Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ranjani Sridharan | 4982 | 44.54% | 47 | 36.43% |
Liam Girdwood | 3348 | 29.93% | 5 | 3.88% |
Peter Ujfalusi | 674 | 6.03% | 10 | 7.75% |
Chao Song | 600 | 5.36% | 3 | 2.33% |
Jaska Uimonen | 248 | 2.22% | 7 | 5.43% |
Pierre-Louis Bossart | 197 | 1.76% | 9 | 6.98% |
Keyon Jie | 188 | 1.68% | 5 | 3.88% |
Ajit Kumar Pandey | 174 | 1.56% | 2 | 1.55% |
Daniel Baluta | 159 | 1.42% | 5 | 3.88% |
Kuninori Morimoto | 107 | 0.96% | 3 | 2.33% |
Jyri Sarha | 98 | 0.88% | 1 | 0.78% |
Guido Roncarolo | 70 | 0.63% | 1 | 0.78% |
YC Hung | 64 | 0.57% | 1 | 0.78% |
Jaroslav Kysela | 60 | 0.54% | 1 | 0.78% |
V Sujith Kumar Reddy | 45 | 0.40% | 2 | 1.55% |
Guennadi Liakhovetski | 41 | 0.37% | 6 | 4.65% |
Bard Liao | 28 | 0.25% | 6 | 4.65% |
Vijendar Mukunda | 23 | 0.21% | 1 | 0.78% |
Christophe Jaillet | 18 | 0.16% | 2 | 1.55% |
Dharageswari R | 10 | 0.09% | 1 | 0.78% |
Kai Vehmanen | 10 | 0.09% | 1 | 0.78% |
Karol Trzcinski | 8 | 0.07% | 1 | 0.78% |
Kamil Duljas | 7 | 0.06% | 1 | 0.78% |
Yihao Han | 7 | 0.06% | 1 | 0.78% |
Yu Liao | 7 | 0.06% | 1 | 0.78% |
Venkata Prasad Potturu | 4 | 0.04% | 2 | 1.55% |
Chen-Yu Tsai | 4 | 0.04% | 1 | 0.78% |
Zhu Yingjiang | 3 | 0.03% | 1 | 0.78% |
Yong Zhi | 1 | 0.01% | 1 | 0.78% |
Dragos Tarcatu | 1 | 0.01% | 1 | 0.78% |
Total | 11186 | 129 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) // // This file is provided under a dual BSD/GPLv2 license. When using or // redistributing this file, you may do so under either license. // // Copyright(c) 2018 Intel Corporation // // Author: Liam Girdwood <liam.r.girdwood@linux.intel.com> // #include <linux/bits.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/firmware.h> #include <linux/workqueue.h> #include <sound/tlv.h> #include <uapi/sound/sof/tokens.h> #include "sof-priv.h" #include "sof-audio.h" #include "ops.h" #define COMP_ID_UNASSIGNED 0xffffffff /* * Constants used in the computation of linear volume gain * from dB gain 20th root of 10 in Q1.16 fixed-point notation */ #define VOL_TWENTIETH_ROOT_OF_TEN 73533 /* 40th root of 10 in Q1.16 fixed-point notation*/ #define VOL_FORTIETH_ROOT_OF_TEN 69419 /* 0.5 dB step value in topology TLV */ #define VOL_HALF_DB_STEP 50 /* TLV data items */ #define TLV_MIN 0 #define TLV_STEP 1 #define TLV_MUTE 2 /** * sof_update_ipc_object - Parse multiple sets of tokens within the token array associated with the * token ID. * @scomp: pointer to SOC component * @object: target IPC struct to save the parsed values * @token_id: token ID for the token array to be searched * @tuples: pointer to the tuples array * @num_tuples: number of tuples in the tuples array * @object_size: size of the object * @token_instance_num: number of times the same @token_id needs to be parsed i.e. the function * looks for @token_instance_num of each token in the token array associated * with the @token_id */ int sof_update_ipc_object(struct snd_soc_component *scomp, void *object, enum sof_tokens token_id, struct snd_sof_tuple *tuples, int num_tuples, size_t object_size, int token_instance_num) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); const struct sof_token_info *token_list; const struct sof_topology_token *tokens; int i, j; token_list = tplg_ops ? tplg_ops->token_list : NULL; /* nothing to do if token_list is NULL */ if (!token_list) return 0; if (token_list[token_id].count < 0) { dev_err(scomp->dev, "Invalid token count for token ID: %d\n", token_id); return -EINVAL; } /* No tokens to match */ if (!token_list[token_id].count) return 0; tokens = token_list[token_id].tokens; if (!tokens) { dev_err(scomp->dev, "Invalid tokens for token id: %d\n", token_id); return -EINVAL; } for (i = 0; i < token_list[token_id].count; i++) { int offset = 0; int num_tokens_matched = 0; for (j = 0; j < num_tuples; j++) { if (tokens[i].token == tuples[j].token) { switch (tokens[i].type) { case SND_SOC_TPLG_TUPLE_TYPE_WORD: { u32 *val = (u32 *)((u8 *)object + tokens[i].offset + offset); *val = tuples[j].value.v; break; } case SND_SOC_TPLG_TUPLE_TYPE_SHORT: case SND_SOC_TPLG_TUPLE_TYPE_BOOL: { u16 *val = (u16 *)((u8 *)object + tokens[i].offset + offset); *val = (u16)tuples[j].value.v; break; } case SND_SOC_TPLG_TUPLE_TYPE_STRING: { if (!tokens[i].get_token) { dev_err(scomp->dev, "get_token not defined for token %d in %s\n", tokens[i].token, token_list[token_id].name); return -EINVAL; } tokens[i].get_token((void *)tuples[j].value.s, object, tokens[i].offset + offset); break; } default: break; } num_tokens_matched++; /* found all required sets of current token. Move to the next one */ if (!(num_tokens_matched % token_instance_num)) break; /* move to the next object */ offset += object_size; } } } return 0; } static inline int get_tlv_data(const int *p, int tlv[SOF_TLV_ITEMS]) { /* we only support dB scale TLV type at the moment */ if ((int)p[SNDRV_CTL_TLVO_TYPE] != SNDRV_CTL_TLVT_DB_SCALE) return -EINVAL; /* min value in topology tlv data is multiplied by 100 */ tlv[TLV_MIN] = (int)p[SNDRV_CTL_TLVO_DB_SCALE_MIN] / 100; /* volume steps */ tlv[TLV_STEP] = (int)(p[SNDRV_CTL_TLVO_DB_SCALE_MUTE_AND_STEP] & TLV_DB_SCALE_MASK); /* mute ON/OFF */ if ((p[SNDRV_CTL_TLVO_DB_SCALE_MUTE_AND_STEP] & TLV_DB_SCALE_MUTE) == 0) tlv[TLV_MUTE] = 0; else tlv[TLV_MUTE] = 1; return 0; } /* * Function to truncate an unsigned 64-bit number * by x bits and return 32-bit unsigned number. This * function also takes care of rounding while truncating */ static inline u32 vol_shift_64(u64 i, u32 x) { /* do not truncate more than 32 bits */ if (x > 32) x = 32; if (x == 0) return (u32)i; return (u32)(((i >> (x - 1)) + 1) >> 1); } /* * Function to compute a ^ exp where, * a is a fractional number represented by a fixed-point * integer with a fractional world length of "fwl" * exp is an integer * fwl is the fractional word length * Return value is a fractional number represented by a * fixed-point integer with a fractional word length of "fwl" */ static u32 vol_pow32(u32 a, int exp, u32 fwl) { int i, iter; u32 power = 1 << fwl; u64 numerator; /* if exponent is 0, return 1 */ if (exp == 0) return power; /* determine the number of iterations based on the exponent */ if (exp < 0) iter = exp * -1; else iter = exp; /* mutiply a "iter" times to compute power */ for (i = 0; i < iter; i++) { /* * Product of 2 Qx.fwl fixed-point numbers yields a Q2*x.2*fwl * Truncate product back to fwl fractional bits with rounding */ power = vol_shift_64((u64)power * a, fwl); } if (exp > 0) { /* if exp is positive, return the result */ return power; } /* if exp is negative, return the multiplicative inverse */ numerator = (u64)1 << (fwl << 1); do_div(numerator, power); return (u32)numerator; } /* * Function to calculate volume gain from TLV data. * This function can only handle gain steps that are multiples of 0.5 dB */ u32 vol_compute_gain(u32 value, int *tlv) { int dB_gain; u32 linear_gain; int f_step; /* mute volume */ if (value == 0 && tlv[TLV_MUTE]) return 0; /* * compute dB gain from tlv. tlv_step * in topology is multiplied by 100 */ dB_gain = tlv[TLV_MIN] + (value * tlv[TLV_STEP]) / 100; /* * compute linear gain represented by fixed-point * int with VOLUME_FWL fractional bits */ linear_gain = vol_pow32(VOL_TWENTIETH_ROOT_OF_TEN, dB_gain, VOLUME_FWL); /* extract the fractional part of volume step */ f_step = tlv[TLV_STEP] - (tlv[TLV_STEP] / 100); /* if volume step is an odd multiple of 0.5 dB */ if (f_step == VOL_HALF_DB_STEP && (value & 1)) linear_gain = vol_shift_64((u64)linear_gain * VOL_FORTIETH_ROOT_OF_TEN, VOLUME_FWL); return linear_gain; } /* * Set up volume table for kcontrols from tlv data * "size" specifies the number of entries in the table */ static int set_up_volume_table(struct snd_sof_control *scontrol, int tlv[SOF_TLV_ITEMS], int size) { struct snd_soc_component *scomp = scontrol->scomp; struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); if (tplg_ops && tplg_ops->control && tplg_ops->control->set_up_volume_table) return tplg_ops->control->set_up_volume_table(scontrol, tlv, size); dev_err(scomp->dev, "Mandatory op %s not set\n", __func__); return -EINVAL; } struct sof_dai_types { const char *name; enum sof_ipc_dai_type type; }; static const struct sof_dai_types sof_dais[] = { {"SSP", SOF_DAI_INTEL_SSP}, {"HDA", SOF_DAI_INTEL_HDA}, {"DMIC", SOF_DAI_INTEL_DMIC}, {"ALH", SOF_DAI_INTEL_ALH}, {"SAI", SOF_DAI_IMX_SAI}, {"ESAI", SOF_DAI_IMX_ESAI}, {"ACPBT", SOF_DAI_AMD_BT}, {"ACPSP", SOF_DAI_AMD_SP}, {"ACPDMIC", SOF_DAI_AMD_DMIC}, {"ACPHS", SOF_DAI_AMD_HS}, {"AFE", SOF_DAI_MEDIATEK_AFE}, {"ACPSP_VIRTUAL", SOF_DAI_AMD_SP_VIRTUAL}, {"ACPHS_VIRTUAL", SOF_DAI_AMD_HS_VIRTUAL}, {"MICFIL", SOF_DAI_IMX_MICFIL}, {"ACP_SDW", SOF_DAI_AMD_SDW}, }; static enum sof_ipc_dai_type find_dai(const char *name) { int i; for (i = 0; i < ARRAY_SIZE(sof_dais); i++) { if (strcmp(name, sof_dais[i].name) == 0) return sof_dais[i].type; } return SOF_DAI_INTEL_NONE; } /* * Supported Frame format types and lookup, add new ones to end of list. */ struct sof_frame_types { const char *name; enum sof_ipc_frame frame; }; static const struct sof_frame_types sof_frames[] = { {"s16le", SOF_IPC_FRAME_S16_LE}, {"s24le", SOF_IPC_FRAME_S24_4LE}, {"s32le", SOF_IPC_FRAME_S32_LE}, {"float", SOF_IPC_FRAME_FLOAT}, }; static enum sof_ipc_frame find_format(const char *name) { int i; for (i = 0; i < ARRAY_SIZE(sof_frames); i++) { if (strcmp(name, sof_frames[i].name) == 0) return sof_frames[i].frame; } /* use s32le if nothing is specified */ return SOF_IPC_FRAME_S32_LE; } int get_token_u32(void *elem, void *object, u32 offset) { struct snd_soc_tplg_vendor_value_elem *velem = elem; u32 *val = (u32 *)((u8 *)object + offset); *val = le32_to_cpu(velem->value); return 0; } int get_token_u16(void *elem, void *object, u32 offset) { struct snd_soc_tplg_vendor_value_elem *velem = elem; u16 *val = (u16 *)((u8 *)object + offset); *val = (u16)le32_to_cpu(velem->value); return 0; } int get_token_uuid(void *elem, void *object, u32 offset) { struct snd_soc_tplg_vendor_uuid_elem *velem = elem; u8 *dst = (u8 *)object + offset; memcpy(dst, velem->uuid, UUID_SIZE); return 0; } /* * The string gets from topology will be stored in heap, the owner only * holds a char* member point to the heap. */ int get_token_string(void *elem, void *object, u32 offset) { /* "dst" here points to the char* member of the owner */ char **dst = (char **)((u8 *)object + offset); *dst = kstrdup(elem, GFP_KERNEL); if (!*dst) return -ENOMEM; return 0; }; int get_token_comp_format(void *elem, void *object, u32 offset) { u32 *val = (u32 *)((u8 *)object + offset); *val = find_format((const char *)elem); return 0; } int get_token_dai_type(void *elem, void *object, u32 offset) { u32 *val = (u32 *)((u8 *)object + offset); *val = find_dai((const char *)elem); return 0; } /* PCM */ static const struct sof_topology_token stream_tokens[] = { {SOF_TKN_STREAM_PLAYBACK_COMPATIBLE_D0I3, SND_SOC_TPLG_TUPLE_TYPE_BOOL, get_token_u16, offsetof(struct snd_sof_pcm, stream[0].d0i3_compatible)}, {SOF_TKN_STREAM_CAPTURE_COMPATIBLE_D0I3, SND_SOC_TPLG_TUPLE_TYPE_BOOL, get_token_u16, offsetof(struct snd_sof_pcm, stream[1].d0i3_compatible)}, }; /* Leds */ static const struct sof_topology_token led_tokens[] = { {SOF_TKN_MUTE_LED_USE, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct snd_sof_led_control, use_led)}, {SOF_TKN_MUTE_LED_DIRECTION, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct snd_sof_led_control, direction)}, }; static const struct sof_topology_token comp_pin_tokens[] = { {SOF_TKN_COMP_NUM_INPUT_PINS, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct snd_sof_widget, num_input_pins)}, {SOF_TKN_COMP_NUM_OUTPUT_PINS, SND_SOC_TPLG_TUPLE_TYPE_WORD, get_token_u32, offsetof(struct snd_sof_widget, num_output_pins)}, }; static const struct sof_topology_token comp_input_pin_binding_tokens[] = { {SOF_TKN_COMP_INPUT_PIN_BINDING_WNAME, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_string, 0}, }; static const struct sof_topology_token comp_output_pin_binding_tokens[] = { {SOF_TKN_COMP_OUTPUT_PIN_BINDING_WNAME, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_string, 0}, }; /** * sof_parse_uuid_tokens - Parse multiple sets of UUID tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @offset: offset within the object pointer * @tokens: array of struct sof_topology_token containing the tokens to be matched * @num_tokens: number of tokens in tokens array * @array: source pointer to consecutive vendor arrays in topology * * This function parses multiple sets of string type tokens in vendor arrays */ static int sof_parse_uuid_tokens(struct snd_soc_component *scomp, void *object, size_t offset, const struct sof_topology_token *tokens, int num_tokens, struct snd_soc_tplg_vendor_array *array) { struct snd_soc_tplg_vendor_uuid_elem *elem; int found = 0; int i, j; /* parse element by element */ for (i = 0; i < le32_to_cpu(array->num_elems); i++) { elem = &array->uuid[i]; /* search for token */ for (j = 0; j < num_tokens; j++) { /* match token type */ if (tokens[j].type != SND_SOC_TPLG_TUPLE_TYPE_UUID) continue; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; /* matched - now load token */ tokens[j].get_token(elem, object, offset + tokens[j].offset); found++; } } return found; } /** * sof_copy_tuples - Parse tokens and copy them to the @tuples array * @sdev: pointer to struct snd_sof_dev * @array: source pointer to consecutive vendor arrays in topology * @array_size: size of @array * @token_id: Token ID associated with a token array * @token_instance_num: number of times the same @token_id needs to be parsed i.e. the function * looks for @token_instance_num of each token in the token array associated * with the @token_id * @tuples: tuples array to copy the matched tuples to * @tuples_size: size of @tuples * @num_copied_tuples: pointer to the number of copied tuples in the tuples array * */ static int sof_copy_tuples(struct snd_sof_dev *sdev, struct snd_soc_tplg_vendor_array *array, int array_size, u32 token_id, int token_instance_num, struct snd_sof_tuple *tuples, int tuples_size, int *num_copied_tuples) { const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); const struct sof_token_info *token_list; const struct sof_topology_token *tokens; int found = 0; int num_tokens, asize; int i, j; token_list = tplg_ops ? tplg_ops->token_list : NULL; /* nothing to do if token_list is NULL */ if (!token_list) return 0; if (!tuples || !num_copied_tuples) { dev_err(sdev->dev, "Invalid tuples array\n"); return -EINVAL; } tokens = token_list[token_id].tokens; num_tokens = token_list[token_id].count; if (!tokens) { dev_err(sdev->dev, "No token array defined for token ID: %d\n", token_id); return -EINVAL; } /* check if there's space in the tuples array for new tokens */ if (*num_copied_tuples >= tuples_size) { dev_err(sdev->dev, "No space in tuples array for new tokens from %s", token_list[token_id].name); return -EINVAL; } while (array_size > 0 && found < num_tokens * token_instance_num) { asize = le32_to_cpu(array->size); /* validate asize */ if (asize < 0) { dev_err(sdev->dev, "Invalid array size 0x%x\n", asize); return -EINVAL; } /* make sure there is enough data before parsing */ array_size -= asize; if (array_size < 0) { dev_err(sdev->dev, "Invalid array size 0x%x\n", asize); return -EINVAL; } /* parse element by element */ for (i = 0; i < le32_to_cpu(array->num_elems); i++) { /* search for token */ for (j = 0; j < num_tokens; j++) { /* match token type */ if (!(tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_WORD || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_SHORT || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BYTE || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BOOL || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_STRING)) continue; if (tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_STRING) { struct snd_soc_tplg_vendor_string_elem *elem; elem = &array->string[i]; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; tuples[*num_copied_tuples].token = tokens[j].token; tuples[*num_copied_tuples].value.s = elem->string; } else { struct snd_soc_tplg_vendor_value_elem *elem; elem = &array->value[i]; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; tuples[*num_copied_tuples].token = tokens[j].token; tuples[*num_copied_tuples].value.v = le32_to_cpu(elem->value); } found++; (*num_copied_tuples)++; /* stop if there's no space for any more new tuples */ if (*num_copied_tuples == tuples_size) return 0; } /* stop when we've found the required token instances */ if (found == num_tokens * token_instance_num) return 0; } /* next array */ array = (struct snd_soc_tplg_vendor_array *)((u8 *)array + asize); } return 0; } /** * sof_parse_string_tokens - Parse multiple sets of tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @offset: offset within the object pointer * @tokens: array of struct sof_topology_token containing the tokens to be matched * @num_tokens: number of tokens in tokens array * @array: source pointer to consecutive vendor arrays in topology * * This function parses multiple sets of string type tokens in vendor arrays */ static int sof_parse_string_tokens(struct snd_soc_component *scomp, void *object, int offset, const struct sof_topology_token *tokens, int num_tokens, struct snd_soc_tplg_vendor_array *array) { struct snd_soc_tplg_vendor_string_elem *elem; int found = 0; int i, j, ret; /* parse element by element */ for (i = 0; i < le32_to_cpu(array->num_elems); i++) { elem = &array->string[i]; /* search for token */ for (j = 0; j < num_tokens; j++) { /* match token type */ if (tokens[j].type != SND_SOC_TPLG_TUPLE_TYPE_STRING) continue; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; /* matched - now load token */ ret = tokens[j].get_token(elem->string, object, offset + tokens[j].offset); if (ret < 0) return ret; found++; } } return found; } /** * sof_parse_word_tokens - Parse multiple sets of tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @offset: offset within the object pointer * @tokens: array of struct sof_topology_token containing the tokens to be matched * @num_tokens: number of tokens in tokens array * @array: source pointer to consecutive vendor arrays in topology * * This function parses multiple sets of word type tokens in vendor arrays */ static int sof_parse_word_tokens(struct snd_soc_component *scomp, void *object, int offset, const struct sof_topology_token *tokens, int num_tokens, struct snd_soc_tplg_vendor_array *array) { struct snd_soc_tplg_vendor_value_elem *elem; int found = 0; int i, j; /* parse element by element */ for (i = 0; i < le32_to_cpu(array->num_elems); i++) { elem = &array->value[i]; /* search for token */ for (j = 0; j < num_tokens; j++) { /* match token type */ if (!(tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_WORD || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_SHORT || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BYTE || tokens[j].type == SND_SOC_TPLG_TUPLE_TYPE_BOOL)) continue; /* match token id */ if (tokens[j].token != le32_to_cpu(elem->token)) continue; /* load token */ tokens[j].get_token(elem, object, offset + tokens[j].offset); found++; } } return found; } /** * sof_parse_token_sets - Parse multiple sets of tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @tokens: token definition array describing what tokens to parse * @count: number of tokens in definition array * @array: source pointer to consecutive vendor arrays in topology * @array_size: total size of @array * @token_instance_num: number of times the same tokens needs to be parsed i.e. the function * looks for @token_instance_num of each token in the @tokens * @object_size: offset to next target ipc struct with multiple sets * * This function parses multiple sets of tokens in vendor arrays into * consecutive ipc structs. */ static int sof_parse_token_sets(struct snd_soc_component *scomp, void *object, const struct sof_topology_token *tokens, int count, struct snd_soc_tplg_vendor_array *array, int array_size, int token_instance_num, size_t object_size) { size_t offset = 0; int found = 0; int total = 0; int asize; int ret; while (array_size > 0 && total < count * token_instance_num) { asize = le32_to_cpu(array->size); /* validate asize */ if (asize < 0) { /* FIXME: A zero-size array makes no sense */ dev_err(scomp->dev, "error: invalid array size 0x%x\n", asize); return -EINVAL; } /* make sure there is enough data before parsing */ array_size -= asize; if (array_size < 0) { dev_err(scomp->dev, "error: invalid array size 0x%x\n", asize); return -EINVAL; } /* call correct parser depending on type */ switch (le32_to_cpu(array->type)) { case SND_SOC_TPLG_TUPLE_TYPE_UUID: found += sof_parse_uuid_tokens(scomp, object, offset, tokens, count, array); break; case SND_SOC_TPLG_TUPLE_TYPE_STRING: ret = sof_parse_string_tokens(scomp, object, offset, tokens, count, array); if (ret < 0) { dev_err(scomp->dev, "error: no memory to copy string token\n"); return ret; } found += ret; break; case SND_SOC_TPLG_TUPLE_TYPE_BOOL: case SND_SOC_TPLG_TUPLE_TYPE_BYTE: case SND_SOC_TPLG_TUPLE_TYPE_WORD: case SND_SOC_TPLG_TUPLE_TYPE_SHORT: found += sof_parse_word_tokens(scomp, object, offset, tokens, count, array); break; default: dev_err(scomp->dev, "error: unknown token type %d\n", array->type); return -EINVAL; } /* next array */ array = (struct snd_soc_tplg_vendor_array *)((u8 *)array + asize); /* move to next target struct */ if (found >= count) { offset += object_size; total += found; found = 0; } } return 0; } /** * sof_parse_tokens - Parse one set of tokens * @scomp: pointer to soc component * @object: target ipc struct for parsed values * @tokens: token definition array describing what tokens to parse * @num_tokens: number of tokens in definition array * @array: source pointer to consecutive vendor arrays in topology * @array_size: total size of @array * * This function parses a single set of tokens in vendor arrays into * consecutive ipc structs. */ static int sof_parse_tokens(struct snd_soc_component *scomp, void *object, const struct sof_topology_token *tokens, int num_tokens, struct snd_soc_tplg_vendor_array *array, int array_size) { /* * sof_parse_tokens is used when topology contains only a single set of * identical tuples arrays. So additional parameters to * sof_parse_token_sets are sets = 1 (only 1 set) and * object_size = 0 (irrelevant). */ return sof_parse_token_sets(scomp, object, tokens, num_tokens, array, array_size, 1, 0); } /* * Standard Kcontrols. */ static int sof_control_load_volume(struct snd_soc_component *scomp, struct snd_sof_control *scontrol, struct snd_kcontrol_new *kc, struct snd_soc_tplg_ctl_hdr *hdr) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_mixer_control *mc = container_of(hdr, struct snd_soc_tplg_mixer_control, hdr); int tlv[SOF_TLV_ITEMS]; unsigned int mask; int ret; /* validate topology data */ if (le32_to_cpu(mc->num_channels) > SND_SOC_TPLG_MAX_CHAN) return -EINVAL; /* * If control has more than 2 channels we need to override the info. This is because even if * ASoC layer has defined topology's max channel count to SND_SOC_TPLG_MAX_CHAN = 8, the * pre-defined dapm control types (and related functions) creating the actual control * restrict the channels only to mono or stereo. */ if (le32_to_cpu(mc->num_channels) > 2) kc->info = snd_sof_volume_info; scontrol->comp_id = sdev->next_comp_id; scontrol->min_volume_step = le32_to_cpu(mc->min); scontrol->max_volume_step = le32_to_cpu(mc->max); scontrol->num_channels = le32_to_cpu(mc->num_channels); scontrol->max = le32_to_cpu(mc->max); if (le32_to_cpu(mc->max) == 1) goto skip; /* extract tlv data */ if (!kc->tlv.p || get_tlv_data(kc->tlv.p, tlv) < 0) { dev_err(scomp->dev, "error: invalid TLV data\n"); return -EINVAL; } /* set up volume table */ ret = set_up_volume_table(scontrol, tlv, le32_to_cpu(mc->max) + 1); if (ret < 0) { dev_err(scomp->dev, "error: setting up volume table\n"); return ret; } skip: /* set up possible led control from mixer private data */ ret = sof_parse_tokens(scomp, &scontrol->led_ctl, led_tokens, ARRAY_SIZE(led_tokens), mc->priv.array, le32_to_cpu(mc->priv.size)); if (ret != 0) { dev_err(scomp->dev, "error: parse led tokens failed %d\n", le32_to_cpu(mc->priv.size)); goto err; } if (scontrol->led_ctl.use_led) { mask = scontrol->led_ctl.direction ? SNDRV_CTL_ELEM_ACCESS_MIC_LED : SNDRV_CTL_ELEM_ACCESS_SPK_LED; scontrol->access &= ~SNDRV_CTL_ELEM_ACCESS_LED_MASK; scontrol->access |= mask; kc->access &= ~SNDRV_CTL_ELEM_ACCESS_LED_MASK; kc->access |= mask; sdev->led_present = true; } dev_dbg(scomp->dev, "tplg: load kcontrol index %d chans %d\n", scontrol->comp_id, scontrol->num_channels); return 0; err: if (le32_to_cpu(mc->max) > 1) kfree(scontrol->volume_table); return ret; } static int sof_control_load_enum(struct snd_soc_component *scomp, struct snd_sof_control *scontrol, struct snd_kcontrol_new *kc, struct snd_soc_tplg_ctl_hdr *hdr) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_enum_control *ec = container_of(hdr, struct snd_soc_tplg_enum_control, hdr); /* validate topology data */ if (le32_to_cpu(ec->num_channels) > SND_SOC_TPLG_MAX_CHAN) return -EINVAL; scontrol->comp_id = sdev->next_comp_id; scontrol->num_channels = le32_to_cpu(ec->num_channels); dev_dbg(scomp->dev, "tplg: load kcontrol index %d chans %d comp_id %d\n", scontrol->comp_id, scontrol->num_channels, scontrol->comp_id); return 0; } static int sof_control_load_bytes(struct snd_soc_component *scomp, struct snd_sof_control *scontrol, struct snd_kcontrol_new *kc, struct snd_soc_tplg_ctl_hdr *hdr) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_bytes_control *control = container_of(hdr, struct snd_soc_tplg_bytes_control, hdr); struct soc_bytes_ext *sbe = (struct soc_bytes_ext *)kc->private_value; size_t priv_size = le32_to_cpu(control->priv.size); scontrol->max_size = sbe->max; scontrol->comp_id = sdev->next_comp_id; dev_dbg(scomp->dev, "tplg: load kcontrol index %d\n", scontrol->comp_id); /* copy the private data */ if (priv_size > 0) { scontrol->priv = kmemdup(control->priv.data, priv_size, GFP_KERNEL); if (!scontrol->priv) return -ENOMEM; scontrol->priv_size = priv_size; } return 0; } /* external kcontrol init - used for any driver specific init */ static int sof_control_load(struct snd_soc_component *scomp, int index, struct snd_kcontrol_new *kc, struct snd_soc_tplg_ctl_hdr *hdr) { struct soc_mixer_control *sm; struct soc_bytes_ext *sbe; struct soc_enum *se; struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_dobj *dobj; struct snd_sof_control *scontrol; int ret; dev_dbg(scomp->dev, "tplg: load control type %d name : %s\n", hdr->type, hdr->name); scontrol = kzalloc(sizeof(*scontrol), GFP_KERNEL); if (!scontrol) return -ENOMEM; scontrol->name = kstrdup(hdr->name, GFP_KERNEL); if (!scontrol->name) { kfree(scontrol); return -ENOMEM; } scontrol->scomp = scomp; scontrol->access = kc->access; scontrol->info_type = le32_to_cpu(hdr->ops.info); scontrol->index = kc->index; switch (le32_to_cpu(hdr->ops.info)) { case SND_SOC_TPLG_CTL_VOLSW: case SND_SOC_TPLG_CTL_VOLSW_SX: case SND_SOC_TPLG_CTL_VOLSW_XR_SX: sm = (struct soc_mixer_control *)kc->private_value; dobj = &sm->dobj; ret = sof_control_load_volume(scomp, scontrol, kc, hdr); break; case SND_SOC_TPLG_CTL_BYTES: sbe = (struct soc_bytes_ext *)kc->private_value; dobj = &sbe->dobj; ret = sof_control_load_bytes(scomp, scontrol, kc, hdr); break; case SND_SOC_TPLG_CTL_ENUM: case SND_SOC_TPLG_CTL_ENUM_VALUE: se = (struct soc_enum *)kc->private_value; dobj = &se->dobj; ret = sof_control_load_enum(scomp, scontrol, kc, hdr); break; case SND_SOC_TPLG_CTL_RANGE: case SND_SOC_TPLG_CTL_STROBE: case SND_SOC_TPLG_DAPM_CTL_VOLSW: case SND_SOC_TPLG_DAPM_CTL_ENUM_DOUBLE: case SND_SOC_TPLG_DAPM_CTL_ENUM_VIRT: case SND_SOC_TPLG_DAPM_CTL_ENUM_VALUE: case SND_SOC_TPLG_DAPM_CTL_PIN: default: dev_warn(scomp->dev, "control type not supported %d:%d:%d\n", hdr->ops.get, hdr->ops.put, hdr->ops.info); kfree(scontrol->name); kfree(scontrol); return 0; } if (ret < 0) { kfree(scontrol->name); kfree(scontrol); return ret; } scontrol->led_ctl.led_value = -1; dobj->private = scontrol; list_add(&scontrol->list, &sdev->kcontrol_list); return 0; } static int sof_control_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); struct snd_sof_control *scontrol = dobj->private; int ret = 0; dev_dbg(scomp->dev, "tplg: unload control name : %s\n", scontrol->name); if (tplg_ops && tplg_ops->control_free) { ret = tplg_ops->control_free(sdev, scontrol); if (ret < 0) dev_err(scomp->dev, "failed to free control: %s\n", scontrol->name); } /* free all data before returning in case of error too */ kfree(scontrol->ipc_control_data); kfree(scontrol->priv); kfree(scontrol->name); list_del(&scontrol->list); kfree(scontrol); return ret; } /* * DAI Topology */ static int sof_connect_dai_widget(struct snd_soc_component *scomp, struct snd_soc_dapm_widget *w, struct snd_soc_tplg_dapm_widget *tw, struct snd_sof_dai *dai) { struct snd_soc_card *card = scomp->card; struct snd_soc_pcm_runtime *rtd; struct snd_soc_dai *cpu_dai; int stream; int i; if (!w->sname) { dev_err(scomp->dev, "Widget %s does not have stream\n", w->name); return -EINVAL; } if (w->id == snd_soc_dapm_dai_out) stream = SNDRV_PCM_STREAM_CAPTURE; else if (w->id == snd_soc_dapm_dai_in) stream = SNDRV_PCM_STREAM_PLAYBACK; else goto end; list_for_each_entry(rtd, &card->rtd_list, list) { /* does stream match DAI link ? */ if (!rtd->dai_link->stream_name || !strstr(rtd->dai_link->stream_name, w->sname)) continue; for_each_rtd_cpu_dais(rtd, i, cpu_dai) { /* * Please create DAI widget in the right order * to ensure BE will connect to the right DAI * widget. */ if (!snd_soc_dai_get_widget(cpu_dai, stream)) { snd_soc_dai_set_widget(cpu_dai, stream, w); break; } } if (i == rtd->dai_link->num_cpus) { dev_err(scomp->dev, "error: can't find BE for DAI %s\n", w->name); return -EINVAL; } dai->name = rtd->dai_link->name; dev_dbg(scomp->dev, "tplg: connected widget %s -> DAI link %s\n", w->name, rtd->dai_link->name); } end: /* check we have a connection */ if (!dai->name) { dev_err(scomp->dev, "error: can't connect DAI %s stream %s\n", w->name, w->sname); return -EINVAL; } return 0; } static void sof_disconnect_dai_widget(struct snd_soc_component *scomp, struct snd_soc_dapm_widget *w) { struct snd_soc_card *card = scomp->card; struct snd_soc_pcm_runtime *rtd; const char *sname = w->sname; struct snd_soc_dai *cpu_dai; int i, stream; if (!sname) return; if (w->id == snd_soc_dapm_dai_out) stream = SNDRV_PCM_STREAM_CAPTURE; else if (w->id == snd_soc_dapm_dai_in) stream = SNDRV_PCM_STREAM_PLAYBACK; else return; list_for_each_entry(rtd, &card->rtd_list, list) { /* does stream match DAI link ? */ if (!rtd->dai_link->stream_name || !strstr(rtd->dai_link->stream_name, sname)) continue; for_each_rtd_cpu_dais(rtd, i, cpu_dai) if (snd_soc_dai_get_widget(cpu_dai, stream) == w) { snd_soc_dai_set_widget(cpu_dai, stream, NULL); break; } } } /* bind PCM ID to host component ID */ static int spcm_bind(struct snd_soc_component *scomp, struct snd_sof_pcm *spcm, int dir) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_sof_widget *host_widget; if (sdev->dspless_mode_selected) return 0; host_widget = snd_sof_find_swidget_sname(scomp, spcm->pcm.caps[dir].name, dir); if (!host_widget) { dev_err(scomp->dev, "can't find host comp to bind pcm\n"); return -EINVAL; } spcm->stream[dir].comp_id = host_widget->comp_id; return 0; } static int sof_get_token_value(u32 token_id, struct snd_sof_tuple *tuples, int num_tuples) { int i; if (!tuples) return -EINVAL; for (i = 0; i < num_tuples; i++) { if (tuples[i].token == token_id) return tuples[i].value.v; } return -EINVAL; } static int sof_widget_parse_tokens(struct snd_soc_component *scomp, struct snd_sof_widget *swidget, struct snd_soc_tplg_dapm_widget *tw, enum sof_tokens *object_token_list, int count) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); struct snd_soc_tplg_private *private = &tw->priv; const struct sof_token_info *token_list; int num_tuples = 0; int ret, i; token_list = tplg_ops ? tplg_ops->token_list : NULL; /* nothing to do if token_list is NULL */ if (!token_list) return 0; if (count > 0 && !object_token_list) { dev_err(scomp->dev, "No token list for widget %s\n", swidget->widget->name); return -EINVAL; } /* calculate max size of tuples array */ for (i = 0; i < count; i++) num_tuples += token_list[object_token_list[i]].count; /* allocate memory for tuples array */ swidget->tuples = kcalloc(num_tuples, sizeof(*swidget->tuples), GFP_KERNEL); if (!swidget->tuples) return -ENOMEM; /* parse token list for widget */ for (i = 0; i < count; i++) { int num_sets = 1; if (object_token_list[i] >= SOF_TOKEN_COUNT) { dev_err(scomp->dev, "Invalid token id %d for widget %s\n", object_token_list[i], swidget->widget->name); ret = -EINVAL; goto err; } switch (object_token_list[i]) { case SOF_COMP_EXT_TOKENS: /* parse and save UUID in swidget */ ret = sof_parse_tokens(scomp, swidget, token_list[object_token_list[i]].tokens, token_list[object_token_list[i]].count, private->array, le32_to_cpu(private->size)); if (ret < 0) { dev_err(scomp->dev, "Failed parsing %s for widget %s\n", token_list[object_token_list[i]].name, swidget->widget->name); goto err; } continue; case SOF_IN_AUDIO_FORMAT_TOKENS: num_sets = sof_get_token_value(SOF_TKN_COMP_NUM_INPUT_AUDIO_FORMATS, swidget->tuples, swidget->num_tuples); if (num_sets < 0) { dev_err(sdev->dev, "Invalid input audio format count for %s\n", swidget->widget->name); ret = num_sets; goto err; } break; case SOF_OUT_AUDIO_FORMAT_TOKENS: num_sets = sof_get_token_value(SOF_TKN_COMP_NUM_OUTPUT_AUDIO_FORMATS, swidget->tuples, swidget->num_tuples); if (num_sets < 0) { dev_err(sdev->dev, "Invalid output audio format count for %s\n", swidget->widget->name); ret = num_sets; goto err; } break; default: break; } if (num_sets > 1) { struct snd_sof_tuple *new_tuples; num_tuples += token_list[object_token_list[i]].count * (num_sets - 1); new_tuples = krealloc(swidget->tuples, sizeof(*new_tuples) * num_tuples, GFP_KERNEL); if (!new_tuples) { ret = -ENOMEM; goto err; } swidget->tuples = new_tuples; } /* copy one set of tuples per token ID into swidget->tuples */ ret = sof_copy_tuples(sdev, private->array, le32_to_cpu(private->size), object_token_list[i], num_sets, swidget->tuples, num_tuples, &swidget->num_tuples); if (ret < 0) { dev_err(scomp->dev, "Failed parsing %s for widget %s err: %d\n", token_list[object_token_list[i]].name, swidget->widget->name, ret); goto err; } } return 0; err: kfree(swidget->tuples); return ret; } static void sof_free_pin_binding(struct snd_sof_widget *swidget, bool pin_type) { char **pin_binding; u32 num_pins; int i; if (pin_type == SOF_PIN_TYPE_INPUT) { pin_binding = swidget->input_pin_binding; num_pins = swidget->num_input_pins; } else { pin_binding = swidget->output_pin_binding; num_pins = swidget->num_output_pins; } if (pin_binding) { for (i = 0; i < num_pins; i++) kfree(pin_binding[i]); } kfree(pin_binding); } static int sof_parse_pin_binding(struct snd_sof_widget *swidget, struct snd_soc_tplg_private *priv, bool pin_type) { const struct sof_topology_token *pin_binding_token; char *pin_binding[SOF_WIDGET_MAX_NUM_PINS]; int token_count; u32 num_pins; char **pb; int ret; int i; if (pin_type == SOF_PIN_TYPE_INPUT) { num_pins = swidget->num_input_pins; pin_binding_token = comp_input_pin_binding_tokens; token_count = ARRAY_SIZE(comp_input_pin_binding_tokens); } else { num_pins = swidget->num_output_pins; pin_binding_token = comp_output_pin_binding_tokens; token_count = ARRAY_SIZE(comp_output_pin_binding_tokens); } memset(pin_binding, 0, SOF_WIDGET_MAX_NUM_PINS * sizeof(char *)); ret = sof_parse_token_sets(swidget->scomp, pin_binding, pin_binding_token, token_count, priv->array, le32_to_cpu(priv->size), num_pins, sizeof(char *)); if (ret < 0) goto err; /* copy pin binding array to swidget only if it is defined in topology */ if (pin_binding[0]) { pb = kmemdup(pin_binding, num_pins * sizeof(char *), GFP_KERNEL); if (!pb) { ret = -ENOMEM; goto err; } if (pin_type == SOF_PIN_TYPE_INPUT) swidget->input_pin_binding = pb; else swidget->output_pin_binding = pb; } return 0; err: for (i = 0; i < num_pins; i++) kfree(pin_binding[i]); return ret; } static int get_w_no_wname_in_long_name(void *elem, void *object, u32 offset) { struct snd_soc_tplg_vendor_value_elem *velem = elem; struct snd_soc_dapm_widget *w = object; w->no_wname_in_kcontrol_name = !!le32_to_cpu(velem->value); return 0; } static const struct sof_topology_token dapm_widget_tokens[] = { {SOF_TKN_COMP_NO_WNAME_IN_KCONTROL_NAME, SND_SOC_TPLG_TUPLE_TYPE_BOOL, get_w_no_wname_in_long_name, 0} }; /* external widget init - used for any driver specific init */ static int sof_widget_ready(struct snd_soc_component *scomp, int index, struct snd_soc_dapm_widget *w, struct snd_soc_tplg_dapm_widget *tw) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); const struct sof_ipc_tplg_widget_ops *widget_ops; struct snd_soc_tplg_private *priv = &tw->priv; enum sof_tokens *token_list = NULL; struct snd_sof_widget *swidget; struct snd_sof_dai *dai; int token_list_size = 0; int ret = 0; swidget = kzalloc(sizeof(*swidget), GFP_KERNEL); if (!swidget) return -ENOMEM; swidget->scomp = scomp; swidget->widget = w; swidget->comp_id = sdev->next_comp_id++; swidget->id = w->id; swidget->pipeline_id = index; swidget->private = NULL; mutex_init(&swidget->setup_mutex); ida_init(&swidget->output_queue_ida); ida_init(&swidget->input_queue_ida); ret = sof_parse_tokens(scomp, w, dapm_widget_tokens, ARRAY_SIZE(dapm_widget_tokens), priv->array, le32_to_cpu(priv->size)); if (ret < 0) { dev_err(scomp->dev, "failed to parse dapm widget tokens for %s\n", w->name); goto widget_free; } ret = sof_parse_tokens(scomp, swidget, comp_pin_tokens, ARRAY_SIZE(comp_pin_tokens), priv->array, le32_to_cpu(priv->size)); if (ret < 0) { dev_err(scomp->dev, "failed to parse component pin tokens for %s\n", w->name); goto widget_free; } if (swidget->num_input_pins > SOF_WIDGET_MAX_NUM_PINS || swidget->num_output_pins > SOF_WIDGET_MAX_NUM_PINS) { dev_err(scomp->dev, "invalid pins for %s: [input: %d, output: %d]\n", swidget->widget->name, swidget->num_input_pins, swidget->num_output_pins); ret = -EINVAL; goto widget_free; } if (swidget->num_input_pins > 1) { ret = sof_parse_pin_binding(swidget, priv, SOF_PIN_TYPE_INPUT); /* on parsing error, pin binding is not allocated, nothing to free. */ if (ret < 0) { dev_err(scomp->dev, "failed to parse input pin binding for %s\n", w->name); goto widget_free; } } if (swidget->num_output_pins > 1) { ret = sof_parse_pin_binding(swidget, priv, SOF_PIN_TYPE_OUTPUT); /* on parsing error, pin binding is not allocated, nothing to free. */ if (ret < 0) { dev_err(scomp->dev, "failed to parse output pin binding for %s\n", w->name); goto widget_free; } } dev_dbg(scomp->dev, "tplg: widget %d (%s) is ready [type: %d, pipe: %d, pins: %d / %d, stream: %s]\n", swidget->comp_id, w->name, swidget->id, index, swidget->num_input_pins, swidget->num_output_pins, strnlen(w->sname, SNDRV_CTL_ELEM_ID_NAME_MAXLEN) > 0 ? w->sname : "none"); widget_ops = tplg_ops ? tplg_ops->widget : NULL; if (widget_ops) { token_list = widget_ops[w->id].token_list; token_list_size = widget_ops[w->id].token_list_size; } /* handle any special case widgets */ switch (w->id) { case snd_soc_dapm_dai_in: case snd_soc_dapm_dai_out: dai = kzalloc(sizeof(*dai), GFP_KERNEL); if (!dai) { ret = -ENOMEM; goto widget_free; } ret = sof_widget_parse_tokens(scomp, swidget, tw, token_list, token_list_size); if (!ret) ret = sof_connect_dai_widget(scomp, w, tw, dai); if (ret < 0) { kfree(dai); break; } list_add(&dai->list, &sdev->dai_list); swidget->private = dai; break; case snd_soc_dapm_effect: /* check we have some tokens - we need at least process type */ if (le32_to_cpu(tw->priv.size) == 0) { dev_err(scomp->dev, "error: process tokens not found\n"); ret = -EINVAL; break; } ret = sof_widget_parse_tokens(scomp, swidget, tw, token_list, token_list_size); break; case snd_soc_dapm_pga: if (!le32_to_cpu(tw->num_kcontrols)) { dev_err(scomp->dev, "invalid kcontrol count %d for volume\n", tw->num_kcontrols); ret = -EINVAL; break; } fallthrough; case snd_soc_dapm_mixer: case snd_soc_dapm_buffer: case snd_soc_dapm_scheduler: case snd_soc_dapm_aif_out: case snd_soc_dapm_aif_in: case snd_soc_dapm_src: case snd_soc_dapm_asrc: case snd_soc_dapm_siggen: case snd_soc_dapm_mux: case snd_soc_dapm_demux: ret = sof_widget_parse_tokens(scomp, swidget, tw, token_list, token_list_size); break; case snd_soc_dapm_switch: case snd_soc_dapm_dai_link: case snd_soc_dapm_kcontrol: default: dev_dbg(scomp->dev, "widget type %d name %s not handled\n", swidget->id, tw->name); break; } /* check token parsing reply */ if (ret < 0) { dev_err(scomp->dev, "failed to add widget type %d name : %s stream %s\n", swidget->id, tw->name, strnlen(tw->sname, SNDRV_CTL_ELEM_ID_NAME_MAXLEN) > 0 ? tw->sname : "none"); goto widget_free; } if (sof_debug_check_flag(SOF_DBG_DISABLE_MULTICORE)) { swidget->core = SOF_DSP_PRIMARY_CORE; } else { int core = sof_get_token_value(SOF_TKN_COMP_CORE_ID, swidget->tuples, swidget->num_tuples); if (core >= 0) swidget->core = core; } /* bind widget to external event */ if (tw->event_type) { if (widget_ops && widget_ops[w->id].bind_event) { ret = widget_ops[w->id].bind_event(scomp, swidget, le16_to_cpu(tw->event_type)); if (ret) { dev_err(scomp->dev, "widget event binding failed for %s\n", swidget->widget->name); goto free; } } } /* create and add pipeline for scheduler type widgets */ if (w->id == snd_soc_dapm_scheduler) { struct snd_sof_pipeline *spipe; spipe = kzalloc(sizeof(*spipe), GFP_KERNEL); if (!spipe) { ret = -ENOMEM; goto free; } spipe->pipe_widget = swidget; swidget->spipe = spipe; list_add(&spipe->list, &sdev->pipeline_list); } w->dobj.private = swidget; list_add(&swidget->list, &sdev->widget_list); return ret; free: kfree(swidget->private); kfree(swidget->tuples); widget_free: kfree(swidget); return ret; } static int sof_route_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_sof_route *sroute; sroute = dobj->private; if (!sroute) return 0; /* free sroute and its private data */ kfree(sroute->private); list_del(&sroute->list); kfree(sroute); return 0; } static int sof_widget_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); const struct sof_ipc_tplg_widget_ops *widget_ops; const struct snd_kcontrol_new *kc; struct snd_soc_dapm_widget *widget; struct snd_sof_control *scontrol; struct snd_sof_widget *swidget; struct soc_mixer_control *sm; struct soc_bytes_ext *sbe; struct snd_sof_dai *dai; struct soc_enum *se; int i; swidget = dobj->private; if (!swidget) return 0; widget = swidget->widget; switch (swidget->id) { case snd_soc_dapm_dai_in: case snd_soc_dapm_dai_out: dai = swidget->private; if (dai) list_del(&dai->list); sof_disconnect_dai_widget(scomp, widget); break; case snd_soc_dapm_scheduler: { struct snd_sof_pipeline *spipe = swidget->spipe; list_del(&spipe->list); kfree(spipe); swidget->spipe = NULL; break; } default: break; } for (i = 0; i < widget->num_kcontrols; i++) { kc = &widget->kcontrol_news[i]; switch (widget->dobj.widget.kcontrol_type[i]) { case SND_SOC_TPLG_TYPE_MIXER: sm = (struct soc_mixer_control *)kc->private_value; scontrol = sm->dobj.private; if (sm->max > 1) kfree(scontrol->volume_table); break; case SND_SOC_TPLG_TYPE_ENUM: se = (struct soc_enum *)kc->private_value; scontrol = se->dobj.private; break; case SND_SOC_TPLG_TYPE_BYTES: sbe = (struct soc_bytes_ext *)kc->private_value; scontrol = sbe->dobj.private; break; default: dev_warn(scomp->dev, "unsupported kcontrol_type\n"); goto out; } kfree(scontrol->ipc_control_data); list_del(&scontrol->list); kfree(scontrol->name); kfree(scontrol); } out: /* free IPC related data */ widget_ops = tplg_ops ? tplg_ops->widget : NULL; if (widget_ops && widget_ops[swidget->id].ipc_free) widget_ops[swidget->id].ipc_free(swidget); ida_destroy(&swidget->output_queue_ida); ida_destroy(&swidget->input_queue_ida); sof_free_pin_binding(swidget, SOF_PIN_TYPE_INPUT); sof_free_pin_binding(swidget, SOF_PIN_TYPE_OUTPUT); kfree(swidget->tuples); /* remove and free swidget object */ list_del(&swidget->list); kfree(swidget); return 0; } /* * DAI HW configuration. */ /* FE DAI - used for any driver specific init */ static int sof_dai_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_driver *dai_drv, struct snd_soc_tplg_pcm *pcm, struct snd_soc_dai *dai) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_pcm_ops *ipc_pcm_ops = sof_ipc_get_ops(sdev, pcm); struct snd_soc_tplg_stream_caps *caps; struct snd_soc_tplg_private *private = &pcm->priv; struct snd_sof_pcm *spcm; int stream; int ret; /* nothing to do for BEs atm */ if (!pcm) return 0; spcm = kzalloc(sizeof(*spcm), GFP_KERNEL); if (!spcm) return -ENOMEM; spcm->scomp = scomp; for_each_pcm_streams(stream) { spcm->stream[stream].comp_id = COMP_ID_UNASSIGNED; if (pcm->compress) snd_sof_compr_init_elapsed_work(&spcm->stream[stream].period_elapsed_work); else snd_sof_pcm_init_elapsed_work(&spcm->stream[stream].period_elapsed_work); } spcm->pcm = *pcm; dev_dbg(scomp->dev, "tplg: load pcm %s\n", pcm->dai_name); /* perform pcm set op */ if (ipc_pcm_ops && ipc_pcm_ops->pcm_setup) { ret = ipc_pcm_ops->pcm_setup(sdev, spcm); if (ret < 0) { kfree(spcm); return ret; } } dai_drv->dobj.private = spcm; list_add(&spcm->list, &sdev->pcm_list); ret = sof_parse_tokens(scomp, spcm, stream_tokens, ARRAY_SIZE(stream_tokens), private->array, le32_to_cpu(private->size)); if (ret) { dev_err(scomp->dev, "error: parse stream tokens failed %d\n", le32_to_cpu(private->size)); return ret; } /* do we need to allocate playback PCM DMA pages */ if (!spcm->pcm.playback) goto capture; stream = SNDRV_PCM_STREAM_PLAYBACK; caps = &spcm->pcm.caps[stream]; /* allocate playback page table buffer */ ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, sdev->dev, PAGE_SIZE, &spcm->stream[stream].page_table); if (ret < 0) { dev_err(scomp->dev, "error: can't alloc page table for %s %d\n", caps->name, ret); return ret; } /* bind pcm to host comp */ ret = spcm_bind(scomp, spcm, stream); if (ret) { dev_err(scomp->dev, "error: can't bind pcm to host\n"); goto free_playback_tables; } capture: stream = SNDRV_PCM_STREAM_CAPTURE; /* do we need to allocate capture PCM DMA pages */ if (!spcm->pcm.capture) return ret; caps = &spcm->pcm.caps[stream]; /* allocate capture page table buffer */ ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, sdev->dev, PAGE_SIZE, &spcm->stream[stream].page_table); if (ret < 0) { dev_err(scomp->dev, "error: can't alloc page table for %s %d\n", caps->name, ret); goto free_playback_tables; } /* bind pcm to host comp */ ret = spcm_bind(scomp, spcm, stream); if (ret) { dev_err(scomp->dev, "error: can't bind pcm to host\n"); snd_dma_free_pages(&spcm->stream[stream].page_table); goto free_playback_tables; } return ret; free_playback_tables: if (spcm->pcm.playback) snd_dma_free_pages(&spcm->stream[SNDRV_PCM_STREAM_PLAYBACK].page_table); return ret; } static int sof_dai_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_pcm_ops *ipc_pcm_ops = sof_ipc_get_ops(sdev, pcm); struct snd_sof_pcm *spcm = dobj->private; /* free PCM DMA pages */ if (spcm->pcm.playback) snd_dma_free_pages(&spcm->stream[SNDRV_PCM_STREAM_PLAYBACK].page_table); if (spcm->pcm.capture) snd_dma_free_pages(&spcm->stream[SNDRV_PCM_STREAM_CAPTURE].page_table); /* perform pcm free op */ if (ipc_pcm_ops && ipc_pcm_ops->pcm_free) ipc_pcm_ops->pcm_free(sdev, spcm); /* remove from list and free spcm */ list_del(&spcm->list); kfree(spcm); return 0; } static const struct sof_topology_token common_dai_link_tokens[] = { {SOF_TKN_DAI_TYPE, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_dai_type, offsetof(struct snd_sof_dai_link, type)}, }; /* DAI link - used for any driver specific init */ static int sof_link_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); struct snd_soc_tplg_private *private = &cfg->priv; const struct sof_token_info *token_list; struct snd_sof_dai_link *slink; u32 token_id = 0; int num_tuples = 0; int ret, num_sets; if (!link->platforms) { dev_err(scomp->dev, "error: no platforms\n"); return -EINVAL; } link->platforms->name = dev_name(scomp->dev); if (tplg_ops && tplg_ops->link_setup) { ret = tplg_ops->link_setup(sdev, link); if (ret < 0) return ret; } /* Set nonatomic property for FE dai links as their trigger action involves IPC's */ if (!link->no_pcm) { link->nonatomic = true; return 0; } /* check we have some tokens - we need at least DAI type */ if (le32_to_cpu(private->size) == 0) { dev_err(scomp->dev, "error: expected tokens for DAI, none found\n"); return -EINVAL; } slink = kzalloc(sizeof(*slink), GFP_KERNEL); if (!slink) return -ENOMEM; slink->num_hw_configs = le32_to_cpu(cfg->num_hw_configs); slink->hw_configs = kmemdup(cfg->hw_config, sizeof(*slink->hw_configs) * slink->num_hw_configs, GFP_KERNEL); if (!slink->hw_configs) { kfree(slink); return -ENOMEM; } slink->default_hw_cfg_id = le32_to_cpu(cfg->default_hw_config_id); slink->link = link; dev_dbg(scomp->dev, "tplg: %d hw_configs found, default id: %d for dai link %s!\n", slink->num_hw_configs, slink->default_hw_cfg_id, link->name); ret = sof_parse_tokens(scomp, slink, common_dai_link_tokens, ARRAY_SIZE(common_dai_link_tokens), private->array, le32_to_cpu(private->size)); if (ret < 0) { dev_err(scomp->dev, "Failed tp parse common DAI link tokens\n"); kfree(slink->hw_configs); kfree(slink); return ret; } token_list = tplg_ops ? tplg_ops->token_list : NULL; if (!token_list) goto out; /* calculate size of tuples array */ num_tuples += token_list[SOF_DAI_LINK_TOKENS].count; num_sets = slink->num_hw_configs; switch (slink->type) { case SOF_DAI_INTEL_SSP: token_id = SOF_SSP_TOKENS; num_tuples += token_list[SOF_SSP_TOKENS].count * slink->num_hw_configs; break; case SOF_DAI_INTEL_DMIC: token_id = SOF_DMIC_TOKENS; num_tuples += token_list[SOF_DMIC_TOKENS].count; /* Allocate memory for max PDM controllers */ num_tuples += token_list[SOF_DMIC_PDM_TOKENS].count * SOF_DAI_INTEL_DMIC_NUM_CTRL; break; case SOF_DAI_INTEL_HDA: token_id = SOF_HDA_TOKENS; num_tuples += token_list[SOF_HDA_TOKENS].count; break; case SOF_DAI_INTEL_ALH: token_id = SOF_ALH_TOKENS; num_tuples += token_list[SOF_ALH_TOKENS].count; break; case SOF_DAI_IMX_SAI: token_id = SOF_SAI_TOKENS; num_tuples += token_list[SOF_SAI_TOKENS].count; break; case SOF_DAI_IMX_ESAI: token_id = SOF_ESAI_TOKENS; num_tuples += token_list[SOF_ESAI_TOKENS].count; break; case SOF_DAI_MEDIATEK_AFE: token_id = SOF_AFE_TOKENS; num_tuples += token_list[SOF_AFE_TOKENS].count; break; case SOF_DAI_AMD_DMIC: token_id = SOF_ACPDMIC_TOKENS; num_tuples += token_list[SOF_ACPDMIC_TOKENS].count; break; case SOF_DAI_AMD_BT: case SOF_DAI_AMD_SP: case SOF_DAI_AMD_HS: case SOF_DAI_AMD_SP_VIRTUAL: case SOF_DAI_AMD_HS_VIRTUAL: token_id = SOF_ACPI2S_TOKENS; num_tuples += token_list[SOF_ACPI2S_TOKENS].count; break; case SOF_DAI_IMX_MICFIL: token_id = SOF_MICFIL_TOKENS; num_tuples += token_list[SOF_MICFIL_TOKENS].count; break; case SOF_DAI_AMD_SDW: token_id = SOF_ACP_SDW_TOKENS; num_tuples += token_list[SOF_ACP_SDW_TOKENS].count; break; default: break; } /* allocate memory for tuples array */ slink->tuples = kcalloc(num_tuples, sizeof(*slink->tuples), GFP_KERNEL); if (!slink->tuples) { kfree(slink->hw_configs); kfree(slink); return -ENOMEM; } if (token_list[SOF_DAI_LINK_TOKENS].tokens) { /* parse one set of DAI link tokens */ ret = sof_copy_tuples(sdev, private->array, le32_to_cpu(private->size), SOF_DAI_LINK_TOKENS, 1, slink->tuples, num_tuples, &slink->num_tuples); if (ret < 0) { dev_err(scomp->dev, "failed to parse %s for dai link %s\n", token_list[SOF_DAI_LINK_TOKENS].name, link->name); goto err; } } /* nothing more to do if there are no DAI type-specific tokens defined */ if (!token_id || !token_list[token_id].tokens) goto out; /* parse "num_sets" sets of DAI-specific tokens */ ret = sof_copy_tuples(sdev, private->array, le32_to_cpu(private->size), token_id, num_sets, slink->tuples, num_tuples, &slink->num_tuples); if (ret < 0) { dev_err(scomp->dev, "failed to parse %s for dai link %s\n", token_list[token_id].name, link->name); goto err; } /* for DMIC, also parse all sets of DMIC PDM tokens based on active PDM count */ if (token_id == SOF_DMIC_TOKENS) { num_sets = sof_get_token_value(SOF_TKN_INTEL_DMIC_NUM_PDM_ACTIVE, slink->tuples, slink->num_tuples); if (num_sets < 0) { dev_err(sdev->dev, "Invalid active PDM count for %s\n", link->name); ret = num_sets; goto err; } ret = sof_copy_tuples(sdev, private->array, le32_to_cpu(private->size), SOF_DMIC_PDM_TOKENS, num_sets, slink->tuples, num_tuples, &slink->num_tuples); if (ret < 0) { dev_err(scomp->dev, "failed to parse %s for dai link %s\n", token_list[SOF_DMIC_PDM_TOKENS].name, link->name); goto err; } } out: link->dobj.private = slink; list_add(&slink->list, &sdev->dai_link_list); return 0; err: kfree(slink->tuples); kfree(slink->hw_configs); kfree(slink); return ret; } static int sof_link_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_sof_dai_link *slink = dobj->private; if (!slink) return 0; slink->link->platforms->name = NULL; kfree(slink->tuples); list_del(&slink->list); kfree(slink->hw_configs); kfree(slink); dobj->private = NULL; return 0; } /* DAI link - used for any driver specific init */ static int sof_route_load(struct snd_soc_component *scomp, int index, struct snd_soc_dapm_route *route) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_sof_widget *source_swidget, *sink_swidget; struct snd_soc_dobj *dobj = &route->dobj; struct snd_sof_route *sroute; int ret = 0; /* allocate memory for sroute and connect */ sroute = kzalloc(sizeof(*sroute), GFP_KERNEL); if (!sroute) return -ENOMEM; sroute->scomp = scomp; dev_dbg(scomp->dev, "sink %s control %s source %s\n", route->sink, route->control ? route->control : "none", route->source); /* source component */ source_swidget = snd_sof_find_swidget(scomp, (char *)route->source); if (!source_swidget) { dev_err(scomp->dev, "error: source %s not found\n", route->source); ret = -EINVAL; goto err; } /* * Virtual widgets of type output/out_drv may be added in topology * for compatibility. These are not handled by the FW. * So, don't send routes whose source/sink widget is of such types * to the DSP. */ if (source_swidget->id == snd_soc_dapm_out_drv || source_swidget->id == snd_soc_dapm_output) goto err; /* sink component */ sink_swidget = snd_sof_find_swidget(scomp, (char *)route->sink); if (!sink_swidget) { dev_err(scomp->dev, "error: sink %s not found\n", route->sink); ret = -EINVAL; goto err; } /* * Don't send routes whose sink widget is of type * output or out_drv to the DSP */ if (sink_swidget->id == snd_soc_dapm_out_drv || sink_swidget->id == snd_soc_dapm_output) goto err; sroute->route = route; dobj->private = sroute; sroute->src_widget = source_swidget; sroute->sink_widget = sink_swidget; /* add route to route list */ list_add(&sroute->list, &sdev->route_list); return 0; err: kfree(sroute); return ret; } /** * sof_set_widget_pipeline - Set pipeline for a component * @sdev: pointer to struct snd_sof_dev * @spipe: pointer to struct snd_sof_pipeline * @swidget: pointer to struct snd_sof_widget that has the same pipeline ID as @pipe_widget * * Return: 0 if successful, -EINVAL on error. * The function checks if @swidget is associated with any volatile controls. If so, setting * the dynamic_pipeline_widget is disallowed. */ static int sof_set_widget_pipeline(struct snd_sof_dev *sdev, struct snd_sof_pipeline *spipe, struct snd_sof_widget *swidget) { struct snd_sof_widget *pipe_widget = spipe->pipe_widget; struct snd_sof_control *scontrol; if (pipe_widget->dynamic_pipeline_widget) { /* dynamic widgets cannot have volatile kcontrols */ list_for_each_entry(scontrol, &sdev->kcontrol_list, list) if (scontrol->comp_id == swidget->comp_id && (scontrol->access & SNDRV_CTL_ELEM_ACCESS_VOLATILE)) { dev_err(sdev->dev, "error: volatile control found for dynamic widget %s\n", swidget->widget->name); return -EINVAL; } } /* set the pipeline and apply the dynamic_pipeline_widget_flag */ swidget->spipe = spipe; swidget->dynamic_pipeline_widget = pipe_widget->dynamic_pipeline_widget; return 0; } /* completion - called at completion of firmware loading */ static int sof_complete(struct snd_soc_component *scomp) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); const struct sof_ipc_tplg_widget_ops *widget_ops; struct snd_sof_control *scontrol; struct snd_sof_pipeline *spipe; int ret; widget_ops = tplg_ops ? tplg_ops->widget : NULL; /* first update all control IPC structures based on the IPC version */ if (tplg_ops && tplg_ops->control_setup) list_for_each_entry(scontrol, &sdev->kcontrol_list, list) { ret = tplg_ops->control_setup(sdev, scontrol); if (ret < 0) { dev_err(sdev->dev, "failed updating IPC struct for control %s\n", scontrol->name); return ret; } } /* set up the IPC structures for the pipeline widgets */ list_for_each_entry(spipe, &sdev->pipeline_list, list) { struct snd_sof_widget *pipe_widget = spipe->pipe_widget; struct snd_sof_widget *swidget; pipe_widget->instance_id = -EINVAL; /* Update the scheduler widget's IPC structure */ if (widget_ops && widget_ops[pipe_widget->id].ipc_setup) { ret = widget_ops[pipe_widget->id].ipc_setup(pipe_widget); if (ret < 0) { dev_err(sdev->dev, "failed updating IPC struct for %s\n", pipe_widget->widget->name); return ret; } } /* set the pipeline and update the IPC structure for the non scheduler widgets */ list_for_each_entry(swidget, &sdev->widget_list, list) if (swidget->widget->id != snd_soc_dapm_scheduler && swidget->pipeline_id == pipe_widget->pipeline_id) { ret = sof_set_widget_pipeline(sdev, spipe, swidget); if (ret < 0) return ret; if (widget_ops && widget_ops[swidget->id].ipc_setup) { ret = widget_ops[swidget->id].ipc_setup(swidget); if (ret < 0) { dev_err(sdev->dev, "failed updating IPC struct for %s\n", swidget->widget->name); return ret; } } } } /* verify topology components loading including dynamic pipelines */ if (sof_debug_check_flag(SOF_DBG_VERIFY_TPLG)) { if (tplg_ops && tplg_ops->set_up_all_pipelines && tplg_ops->tear_down_all_pipelines) { ret = tplg_ops->set_up_all_pipelines(sdev, true); if (ret < 0) { dev_err(sdev->dev, "Failed to set up all topology pipelines: %d\n", ret); return ret; } ret = tplg_ops->tear_down_all_pipelines(sdev, true); if (ret < 0) { dev_err(sdev->dev, "Failed to tear down topology pipelines: %d\n", ret); return ret; } } } /* set up static pipelines */ if (tplg_ops && tplg_ops->set_up_all_pipelines) return tplg_ops->set_up_all_pipelines(sdev, false); return 0; } /* manifest - optional to inform component of manifest */ static int sof_manifest(struct snd_soc_component *scomp, int index, struct snd_soc_tplg_manifest *man) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct sof_ipc_tplg_ops *tplg_ops = sof_ipc_get_ops(sdev, tplg); if (tplg_ops && tplg_ops->parse_manifest) return tplg_ops->parse_manifest(scomp, index, man); return 0; } /* vendor specific kcontrol handlers available for binding */ static const struct snd_soc_tplg_kcontrol_ops sof_io_ops[] = { {SOF_TPLG_KCTL_VOL_ID, snd_sof_volume_get, snd_sof_volume_put}, {SOF_TPLG_KCTL_BYTES_ID, snd_sof_bytes_get, snd_sof_bytes_put}, {SOF_TPLG_KCTL_ENUM_ID, snd_sof_enum_get, snd_sof_enum_put}, {SOF_TPLG_KCTL_SWITCH_ID, snd_sof_switch_get, snd_sof_switch_put}, }; /* vendor specific bytes ext handlers available for binding */ static const struct snd_soc_tplg_bytes_ext_ops sof_bytes_ext_ops[] = { {SOF_TPLG_KCTL_BYTES_ID, snd_sof_bytes_ext_get, snd_sof_bytes_ext_put}, {SOF_TPLG_KCTL_BYTES_VOLATILE_RO, snd_sof_bytes_ext_volatile_get}, }; static const struct snd_soc_tplg_ops sof_tplg_ops = { /* external kcontrol init - used for any driver specific init */ .control_load = sof_control_load, .control_unload = sof_control_unload, /* external kcontrol init - used for any driver specific init */ .dapm_route_load = sof_route_load, .dapm_route_unload = sof_route_unload, /* external widget init - used for any driver specific init */ /* .widget_load is not currently used */ .widget_ready = sof_widget_ready, .widget_unload = sof_widget_unload, /* FE DAI - used for any driver specific init */ .dai_load = sof_dai_load, .dai_unload = sof_dai_unload, /* DAI link - used for any driver specific init */ .link_load = sof_link_load, .link_unload = sof_link_unload, /* completion - called at completion of firmware loading */ .complete = sof_complete, /* manifest - optional to inform component of manifest */ .manifest = sof_manifest, /* vendor specific kcontrol handlers available for binding */ .io_ops = sof_io_ops, .io_ops_count = ARRAY_SIZE(sof_io_ops), /* vendor specific bytes ext handlers available for binding */ .bytes_ext_ops = sof_bytes_ext_ops, .bytes_ext_ops_count = ARRAY_SIZE(sof_bytes_ext_ops), }; static int snd_sof_dspless_kcontrol(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { return 0; } static const struct snd_soc_tplg_kcontrol_ops sof_dspless_io_ops[] = { {SOF_TPLG_KCTL_VOL_ID, snd_sof_dspless_kcontrol, snd_sof_dspless_kcontrol}, {SOF_TPLG_KCTL_BYTES_ID, snd_sof_dspless_kcontrol, snd_sof_dspless_kcontrol}, {SOF_TPLG_KCTL_ENUM_ID, snd_sof_dspless_kcontrol, snd_sof_dspless_kcontrol}, {SOF_TPLG_KCTL_SWITCH_ID, snd_sof_dspless_kcontrol, snd_sof_dspless_kcontrol}, }; static int snd_sof_dspless_bytes_ext_get(struct snd_kcontrol *kcontrol, unsigned int __user *binary_data, unsigned int size) { return 0; } static int snd_sof_dspless_bytes_ext_put(struct snd_kcontrol *kcontrol, const unsigned int __user *binary_data, unsigned int size) { return 0; } static const struct snd_soc_tplg_bytes_ext_ops sof_dspless_bytes_ext_ops[] = { {SOF_TPLG_KCTL_BYTES_ID, snd_sof_dspless_bytes_ext_get, snd_sof_dspless_bytes_ext_put}, {SOF_TPLG_KCTL_BYTES_VOLATILE_RO, snd_sof_dspless_bytes_ext_get}, }; /* external widget init - used for any driver specific init */ static int sof_dspless_widget_ready(struct snd_soc_component *scomp, int index, struct snd_soc_dapm_widget *w, struct snd_soc_tplg_dapm_widget *tw) { if (WIDGET_IS_DAI(w->id)) { static const struct sof_topology_token dai_tokens[] = { {SOF_TKN_DAI_TYPE, SND_SOC_TPLG_TUPLE_TYPE_STRING, get_token_dai_type, 0}}; struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); struct snd_soc_tplg_private *priv = &tw->priv; struct snd_sof_widget *swidget; struct snd_sof_dai *sdai; int ret; swidget = kzalloc(sizeof(*swidget), GFP_KERNEL); if (!swidget) return -ENOMEM; sdai = kzalloc(sizeof(*sdai), GFP_KERNEL); if (!sdai) { kfree(swidget); return -ENOMEM; } ret = sof_parse_tokens(scomp, &sdai->type, dai_tokens, ARRAY_SIZE(dai_tokens), priv->array, le32_to_cpu(priv->size)); if (ret < 0) { dev_err(scomp->dev, "Failed to parse DAI tokens for %s\n", tw->name); kfree(swidget); kfree(sdai); return ret; } ret = sof_connect_dai_widget(scomp, w, tw, sdai); if (ret) { kfree(swidget); kfree(sdai); return ret; } swidget->scomp = scomp; swidget->widget = w; swidget->private = sdai; mutex_init(&swidget->setup_mutex); w->dobj.private = swidget; list_add(&swidget->list, &sdev->widget_list); } return 0; } static int sof_dspless_widget_unload(struct snd_soc_component *scomp, struct snd_soc_dobj *dobj) { struct snd_soc_dapm_widget *w = container_of(dobj, struct snd_soc_dapm_widget, dobj); if (WIDGET_IS_DAI(w->id)) { struct snd_sof_widget *swidget = dobj->private; sof_disconnect_dai_widget(scomp, w); if (!swidget) return 0; /* remove and free swidget object */ list_del(&swidget->list); kfree(swidget->private); kfree(swidget); } return 0; } static int sof_dspless_link_load(struct snd_soc_component *scomp, int index, struct snd_soc_dai_link *link, struct snd_soc_tplg_link_config *cfg) { link->platforms->name = dev_name(scomp->dev); /* Set nonatomic property for FE dai links for FE-BE compatibility */ if (!link->no_pcm) link->nonatomic = true; return 0; } static const struct snd_soc_tplg_ops sof_dspless_tplg_ops = { /* external widget init - used for any driver specific init */ .widget_ready = sof_dspless_widget_ready, .widget_unload = sof_dspless_widget_unload, /* FE DAI - used for any driver specific init */ .dai_load = sof_dai_load, .dai_unload = sof_dai_unload, /* DAI link - used for any driver specific init */ .link_load = sof_dspless_link_load, /* vendor specific kcontrol handlers available for binding */ .io_ops = sof_dspless_io_ops, .io_ops_count = ARRAY_SIZE(sof_dspless_io_ops), /* vendor specific bytes ext handlers available for binding */ .bytes_ext_ops = sof_dspless_bytes_ext_ops, .bytes_ext_ops_count = ARRAY_SIZE(sof_dspless_bytes_ext_ops), }; int snd_sof_load_topology(struct snd_soc_component *scomp, const char *file) { struct snd_sof_dev *sdev = snd_soc_component_get_drvdata(scomp); const struct firmware *fw; int ret; dev_dbg(scomp->dev, "loading topology:%s\n", file); ret = request_firmware(&fw, file, scomp->dev); if (ret < 0) { dev_err(scomp->dev, "error: tplg request firmware %s failed err: %d\n", file, ret); dev_err(scomp->dev, "you may need to download the firmware from https://github.com/thesofproject/sof-bin/\n"); return ret; } if (sdev->dspless_mode_selected) ret = snd_soc_tplg_component_load(scomp, &sof_dspless_tplg_ops, fw); else ret = snd_soc_tplg_component_load(scomp, &sof_tplg_ops, fw); if (ret < 0) { dev_err(scomp->dev, "error: tplg component load failed %d\n", ret); ret = -EINVAL; } release_firmware(fw); if (ret >= 0 && sdev->led_present) ret = snd_ctl_led_request(); return ret; } EXPORT_SYMBOL(snd_sof_load_topology);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1