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, HDA_DSP_ADSPCS_SPA_MASK(core_mask), 0); ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPCS, adspcs, !(adspcs & HDA_DSP_ADSPCS_CPA_MASK(core_mask)), HDA_DSP_REG_POLL_INTERVAL_US, HDA_DSP_PD_TIMEOUT * USEC_PER_MSEC); if (ret < 0) dev_err(sdev->dev, "error: %s: timeout on HDA_DSP_REG_ADSPCS read\n", __func__); return ret; } int hda_dsp_enable_core(struct snd_sof_dev *sdev, unsigned int core_mask) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; int ret; /* restrict core_mask to host managed cores mask */ core_mask &= chip->host_managed_cores_mask; /* return if core_mask is not valid or cores are already enabled */ if (!core_mask || hda_dsp_core_is_enabled(sdev, core_mask)) return 0; /* power up */ ret = hda_dsp_core_power_up(sdev, core_mask); if (ret < 0) { dev_err(sdev->dev, "error: dsp core power up failed: core_mask %x\n", core_mask); return ret; } return hda_dsp_core_run(sdev, core_mask); } EXPORT_SYMBOL_NS(hda_dsp_enable_core, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_core_reset_power_down(struct snd_sof_dev *sdev, unsigned int core_mask) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; int ret; /* restrict core_mask to host managed cores mask */ core_mask &= chip->host_managed_cores_mask; /* return if core_mask is not valid */ if (!core_mask) return 0; /* place core in reset prior to power down */ ret = hda_dsp_core_stall_reset(sdev, core_mask); if (ret < 0) { dev_err(sdev->dev, "error: dsp core reset failed: core_mask %x\n", core_mask); return ret; } /* power down core */ ret = hda_dsp_core_power_down(sdev, core_mask); if (ret < 0) { dev_err(sdev->dev, "error: dsp core power down fail mask %x: %d\n", core_mask, ret); return ret; } /* make sure we are in OFF state */ if (hda_dsp_core_is_enabled(sdev, core_mask)) { dev_err(sdev->dev, "error: dsp core disable fail mask %x: %d\n", core_mask, ret); ret = -EIO; } return ret; } EXPORT_SYMBOL_NS(hda_dsp_core_reset_power_down, SND_SOC_SOF_INTEL_HDA_COMMON); void hda_dsp_ipc_int_enable(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; if (sdev->dspless_mode_selected) return; /* enable IPC DONE and BUSY interrupts */ snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, chip->ipc_ctl, HDA_DSP_REG_HIPCCTL_DONE | HDA_DSP_REG_HIPCCTL_BUSY, HDA_DSP_REG_HIPCCTL_DONE | HDA_DSP_REG_HIPCCTL_BUSY); /* enable IPC interrupt */ snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIC, HDA_DSP_ADSPIC_IPC, HDA_DSP_ADSPIC_IPC); } EXPORT_SYMBOL_NS(hda_dsp_ipc_int_enable, SND_SOC_SOF_INTEL_HDA_COMMON); void hda_dsp_ipc_int_disable(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; if (sdev->dspless_mode_selected) return; /* disable IPC interrupt */ snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIC, HDA_DSP_ADSPIC_IPC, 0); /* disable IPC BUSY and DONE interrupt */ snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, chip->ipc_ctl, HDA_DSP_REG_HIPCCTL_BUSY | HDA_DSP_REG_HIPCCTL_DONE, 0); } EXPORT_SYMBOL_NS(hda_dsp_ipc_int_disable, SND_SOC_SOF_INTEL_HDA_COMMON); static int hda_dsp_wait_d0i3c_done(struct snd_sof_dev *sdev) { int retry = HDA_DSP_REG_POLL_RETRY_COUNT; struct snd_sof_pdata *pdata = sdev->pdata; const struct sof_intel_dsp_desc *chip; chip = get_chip_info(pdata); while (snd_sof_dsp_read8(sdev, HDA_DSP_HDA_BAR, chip->d0i3_offset) & SOF_HDA_VS_D0I3C_CIP) { if (!retry--) return -ETIMEDOUT; usleep_range(10, 15); } return 0; } static int hda_dsp_send_pm_gate_ipc(struct snd_sof_dev *sdev, u32 flags) { const struct sof_ipc_pm_ops *pm_ops = sof_ipc_get_ops(sdev, pm); if (pm_ops && pm_ops->set_pm_gate) return pm_ops->set_pm_gate(sdev, flags); return 0; } static int hda_dsp_update_d0i3c_register(struct snd_sof_dev *sdev, u8 value) { struct snd_sof_pdata *pdata = sdev->pdata; const struct sof_intel_dsp_desc *chip; int ret; u8 reg; chip = get_chip_info(pdata); /* Write to D0I3C after Command-In-Progress bit is cleared */ ret = hda_dsp_wait_d0i3c_done(sdev); if (ret < 0) { dev_err(sdev->dev, "CIP timeout before D0I3C update!\n"); return ret; } /* Update D0I3C register */ snd_sof_dsp_update8(sdev, HDA_DSP_HDA_BAR, chip->d0i3_offset, SOF_HDA_VS_D0I3C_I3, value); /* * The value written to the D0I3C::I3 bit may not be taken into account immediately. * A delay is recommended before checking if D0I3C::CIP is cleared */ usleep_range(30, 40); /* Wait for cmd in progress to be cleared before exiting the function */ ret = hda_dsp_wait_d0i3c_done(sdev); if (ret < 0) { dev_err(sdev->dev, "CIP timeout after D0I3C update!\n"); return ret; } reg = snd_sof_dsp_read8(sdev, HDA_DSP_HDA_BAR, chip->d0i3_offset); /* Confirm d0i3 state changed with paranoia check */ if ((reg ^ value) & SOF_HDA_VS_D0I3C_I3) { dev_err(sdev->dev, "failed to update D0I3C!\n"); return -EIO; } trace_sof_intel_D0I3C_updated(sdev, reg); return 0; } /* * d0i3 streaming is enabled if all the active streams can * work in d0i3 state and playback is enabled */ static bool hda_dsp_d0i3_streaming_applicable(struct snd_sof_dev *sdev) { struct snd_pcm_substream *substream; struct snd_sof_pcm *spcm; bool playback_active = false; int dir; list_for_each_entry(spcm, &sdev->pcm_list, list) { for_each_pcm_streams(dir) { substream = spcm->stream[dir].substream; if (!substream || !substream->runtime) continue; if (!spcm->stream[dir].d0i3_compatible) return false; if (dir == SNDRV_PCM_STREAM_PLAYBACK) playback_active = true; } } return playback_active; } static int hda_dsp_set_D0_state(struct snd_sof_dev *sdev, const struct sof_dsp_power_state *target_state) { u32 flags = 0; int ret; u8 value = 0; /* * Sanity check for illegal state transitions * The only allowed transitions are: * 1. D3 -> D0I0 * 2. D0I0 -> D0I3 * 3. D0I3 -> D0I0 */ switch (sdev->dsp_power_state.state) { case SOF_DSP_PM_D0: /* Follow the sequence below for D0 substate transitions */ break; case SOF_DSP_PM_D3: /* Follow regular flow for D3 -> D0 transition */ return 0; default: dev_err(sdev->dev, "error: transition from %d to %d not allowed\n", sdev->dsp_power_state.state, target_state->state); return -EINVAL; } /* Set flags and register value for D0 target substate */ if (target_state->substate == SOF_HDA_DSP_PM_D0I3) { value = SOF_HDA_VS_D0I3C_I3; /* * Trace DMA need to be disabled when the DSP enters * D0I3 for S0Ix suspend, but it can be kept enabled * when the DSP enters D0I3 while the system is in S0 * for debug purpose. */ if (!sdev->fw_trace_is_supported || !hda_enable_trace_D0I3_S0 || sdev->system_suspend_target != SOF_SUSPEND_NONE) flags = HDA_PM_NO_DMA_TRACE; if (hda_dsp_d0i3_streaming_applicable(sdev)) flags |= HDA_PM_PG_STREAMING; } else { /* prevent power gating in D0I0 */ flags = HDA_PM_PPG; } /* update D0I3C register */ ret = hda_dsp_update_d0i3c_register(sdev, value); if (ret < 0) return ret; /* * Notify the DSP of the state change. * If this IPC fails, revert the D0I3C register update in order * to prevent partial state change. */ ret = hda_dsp_send_pm_gate_ipc(sdev, flags); if (ret < 0) { dev_err(sdev->dev, "error: PM_GATE ipc error %d\n", ret); goto revert; } return ret; revert: /* fallback to the previous register value */ value = value ? 0 : SOF_HDA_VS_D0I3C_I3; /* * This can fail but return the IPC error to signal that * the state change failed. */ hda_dsp_update_d0i3c_register(sdev, value); return ret; } /* helper to log DSP state */ static void hda_dsp_state_log(struct snd_sof_dev *sdev) { switch (sdev->dsp_power_state.state) { case SOF_DSP_PM_D0: switch (sdev->dsp_power_state.substate) { case SOF_HDA_DSP_PM_D0I0: dev_dbg(sdev->dev, "Current DSP power state: D0I0\n"); break; case SOF_HDA_DSP_PM_D0I3: dev_dbg(sdev->dev, "Current DSP power state: D0I3\n"); break; default: dev_dbg(sdev->dev, "Unknown DSP D0 substate: %d\n", sdev->dsp_power_state.substate); break; } break; case SOF_DSP_PM_D1: dev_dbg(sdev->dev, "Current DSP power state: D1\n"); break; case SOF_DSP_PM_D2: dev_dbg(sdev->dev, "Current DSP power state: D2\n"); break; case SOF_DSP_PM_D3: dev_dbg(sdev->dev, "Current DSP power state: D3\n"); break; default: dev_dbg(sdev->dev, "Unknown DSP power state: %d\n", sdev->dsp_power_state.state); break; } } /* * All DSP power state transitions are initiated by the driver. * If the requested state change fails, the error is simply returned. * Further state transitions are attempted only when the set_power_save() op * is called again either because of a new IPC sent to the DSP or * during system suspend/resume. */ static int hda_dsp_set_power_state(struct snd_sof_dev *sdev, const struct sof_dsp_power_state *target_state) { int ret = 0; switch (target_state->state) { case SOF_DSP_PM_D0: ret = hda_dsp_set_D0_state(sdev, target_state); break; case SOF_DSP_PM_D3: /* The only allowed transition is: D0I0 -> D3 */ if (sdev->dsp_power_state.state == SOF_DSP_PM_D0 && sdev->dsp_power_state.substate == SOF_HDA_DSP_PM_D0I0) break; dev_err(sdev->dev, "error: transition from %d to %d not allowed\n", sdev->dsp_power_state.state, target_state->state); return -EINVAL; default: dev_err(sdev->dev, "error: target state unsupported %d\n", target_state->state); return -EINVAL; } if (ret < 0) { dev_err(sdev->dev, "failed to set requested target DSP state %d substate %d\n", target_state->state, target_state->substate); return ret; } sdev->dsp_power_state = *target_state; hda_dsp_state_log(sdev); return ret; } int hda_dsp_set_power_state_ipc3(struct snd_sof_dev *sdev, const struct sof_dsp_power_state *target_state) { /* * When the DSP is already in D0I3 and the target state is D0I3, * it could be the case that the DSP is in D0I3 during S0 * and the system is suspending to S0Ix. Therefore, * hda_dsp_set_D0_state() must be called to disable trace DMA * by sending the PM_GATE IPC to the FW. */ if (target_state->substate == SOF_HDA_DSP_PM_D0I3 && sdev->system_suspend_target == SOF_SUSPEND_S0IX) return hda_dsp_set_power_state(sdev, target_state); /* * For all other cases, return without doing anything if * the DSP is already in the target state. */ if (target_state->state == sdev->dsp_power_state.state && target_state->substate == sdev->dsp_power_state.substate) return 0; return hda_dsp_set_power_state(sdev, target_state); } EXPORT_SYMBOL_NS(hda_dsp_set_power_state_ipc3, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_set_power_state_ipc4(struct snd_sof_dev *sdev, const struct sof_dsp_power_state *target_state) { /* Return without doing anything if the DSP is already in the target state */ if (target_state->state == sdev->dsp_power_state.state && target_state->substate == sdev->dsp_power_state.substate) return 0; return hda_dsp_set_power_state(sdev, target_state); } EXPORT_SYMBOL_NS(hda_dsp_set_power_state_ipc4, SND_SOC_SOF_INTEL_HDA_COMMON); /* * Audio DSP states may transform as below:- * * Opportunistic D0I3 in S0 * Runtime +---------------------+ Delayed D0i3 work timeout * suspend | +--------------------+ * +------------+ D0I0(active) | | * | | <---------------+ | * | +--------> | New IPC | | * | |Runtime +--^--+---------^--+--+ (via mailbox) | | * | |resume | | | | | | * | | | | | | | | * | | System| | | | | | * | | resume| | S3/S0IX | | | | * | | | | suspend | | S0IX | | * | | | | | |suspend | | * | | | | | | | | * | | | | | | | | * +-v---+-----------+--v-------+ | | +------+----v----+ * | | | +-----------> | * | D3 (suspended) | | | D0I3 | * | | +--------------+ | * | | System resume | | * +----------------------------+ +----------------+ * * S0IX suspend: The DSP is in D0I3 if any D0I3-compatible streams * ignored the suspend trigger. Otherwise the DSP * is in D3. */ static int hda_suspend(struct snd_sof_dev *sdev, bool runtime_suspend) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_intel_dsp_desc *chip = hda->desc; struct hdac_bus *bus = sof_to_bus(sdev); bool imr_lost = false; int ret, j; /* * The memory used for IMR boot loses its content in deeper than S3 * state on CAVS platforms. * On ACE platforms due to the system architecture the IMR content is * lost at S3 state already, they are tailored for s2idle use. * We must not try IMR boot on next power up in these cases as it will * fail. */ if (sdev->system_suspend_target > SOF_SUSPEND_S3 || (chip->hw_ip_version >= SOF_INTEL_ACE_1_0 && sdev->system_suspend_target == SOF_SUSPEND_S3)) imr_lost = true; /* * In case of firmware crash or boot failure set the skip_imr_boot to true * as well in order to try to re-load the firmware to do a 'cold' boot. */ if (imr_lost || sdev->fw_state == SOF_FW_CRASHED || sdev->fw_state == SOF_FW_BOOT_FAILED) hda->skip_imr_boot = true; ret = chip->disable_interrupts(sdev); if (ret < 0) return ret; /* make sure that no irq handler is pending before shutdown */ synchronize_irq(sdev->ipc_irq); hda_codec_jack_wake_enable(sdev, runtime_suspend); /* power down all hda links */ hda_bus_ml_suspend(bus); if (sdev->dspless_mode_selected) goto skip_dsp; ret = chip->power_down_dsp(sdev); if (ret < 0) { dev_err(sdev->dev, "failed to power down DSP during suspend\n"); return ret; } /* reset ref counts for all cores */ for (j = 0; j < chip->cores_num; j++) sdev->dsp_core_ref_count[j] = 0; /* disable ppcap interrupt */ hda_dsp_ctrl_ppcap_enable(sdev, false); hda_dsp_ctrl_ppcap_int_enable(sdev, false); skip_dsp: /* disable hda bus irq and streams */ hda_dsp_ctrl_stop_chip(sdev); /* disable LP retention mode */ snd_sof_pci_update_bits(sdev, PCI_PGCTL, PCI_PGCTL_LSRMD_MASK, PCI_PGCTL_LSRMD_MASK); /* reset controller */ ret = hda_dsp_ctrl_link_reset(sdev, true); if (ret < 0) { dev_err(sdev->dev, "error: failed to reset controller during suspend\n"); return ret; } /* display codec can powered off after link reset */ hda_codec_i915_display_power(sdev, false); return 0; } static int hda_resume(struct snd_sof_dev *sdev, bool runtime_resume) { const struct sof_intel_dsp_desc *chip; int ret; /* display codec must be powered before link reset */ hda_codec_i915_display_power(sdev, true); /* * clear TCSEL to clear playback on some HD Audio * codecs. PCI TCSEL is defined in the Intel manuals. */ snd_sof_pci_update_bits(sdev, PCI_TCSEL, 0x07, 0); /* reset and start hda controller */ ret = hda_dsp_ctrl_init_chip(sdev); if (ret < 0) { dev_err(sdev->dev, "error: failed to start controller after resume\n"); goto cleanup; } /* check jack status */ if (runtime_resume) { hda_codec_jack_wake_enable(sdev, false); if (sdev->system_suspend_target == SOF_SUSPEND_NONE) hda_codec_jack_check(sdev); } if (!sdev->dspless_mode_selected) { /* enable ppcap interrupt */ hda_dsp_ctrl_ppcap_enable(sdev, true); hda_dsp_ctrl_ppcap_int_enable(sdev, true); } chip = get_chip_info(sdev->pdata); if (chip && chip->hw_ip_version >= SOF_INTEL_ACE_2_0) hda_sdw_int_enable(sdev, true); cleanup: /* display codec can powered off after controller init */ hda_codec_i915_display_power(sdev, false); return 0; } int hda_dsp_resume(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; struct hdac_bus *bus = sof_to_bus(sdev); struct pci_dev *pci = to_pci_dev(sdev->dev); const struct sof_dsp_power_state target_state = { .state = SOF_DSP_PM_D0, .substate = SOF_HDA_DSP_PM_D0I0, }; int ret; /* resume from D0I3 */ if (sdev->dsp_power_state.state == SOF_DSP_PM_D0) { ret = hda_bus_ml_resume(bus); if (ret < 0) { dev_err(sdev->dev, "error %d in %s: failed to power up links", ret, __func__); return ret; } /* set up CORB/RIRB buffers if was on before suspend */ hda_codec_resume_cmd_io(sdev); /* Set DSP power state */ ret = snd_sof_dsp_set_power_state(sdev, &target_state); if (ret < 0) { dev_err(sdev->dev, "error: setting dsp state %d substate %d\n", target_state.state, target_state.substate); return ret; } /* restore L1SEN bit */ if (hda->l1_disabled) snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR, HDA_VS_INTEL_EM2, HDA_VS_INTEL_EM2_L1SEN, 0); /* restore and disable the system wakeup */ pci_restore_state(pci); disable_irq_wake(pci->irq); return 0; } /* init hda controller. DSP cores will be powered up during fw boot */ ret = hda_resume(sdev, false); if (ret < 0) return ret; return snd_sof_dsp_set_power_state(sdev, &target_state); } EXPORT_SYMBOL_NS(hda_dsp_resume, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_runtime_resume(struct snd_sof_dev *sdev) { const struct sof_dsp_power_state target_state = { .state = SOF_DSP_PM_D0, }; int ret; /* init hda controller. DSP cores will be powered up during fw boot */ ret = hda_resume(sdev, true); if (ret < 0) return ret; return snd_sof_dsp_set_power_state(sdev, &target_state); } EXPORT_SYMBOL_NS(hda_dsp_runtime_resume, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_runtime_idle(struct snd_sof_dev *sdev) { struct hdac_bus *hbus = sof_to_bus(sdev); if (hbus->codec_powered) { dev_dbg(sdev->dev, "some codecs still powered (%08X), not idle\n", (unsigned int)hbus->codec_powered); return -EBUSY; } return 0; } EXPORT_SYMBOL_NS(hda_dsp_runtime_idle, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_runtime_suspend(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; const struct sof_dsp_power_state target_state = { .state = SOF_DSP_PM_D3, }; int ret; if (!sdev->dspless_mode_selected) { /* cancel any attempt for DSP D0I3 */ cancel_delayed_work_sync(&hda->d0i3_work); } /* stop hda controller and power dsp off */ ret = hda_suspend(sdev, true); if (ret < 0) return ret; return snd_sof_dsp_set_power_state(sdev, &target_state); } EXPORT_SYMBOL_NS(hda_dsp_runtime_suspend, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_suspend(struct snd_sof_dev *sdev, u32 target_state) { struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata; struct hdac_bus *bus = sof_to_bus(sdev); struct pci_dev *pci = to_pci_dev(sdev->dev); const struct sof_dsp_power_state target_dsp_state = { .state = target_state, .substate = target_state == SOF_DSP_PM_D0 ? SOF_HDA_DSP_PM_D0I3 : 0, }; int ret; if (!sdev->dspless_mode_selected) { /* cancel any attempt for DSP D0I3 */ cancel_delayed_work_sync(&hda->d0i3_work); } if (target_state == SOF_DSP_PM_D0) { /* Set DSP power state */ ret = snd_sof_dsp_set_power_state(sdev, &target_dsp_state); if (ret < 0) { dev_err(sdev->dev, "error: setting dsp state %d substate %d\n", target_dsp_state.state, target_dsp_state.substate); return ret; } /* enable L1SEN to make sure the system can enter S0Ix */ if (hda->l1_disabled) snd_sof_dsp_update_bits(sdev, HDA_DSP_HDA_BAR, HDA_VS_INTEL_EM2, HDA_VS_INTEL_EM2_L1SEN, HDA_VS_INTEL_EM2_L1SEN); /* stop the CORB/RIRB DMA if it is On */ hda_codec_suspend_cmd_io(sdev); /* no link can be powered in s0ix state */ ret = hda_bus_ml_suspend(bus); if (ret < 0) { dev_err(sdev->dev, "error %d in %s: failed to power down links", ret, __func__); return ret; } /* enable the system waking up via IPC IRQ */ enable_irq_wake(pci->irq); pci_save_state(pci); return 0; } /* stop hda controller and power dsp off */ ret = hda_suspend(sdev, false); if (ret < 0) { dev_err(bus->dev, "error: suspending dsp\n"); return ret; } return snd_sof_dsp_set_power_state(sdev, &target_dsp_state); } EXPORT_SYMBOL_NS(hda_dsp_suspend, SND_SOC_SOF_INTEL_HDA_COMMON); static unsigned int hda_dsp_check_for_dma_streams(struct snd_sof_dev *sdev) { struct hdac_bus *bus = sof_to_bus(sdev); struct hdac_stream *s; unsigned int active_streams = 0; int sd_offset; u32 val; list_for_each_entry(s, &bus->stream_list, list) { sd_offset = SOF_STREAM_SD_OFFSET(s); val = snd_sof_dsp_read(sdev, HDA_DSP_HDA_BAR, sd_offset); if (val & SOF_HDA_SD_CTL_DMA_START) active_streams |= BIT(s->index); } return active_streams; } static int hda_dsp_s5_quirk(struct snd_sof_dev *sdev) { int ret; /* * Do not assume a certain timing between the prior * suspend flow, and running of this quirk function. * This is needed if the controller was just put * to reset before calling this function. */ usleep_range(500, 1000); /* * Take controller out of reset to flush DMA * transactions. */ ret = hda_dsp_ctrl_link_reset(sdev, false); if (ret < 0) return ret; usleep_range(500, 1000); /* Restore state for shutdown, back to reset */ ret = hda_dsp_ctrl_link_reset(sdev, true); if (ret < 0) return ret; return ret; } int hda_dsp_shutdown_dma_flush(struct snd_sof_dev *sdev) { unsigned int active_streams; int ret, ret2; /* check if DMA cleanup has been successful */ active_streams = hda_dsp_check_for_dma_streams(sdev); sdev->system_suspend_target = SOF_SUSPEND_S3; ret = snd_sof_suspend(sdev->dev); if (active_streams) { dev_warn(sdev->dev, "There were active DSP streams (%#x) at shutdown, trying to recover\n", active_streams); ret2 = hda_dsp_s5_quirk(sdev); if (ret2 < 0) dev_err(sdev->dev, "shutdown recovery failed (%d)\n", ret2); } return ret; } EXPORT_SYMBOL_NS(hda_dsp_shutdown_dma_flush, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_shutdown(struct snd_sof_dev *sdev) { sdev->system_suspend_target = SOF_SUSPEND_S3; return snd_sof_suspend(sdev->dev); } EXPORT_SYMBOL_NS(hda_dsp_shutdown, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_set_hw_params_upon_resume(struct snd_sof_dev *sdev) { int ret; /* make sure all DAI resources are freed */ ret = hda_dsp_dais_suspend(sdev); if (ret < 0) dev_warn(sdev->dev, "%s: failure in hda_dsp_dais_suspend\n", __func__); return ret; } EXPORT_SYMBOL_NS(hda_dsp_set_hw_params_upon_resume, SND_SOC_SOF_INTEL_HDA_COMMON); void hda_dsp_d0i3_work(struct work_struct *work) { struct sof_intel_hda_dev *hdev = container_of(work, struct sof_intel_hda_dev, d0i3_work.work); struct hdac_bus *bus = &hdev->hbus.core; struct snd_sof_dev *sdev = dev_get_drvdata(bus->dev); struct sof_dsp_power_state target_state = { .state = SOF_DSP_PM_D0, .substate = SOF_HDA_DSP_PM_D0I3, }; int ret; /* DSP can enter D0I3 iff only D0I3-compatible streams are active */ if (!snd_sof_dsp_only_d0i3_compatible_stream_active(sdev)) /* remain in D0I0 */ return; /* This can fail but error cannot be propagated */ ret = snd_sof_dsp_set_power_state(sdev, &target_state); if (ret < 0) dev_err_ratelimited(sdev->dev, "error: failed to set DSP state %d substate %d\n", target_state.state, target_state.substate); } EXPORT_SYMBOL_NS(hda_dsp_d0i3_work, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_dsp_core_get(struct snd_sof_dev *sdev, int core) { const struct sof_ipc_pm_ops *pm_ops = sdev->ipc->ops->pm; int ret, ret1; /* power up core */ ret = hda_dsp_enable_core(sdev, BIT(core)); if (ret < 0) { dev_err(sdev->dev, "failed to power up core %d with err: %d\n", core, ret); return ret; } /* No need to send IPC for primary core or if FW boot is not complete */ if (sdev->fw_state != SOF_FW_BOOT_COMPLETE || core == SOF_DSP_PRIMARY_CORE) return 0; /* No need to continue the set_core_state ops is not available */ if (!pm_ops->set_core_state) return 0; /* Now notify DSP for secondary cores */ ret = pm_ops->set_core_state(sdev, core, true); if (ret < 0) { dev_err(sdev->dev, "failed to enable secondary core '%d' failed with %d\n", core, ret); goto power_down; } return ret; power_down: /* power down core if it is host managed and return the original error if this fails too */ ret1 = hda_dsp_core_reset_power_down(sdev, BIT(core)); if (ret1 < 0) dev_err(sdev->dev, "failed to power down core: %d with err: %d\n", core, ret1); return ret; } EXPORT_SYMBOL_NS(hda_dsp_core_get, SND_SOC_SOF_INTEL_HDA_COMMON); #if IS_ENABLED(CONFIG_SND_SOC_SOF_INTEL_SOUNDWIRE) void hda_common_enable_sdw_irq(struct snd_sof_dev *sdev, bool enable) { struct sof_intel_hda_dev *hdev; hdev = sdev->pdata->hw_pdata; if (!hdev->sdw) return; snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIC2, HDA_DSP_REG_ADSPIC2_SNDW, enable ? HDA_DSP_REG_ADSPIC2_SNDW : 0); } EXPORT_SYMBOL_NS(hda_common_enable_sdw_irq, SND_SOC_SOF_INTEL_HDA_COMMON); void hda_sdw_int_enable(struct snd_sof_dev *sdev, bool enable) { u32 interface_mask = hda_get_interface_mask(sdev); const struct sof_intel_dsp_desc *chip; if (!(interface_mask & BIT(SOF_DAI_INTEL_ALH))) return; chip = get_chip_info(sdev->pdata); if (chip && chip->enable_sdw_irq) chip->enable_sdw_irq(sdev, enable); } EXPORT_SYMBOL_NS(hda_sdw_int_enable, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_sdw_check_lcount_common(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev; struct sdw_intel_ctx *ctx; u32 caps; hdev = sdev->pdata->hw_pdata; ctx = hdev->sdw; caps = snd_sof_dsp_read(sdev, HDA_DSP_BAR, ctx->shim_base + SDW_SHIM_LCAP); caps &= SDW_SHIM_LCAP_LCOUNT_MASK; /* Check HW supported vs property value */ if (caps < ctx->count) { dev_err(sdev->dev, "%s: BIOS master count %d is larger than hardware capabilities %d\n", __func__, ctx->count, caps); return -EINVAL; } return 0; } EXPORT_SYMBOL_NS(hda_sdw_check_lcount_common, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_sdw_check_lcount_ext(struct snd_sof_dev *sdev) { struct sof_intel_hda_dev *hdev; struct sdw_intel_ctx *ctx; struct hdac_bus *bus; u32 slcount; bus = sof_to_bus(sdev); hdev = sdev->pdata->hw_pdata; ctx = hdev->sdw; slcount = hdac_bus_eml_get_count(bus, true, AZX_REG_ML_LEPTR_ID_SDW); /* Check HW supported vs property value */ if (slcount < ctx->count) { dev_err(sdev->dev, "%s: BIOS master count %d is larger than hardware capabilities %d\n", __func__, ctx->count, slcount); return -EINVAL; } return 0; } EXPORT_SYMBOL_NS(hda_sdw_check_lcount_ext, SND_SOC_SOF_INTEL_HDA_COMMON); int hda_sdw_check_lcount(struct snd_sof_dev *sdev) { const struct sof_intel_dsp_desc *chip; chip = get_chip_info(sdev->pdata); if (chip && chip->read_sdw_lcount) return chip->read_sdw_lcount(sdev); return 0; } EXPORT_SYMBOL_NS(hda_sdw_check_lcount, SND_SOC_SOF_INTEL_HDA_COMMON); void hda_sdw_process_wakeen(struct snd_sof_dev *sdev) { u32 interface_mask = hda_get_interface_mask(sdev); const struct sof_intel_dsp_desc *chip; if (!(interface_mask & BIT(SOF_DAI_INTEL_ALH))) return; chip = get_chip_info(sdev->pdata); if (chip && chip->sdw_process_wakeen) chip->sdw_process_wakeen(sdev); } EXPORT_SYMBOL_NS(hda_sdw_process_wakeen, SND_SOC_SOF_INTEL_HDA_COMMON); #endif int hda_dsp_disable_interrupts(struct snd_sof_dev *sdev) { hda_sdw_int_enable(sdev, false); hda_dsp_ipc_int_disable(sdev); return 0; } EXPORT_SYMBOL_NS(hda_dsp_disable_interrupts, SND_SOC_SOF_INTEL_HDA_COMMON); static const struct hda_dsp_msg_code hda_dsp_rom_fw_error_texts[] = { {HDA_DSP_ROM_CSE_ERROR, "error: cse error"}, {HDA_DSP_ROM_CSE_WRONG_RESPONSE, "error: cse wrong response"}, {HDA_DSP_ROM_IMR_TO_SMALL, "error: IMR too small"}, {HDA_DSP_ROM_BASE_FW_NOT_FOUND, "error: base fw not found"}, {HDA_DSP_ROM_CSE_VALIDATION_FAILED, "error: signature verification failed"}, {HDA_DSP_ROM_IPC_FATAL_ERROR, "error: ipc fatal error"}, {HDA_DSP_ROM_L2_CACHE_ERROR, "error: L2 cache error"}, {HDA_DSP_ROM_LOAD_OFFSET_TO_SMALL, "error: load offset too small"}, {HDA_DSP_ROM_API_PTR_INVALID, "error: API ptr invalid"}, {HDA_DSP_ROM_BASEFW_INCOMPAT, "error: base fw incompatible"}, {HDA_DSP_ROM_UNHANDLED_INTERRUPT, "error: unhandled interrupt"}, {HDA_DSP_ROM_MEMORY_HOLE_ECC, "error: ECC memory hole"}, {HDA_DSP_ROM_KERNEL_EXCEPTION, "error: kernel exception"}, {HDA_DSP_ROM_USER_EXCEPTION, "error: user exception"}, {HDA_DSP_ROM_UNEXPECTED_RESET, "error: unexpected reset"}, {HDA_DSP_ROM_NULL_FW_ENTRY, "error: null FW entry point"}, }; #define FSR_ROM_STATE_ENTRY(state) {FSR_STATE_ROM_##state, #state} static const struct hda_dsp_msg_code cavs_fsr_rom_state_names[] = { FSR_ROM_STATE_ENTRY(INIT), FSR_ROM_STATE_ENTRY(INIT_DONE), FSR_ROM_STATE_ENTRY(CSE_MANIFEST_LOADED), FSR_ROM_STATE_ENTRY(FW_MANIFEST_LOADED), FSR_ROM_STATE_ENTRY(FW_FW_LOADED), FSR_ROM_STATE_ENTRY(FW_ENTERED), FSR_ROM_STATE_ENTRY(VERIFY_FEATURE_MASK), FSR_ROM_STATE_ENTRY(GET_LOAD_OFFSET), FSR_ROM_STATE_ENTRY(FETCH_ROM_EXT), FSR_ROM_STATE_ENTRY(FETCH_ROM_EXT_DONE), /* CSE states */ FSR_ROM_STATE_ENTRY(CSE_IMR_REQUEST), FSR_ROM_STATE_ENTRY(CSE_IMR_GRANTED), FSR_ROM_STATE_ENTRY(CSE_VALIDATE_IMAGE_REQUEST), FSR_ROM_STATE_ENTRY(CSE_IMAGE_VALIDATED), FSR_ROM_STATE_ENTRY(CSE_IPC_IFACE_INIT), FSR_ROM_STATE_ENTRY(CSE_IPC_RESET_PHASE_1), FSR_ROM_STATE_ENTRY(CSE_IPC_OPERATIONAL_ENTRY), FSR_ROM_STATE_ENTRY(CSE_IPC_OPERATIONAL), FSR_ROM_STATE_ENTRY(CSE_IPC_DOWN), }; static const struct hda_dsp_msg_code ace_fsr_rom_state_names[] = { FSR_ROM_STATE_ENTRY(INIT), FSR_ROM_STATE_ENTRY(INIT_DONE), FSR_ROM_STATE_ENTRY(CSE_MANIFEST_LOADED), FSR_ROM_STATE_ENTRY(FW_MANIFEST_LOADED), FSR_ROM_STATE_ENTRY(FW_FW_LOADED), FSR_ROM_STATE_ENTRY(FW_ENTERED), FSR_ROM_STATE_ENTRY(VERIFY_FEATURE_MASK), FSR_ROM_STATE_ENTRY(GET_LOAD_OFFSET), FSR_ROM_STATE_ENTRY(RESET_VECTOR_DONE), FSR_ROM_STATE_ENTRY(PURGE_BOOT), FSR_ROM_STATE_ENTRY(RESTORE_BOOT), FSR_ROM_STATE_ENTRY(FW_ENTRY_POINT), FSR_ROM_STATE_ENTRY(VALIDATE_PUB_KEY), FSR_ROM_STATE_ENTRY(POWER_DOWN_HPSRAM), FSR_ROM_STATE_ENTRY(POWER_DOWN_ULPSRAM), FSR_ROM_STATE_ENTRY(POWER_UP_ULPSRAM_STACK), FSR_ROM_STATE_ENTRY(POWER_UP_HPSRAM_DMA), FSR_ROM_STATE_ENTRY(BEFORE_EP_POINTER_READ), FSR_ROM_STATE_ENTRY(VALIDATE_MANIFEST), FSR_ROM_STATE_ENTRY(VALIDATE_FW_MODULE), FSR_ROM_STATE_ENTRY(PROTECT_IMR_REGION), FSR_ROM_STATE_ENTRY(PUSH_MODEL_ROUTINE), FSR_ROM_STATE_ENTRY(PULL_MODEL_ROUTINE), FSR_ROM_STATE_ENTRY(VALIDATE_PKG_DIR), FSR_ROM_STATE_ENTRY(VALIDATE_CPD), FSR_ROM_STATE_ENTRY(VALIDATE_CSS_MAN_HEADER), FSR_ROM_STATE_ENTRY(VALIDATE_BLOB_SVN), FSR_ROM_STATE_ENTRY(VERIFY_IFWI_PARTITION), FSR_ROM_STATE_ENTRY(REMOVE_ACCESS_CONTROL), FSR_ROM_STATE_ENTRY(AUTH_BYPASS), FSR_ROM_STATE_ENTRY(AUTH_ENABLED), FSR_ROM_STATE_ENTRY(INIT_DMA), FSR_ROM_STATE_ENTRY(PURGE_FW_ENTRY), FSR_ROM_STATE_ENTRY(PURGE_FW_END), FSR_ROM_STATE_ENTRY(CLEAN_UP_BSS_DONE), FSR_ROM_STATE_ENTRY(IMR_RESTORE_ENTRY), FSR_ROM_STATE_ENTRY(IMR_RESTORE_END), FSR_ROM_STATE_ENTRY(FW_MANIFEST_IN_DMA_BUFF), FSR_ROM_STATE_ENTRY(LOAD_CSE_MAN_TO_IMR), FSR_ROM_STATE_ENTRY(LOAD_FW_MAN_TO_IMR), FSR_ROM_STATE_ENTRY(LOAD_FW_CODE_TO_IMR), FSR_ROM_STATE_ENTRY(FW_LOADING_DONE), FSR_ROM_STATE_ENTRY(FW_CODE_LOADED), FSR_ROM_STATE_ENTRY(VERIFY_IMAGE_TYPE), FSR_ROM_STATE_ENTRY(AUTH_API_INIT), FSR_ROM_STATE_ENTRY(AUTH_API_PROC), FSR_ROM_STATE_ENTRY(AUTH_API_FIRST_BUSY), FSR_ROM_STATE_ENTRY(AUTH_API_FIRST_RESULT), FSR_ROM_STATE_ENTRY(AUTH_API_CLEANUP), }; #define FSR_BRINGUP_STATE_ENTRY(state) {FSR_STATE_BRINGUP_##state, #state} static const struct hda_dsp_msg_code fsr_bringup_state_names[] = { FSR_BRINGUP_STATE_ENTRY(INIT), FSR_BRINGUP_STATE_ENTRY(INIT_DONE), FSR_BRINGUP_STATE_ENTRY(HPSRAM_LOAD), FSR_BRINGUP_STATE_ENTRY(UNPACK_START), FSR_BRINGUP_STATE_ENTRY(IMR_RESTORE), FSR_BRINGUP_STATE_ENTRY(FW_ENTERED), }; #define FSR_WAIT_STATE_ENTRY(state) {FSR_WAIT_FOR_##state, #state} static const struct hda_dsp_msg_code fsr_wait_state_names[] = { FSR_WAIT_STATE_ENTRY(IPC_BUSY), FSR_WAIT_STATE_ENTRY(IPC_DONE), FSR_WAIT_STATE_ENTRY(CACHE_INVALIDATION), FSR_WAIT_STATE_ENTRY(LP_SRAM_OFF), FSR_WAIT_STATE_ENTRY(DMA_BUFFER_FULL), FSR_WAIT_STATE_ENTRY(CSE_CSR), }; #define FSR_MODULE_NAME_ENTRY(mod) [FSR_MOD_##mod] = #mod static const char * const fsr_module_names[] = { FSR_MODULE_NAME_ENTRY(ROM), FSR_MODULE_NAME_ENTRY(ROM_BYP), FSR_MODULE_NAME_ENTRY(BASE_FW), FSR_MODULE_NAME_ENTRY(LP_BOOT), FSR_MODULE_NAME_ENTRY(BRNGUP), FSR_MODULE_NAME_ENTRY(ROM_EXT), }; static const char * hda_dsp_get_state_text(u32 code, const struct hda_dsp_msg_code *msg_code, size_t array_size) { int i; for (i = 0; i < array_size; i++) { if (code == msg_code[i].code) return msg_code[i].text; } return NULL; } void hda_dsp_get_state(struct snd_sof_dev *sdev, const char *level) { const struct sof_intel_dsp_desc *chip = get_chip_info(sdev->pdata); const char *state_text, *error_text, *module_text; u32 fsr, state, wait_state, module, error_code; fsr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, chip->rom_status_reg); state = FSR_TO_STATE_CODE(fsr); wait_state = FSR_TO_WAIT_STATE_CODE(fsr); module = FSR_TO_MODULE_CODE(fsr); if (module > FSR_MOD_ROM_EXT) module_text = "unknown"; else module_text = fsr_module_names[module]; if (module == FSR_MOD_BRNGUP) { state_text = hda_dsp_get_state_text(state, fsr_bringup_state_names, ARRAY_SIZE(fsr_bringup_state_names)); } else { if (chip->hw_ip_version < SOF_INTEL_ACE_1_0) state_text = hda_dsp_get_state_text(state, cavs_fsr_rom_state_names, ARRAY_SIZE(cavs_fsr_rom_state_names)); else state_text = hda_dsp_get_state_text(state, ace_fsr_rom_state_names, ARRAY_SIZE(ace_fsr_rom_state_names)); } /* not for us, must be generic sof message */ if (!state_text) { dev_printk(level, sdev->dev, "%#010x: unknown ROM status value\n", fsr); return; } if (wait_state) { const char *wait_state_text; wait_state_text = hda_dsp_get_state_text(wait_state, fsr_wait_state_names, ARRAY_SIZE(fsr_wait_state_names)); if (!wait_state_text) wait_state_text = "unknown"; dev_printk(level, sdev->dev, "%#010x: module: %s, state: %s, waiting for: %s, %s\n", fsr, module_text, state_text, wait_state_text, fsr & FSR_HALTED ? "not running" : "running"); } else { dev_printk(level, sdev->dev, "%#010x: module: %s, state: %s, %s\n", fsr, module_text, state_text, fsr & FSR_HALTED ? "not running" : "running"); } error_code = snd_sof_dsp_read(sdev, HDA_DSP_BAR, chip->rom_status_reg + 4); if (!error_code) return; error_text = hda_dsp_get_state_text(error_code, hda_dsp_rom_fw_error_texts, ARRAY_SIZE(hda_dsp_rom_fw_error_texts)); if (!error_text) error_text = "unknown"; if (state == FSR_STATE_FW_ENTERED) dev_printk(level, sdev->dev, "status code: %#x (%s)\n", error_code, error_text); else dev_printk(level, sdev->dev, "error code: %#x (%s)\n", error_code, error_text); } EXPORT_SYMBOL_NS(hda_dsp_get_state, SND_SOC_SOF_INTEL_HDA_COMMON); static void hda_dsp_get_registers(struct snd_sof_dev *sdev, struct sof_ipc_dsp_oops_xtensa *xoops, struct sof_ipc_panic_info *panic_info, u32 *stack, size_t stack_words) { u32 offset = sdev->dsp_oops_offset; /* first read registers */ sof_mailbox_read(sdev, offset, xoops, sizeof(*xoops)); /* note: variable AR register array is not read */ /* then get panic info */ if (xoops->arch_hdr.totalsize > EXCEPT_MAX_HDR_SIZE) { dev_err(sdev->dev, "invalid header size 0x%x. FW oops is bogus\n", xoops->arch_hdr.totalsize); return; } offset += xoops->arch_hdr.totalsize; sof_block_read(sdev, sdev->mmio_bar, offset, panic_info, sizeof(*panic_info)); /* then get the stack */ offset += sizeof(*panic_info); sof_block_read(sdev, sdev->mmio_bar, offset, stack, stack_words * sizeof(u32)); } /* dump the first 8 dwords representing the extended ROM status */ void hda_dsp_dump_ext_rom_status(struct snd_sof_dev *sdev, const char *level, u32 flags) { const struct sof_intel_dsp_desc *chip; char msg[128]; int len = 0; u32 value; int i; chip = get_chip_info(sdev->pdata); for (i = 0; i < HDA_EXT_ROM_STATUS_SIZE; i++) { value = snd_sof_dsp_read(sdev, HDA_DSP_BAR, chip->rom_status_reg + i * 0x4); len += scnprintf(msg + len, sizeof(msg) - len, " 0x%x", value); } dev_printk(level, sdev->dev, "extended rom status: %s", msg); } void hda_dsp_dump(struct snd_sof_dev *sdev, u32 flags) { char *level = (flags & SOF_DBG_DUMP_OPTIONAL) ? KERN_DEBUG : KERN_ERR; struct sof_ipc_dsp_oops_xtensa xoops; struct sof_ipc_panic_info panic_info; u32 stack[HDA_DSP_STACK_DUMP_SIZE]; /* print ROM/FW status */ hda_dsp_get_state(sdev, level); /* The firmware register dump only available with IPC3 */ if (flags & SOF_DBG_DUMP_REGS && sdev->pdata->ipc_type == SOF_IPC_TYPE_3) { u32 status = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_SRAM_REG_FW_STATUS); u32 panic = snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_SRAM_REG_FW_TRACEP); hda_dsp_get_registers(sdev, &xoops, &panic_info, stack, HDA_DSP_STACK_DUMP_SIZE); sof_print_oops_and_stack(sdev, level, status, panic, &xoops, &panic_info, stack, HDA_DSP_STACK_DUMP_SIZE); } else { hda_dsp_dump_ext_rom_status(sdev, level, flags); } } EXPORT_SYMBOL_NS(hda_dsp_dump, SND_SOC_SOF_INTEL_HDA_COMMON);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1