Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arnaud Pouliquen | 1566 | 68.50% | 6 | 28.57% |
Moise Gergaud | 665 | 29.09% | 5 | 23.81% |
Kuninori Morimoto | 30 | 1.31% | 2 | 9.52% |
Chen Lifu | 7 | 0.31% | 1 | 4.76% |
Charles Keepax | 6 | 0.26% | 1 | 4.76% |
Yang Yingliang | 4 | 0.17% | 1 | 4.76% |
Mark Brown | 3 | 0.13% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.09% | 1 | 4.76% |
Kelvin Cheung | 1 | 0.04% | 1 | 4.76% |
Fengguang Wu | 1 | 0.04% | 1 | 4.76% |
Axel Lin | 1 | 0.04% | 1 | 4.76% |
Total | 2286 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) STMicroelectronics SA 2015 * Authors: Arnaud Pouliquen <arnaud.pouliquen@st.com> * for STMicroelectronics. */ #include <linux/module.h> #include <linux/pinctrl/consumer.h> #include <linux/delay.h> #include "uniperif.h" /* * User frame size shall be 2, 4, 6 or 8 32-bits words length * (i.e. 8, 16, 24 or 32 bytes) * This constraint comes from allowed values for * UNIPERIF_I2S_FMT_NUM_CH register */ #define UNIPERIF_MAX_FRAME_SZ 0x20 #define UNIPERIF_ALLOWED_FRAME_SZ (0x08 | 0x10 | 0x18 | UNIPERIF_MAX_FRAME_SZ) struct sti_uniperiph_dev_data { unsigned int id; /* Nb available player instances */ unsigned int version; /* player IP version */ unsigned int stream; const char *dai_names; enum uniperif_type type; }; static const struct sti_uniperiph_dev_data sti_uniplayer_hdmi = { .id = 0, .version = SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0, .stream = SNDRV_PCM_STREAM_PLAYBACK, .dai_names = "Uni Player #0 (HDMI)", .type = SND_ST_UNIPERIF_TYPE_HDMI }; static const struct sti_uniperiph_dev_data sti_uniplayer_pcm_out = { .id = 1, .version = SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0, .stream = SNDRV_PCM_STREAM_PLAYBACK, .dai_names = "Uni Player #1 (PCM OUT)", .type = SND_ST_UNIPERIF_TYPE_PCM | SND_ST_UNIPERIF_TYPE_TDM, }; static const struct sti_uniperiph_dev_data sti_uniplayer_dac = { .id = 2, .version = SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0, .stream = SNDRV_PCM_STREAM_PLAYBACK, .dai_names = "Uni Player #2 (DAC)", .type = SND_ST_UNIPERIF_TYPE_PCM, }; static const struct sti_uniperiph_dev_data sti_uniplayer_spdif = { .id = 3, .version = SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0, .stream = SNDRV_PCM_STREAM_PLAYBACK, .dai_names = "Uni Player #3 (SPDIF)", .type = SND_ST_UNIPERIF_TYPE_SPDIF }; static const struct sti_uniperiph_dev_data sti_unireader_pcm_in = { .id = 0, .version = SND_ST_UNIPERIF_VERSION_UNI_RDR_1_0, .stream = SNDRV_PCM_STREAM_CAPTURE, .dai_names = "Uni Reader #0 (PCM IN)", .type = SND_ST_UNIPERIF_TYPE_PCM | SND_ST_UNIPERIF_TYPE_TDM, }; static const struct sti_uniperiph_dev_data sti_unireader_hdmi_in = { .id = 1, .version = SND_ST_UNIPERIF_VERSION_UNI_RDR_1_0, .stream = SNDRV_PCM_STREAM_CAPTURE, .dai_names = "Uni Reader #1 (HDMI IN)", .type = SND_ST_UNIPERIF_TYPE_PCM, }; static const struct of_device_id snd_soc_sti_match[] = { { .compatible = "st,stih407-uni-player-hdmi", .data = &sti_uniplayer_hdmi }, { .compatible = "st,stih407-uni-player-pcm-out", .data = &sti_uniplayer_pcm_out }, { .compatible = "st,stih407-uni-player-dac", .data = &sti_uniplayer_dac }, { .compatible = "st,stih407-uni-player-spdif", .data = &sti_uniplayer_spdif }, { .compatible = "st,stih407-uni-reader-pcm_in", .data = &sti_unireader_pcm_in }, { .compatible = "st,stih407-uni-reader-hdmi", .data = &sti_unireader_hdmi_in }, {}, }; MODULE_DEVICE_TABLE(of, snd_soc_sti_match); int sti_uniperiph_reset(struct uniperif *uni) { int count = 10; /* Reset uniperipheral uni */ SET_UNIPERIF_SOFT_RST_SOFT_RST(uni); if (uni->ver < SND_ST_UNIPERIF_VERSION_UNI_PLR_TOP_1_0) { while (GET_UNIPERIF_SOFT_RST_SOFT_RST(uni) && count) { udelay(5); count--; } } if (!count) { dev_err(uni->dev, "Failed to reset uniperif\n"); return -EIO; } return 0; } int sti_uniperiph_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai); struct uniperif *uni = priv->dai_data.uni; int i, frame_size, avail_slots; if (!UNIPERIF_TYPE_IS_TDM(uni)) { dev_err(uni->dev, "cpu dai not in tdm mode\n"); return -EINVAL; } /* store info in unip context */ uni->tdm_slot.slots = slots; uni->tdm_slot.slot_width = slot_width; /* unip is unidirectionnal */ uni->tdm_slot.mask = (tx_mask != 0) ? tx_mask : rx_mask; /* number of available timeslots */ for (i = 0, avail_slots = 0; i < uni->tdm_slot.slots; i++) { if ((uni->tdm_slot.mask >> i) & 0x01) avail_slots++; } uni->tdm_slot.avail_slots = avail_slots; /* frame size in bytes */ frame_size = uni->tdm_slot.avail_slots * uni->tdm_slot.slot_width / 8; /* check frame size is allowed */ if ((frame_size > UNIPERIF_MAX_FRAME_SZ) || (frame_size & ~(int)UNIPERIF_ALLOWED_FRAME_SZ)) { dev_err(uni->dev, "frame size not allowed: %d bytes\n", frame_size); return -EINVAL; } return 0; } int sti_uniperiph_fix_tdm_chan(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct uniperif *uni = rule->private; struct snd_interval t; t.min = uni->tdm_slot.avail_slots; t.max = uni->tdm_slot.avail_slots; t.openmin = 0; t.openmax = 0; t.integer = 0; return snd_interval_refine(hw_param_interval(params, rule->var), &t); } int sti_uniperiph_fix_tdm_format(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct uniperif *uni = rule->private; struct snd_mask *maskp = hw_param_mask(params, rule->var); u64 format; switch (uni->tdm_slot.slot_width) { case 16: format = SNDRV_PCM_FMTBIT_S16_LE; break; case 32: format = SNDRV_PCM_FMTBIT_S32_LE; break; default: dev_err(uni->dev, "format not supported: %d bits\n", uni->tdm_slot.slot_width); return -EINVAL; } maskp->bits[0] &= (u_int32_t)format; maskp->bits[1] &= (u_int32_t)(format >> 32); /* clear remaining indexes */ memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX - 64) / 8); if (!maskp->bits[0] && !maskp->bits[1]) return -EINVAL; return 0; } int sti_uniperiph_get_tdm_word_pos(struct uniperif *uni, unsigned int *word_pos) { int slot_width = uni->tdm_slot.slot_width / 8; int slots_num = uni->tdm_slot.slots; unsigned int slots_mask = uni->tdm_slot.mask; int i, j, k; unsigned int word16_pos[4]; /* word16_pos: * word16_pos[0] = WORDX_LSB * word16_pos[1] = WORDX_MSB, * word16_pos[2] = WORDX+1_LSB * word16_pos[3] = WORDX+1_MSB */ /* set unip word position */ for (i = 0, j = 0, k = 0; (i < slots_num) && (k < WORD_MAX); i++) { if ((slots_mask >> i) & 0x01) { word16_pos[j] = i * slot_width; if (slot_width == 4) { word16_pos[j + 1] = word16_pos[j] + 2; j++; } j++; if (j > 3) { word_pos[k] = word16_pos[1] | (word16_pos[0] << 8) | (word16_pos[3] << 16) | (word16_pos[2] << 24); j = 0; k++; } } } return 0; } /* * sti_uniperiph_dai_create_ctrl * This function is used to create Ctrl associated to DAI but also pcm device. * Request is done by front end to associate ctrl with pcm device id */ static int sti_uniperiph_dai_create_ctrl(struct snd_soc_dai *dai) { struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai); struct uniperif *uni = priv->dai_data.uni; struct snd_kcontrol_new *ctrl; int i; if (!uni->num_ctrls) return 0; for (i = 0; i < uni->num_ctrls; i++) { /* * Several Control can have same name. Controls are indexed on * Uniperipheral instance ID */ ctrl = &uni->snd_ctrls[i]; ctrl->index = uni->id; ctrl->device = uni->id; } return snd_soc_add_dai_controls(dai, uni->snd_ctrls, uni->num_ctrls); } /* * DAI */ int sti_uniperiph_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai); struct uniperif *uni = priv->dai_data.uni; struct snd_dmaengine_dai_dma_data *dma_data; int transfer_size; if (uni->type == SND_ST_UNIPERIF_TYPE_TDM) /* transfer size = user frame size (in 32-bits FIFO cell) */ transfer_size = snd_soc_params_to_frame_size(params) / 32; else transfer_size = params_channels(params) * UNIPERIF_FIFO_FRAMES; dma_data = snd_soc_dai_get_dma_data(dai, substream); dma_data->maxburst = transfer_size; return 0; } int sti_uniperiph_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai); priv->dai_data.uni->daifmt = fmt; return 0; } static int sti_uniperiph_suspend(struct snd_soc_component *component) { struct sti_uniperiph_data *priv = snd_soc_component_get_drvdata(component); struct uniperif *uni = priv->dai_data.uni; int ret; /* The uniperipheral should be in stopped state */ if (uni->state != UNIPERIF_STATE_STOPPED) { dev_err(uni->dev, "%s: invalid uni state( %d)\n", __func__, (int)uni->state); return -EBUSY; } /* Pinctrl: switch pinstate to sleep */ ret = pinctrl_pm_select_sleep_state(uni->dev); if (ret) dev_err(uni->dev, "%s: failed to select pinctrl state\n", __func__); return ret; } static int sti_uniperiph_resume(struct snd_soc_component *component) { struct sti_uniperiph_data *priv = snd_soc_component_get_drvdata(component); struct uniperif *uni = priv->dai_data.uni; int ret; if (priv->dai_data.stream == SNDRV_PCM_STREAM_PLAYBACK) { ret = uni_player_resume(uni); if (ret) return ret; } /* pinctrl: switch pinstate to default */ ret = pinctrl_pm_select_default_state(uni->dev); if (ret) dev_err(uni->dev, "%s: failed to select pinctrl state\n", __func__); return ret; } int sti_uniperiph_dai_probe(struct snd_soc_dai *dai) { struct sti_uniperiph_data *priv = snd_soc_dai_get_drvdata(dai); struct sti_uniperiph_dai *dai_data = &priv->dai_data; /* DMA settings*/ if (priv->dai_data.stream == SNDRV_PCM_STREAM_PLAYBACK) snd_soc_dai_init_dma_data(dai, &dai_data->dma_data, NULL); else snd_soc_dai_init_dma_data(dai, NULL, &dai_data->dma_data); dai_data->dma_data.addr = dai_data->uni->fifo_phys_address; dai_data->dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; return sti_uniperiph_dai_create_ctrl(dai); } static const struct snd_soc_dai_ops sti_uniperiph_dai_ops = { .probe = sti_uniperiph_dai_probe, }; static const struct snd_soc_dai_driver sti_uniperiph_dai_template = { .ops = &sti_uniperiph_dai_ops, }; static const struct snd_soc_component_driver sti_uniperiph_dai_component = { .name = "sti_cpu_dai", .suspend = sti_uniperiph_suspend, .resume = sti_uniperiph_resume, .legacy_dai_naming = 1, }; static int sti_uniperiph_cpu_dai_of(struct device_node *node, struct sti_uniperiph_data *priv) { struct device *dev = &priv->pdev->dev; struct sti_uniperiph_dai *dai_data = &priv->dai_data; struct snd_soc_dai_driver *dai = priv->dai; struct snd_soc_pcm_stream *stream; struct uniperif *uni; const struct of_device_id *of_id; const struct sti_uniperiph_dev_data *dev_data; const char *mode; int ret; /* Populate data structure depending on compatibility */ of_id = of_match_node(snd_soc_sti_match, node); if (!of_id->data) { dev_err(dev, "data associated to device is missing\n"); return -EINVAL; } dev_data = (struct sti_uniperiph_dev_data *)of_id->data; uni = devm_kzalloc(dev, sizeof(*uni), GFP_KERNEL); if (!uni) return -ENOMEM; uni->id = dev_data->id; uni->ver = dev_data->version; *dai = sti_uniperiph_dai_template; dai->name = dev_data->dai_names; /* Get resources and base address */ uni->base = devm_platform_get_and_ioremap_resource(priv->pdev, 0, &uni->mem_region); if (IS_ERR(uni->base)) return PTR_ERR(uni->base); uni->fifo_phys_address = uni->mem_region->start + UNIPERIF_FIFO_DATA_OFFSET(uni); uni->irq = platform_get_irq(priv->pdev, 0); if (uni->irq < 0) return -ENXIO; uni->type = dev_data->type; /* check if player should be configured for tdm */ if (dev_data->type & SND_ST_UNIPERIF_TYPE_TDM) { if (!of_property_read_string(node, "st,tdm-mode", &mode)) uni->type = SND_ST_UNIPERIF_TYPE_TDM; else uni->type = SND_ST_UNIPERIF_TYPE_PCM; } dai_data->uni = uni; dai_data->stream = dev_data->stream; if (priv->dai_data.stream == SNDRV_PCM_STREAM_PLAYBACK) { ret = uni_player_init(priv->pdev, uni); stream = &dai->playback; } else { ret = uni_reader_init(priv->pdev, uni); stream = &dai->capture; } if (ret < 0) return ret; dai->ops = uni->dai_ops; stream->stream_name = dai->name; stream->channels_min = uni->hw->channels_min; stream->channels_max = uni->hw->channels_max; stream->rates = uni->hw->rates; stream->formats = uni->hw->formats; return 0; } static int sti_uniperiph_probe(struct platform_device *pdev) { struct sti_uniperiph_data *priv; struct device_node *node = pdev->dev.of_node; int ret; /* Allocate the private data and the CPU_DAI array */ priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dai = devm_kzalloc(&pdev->dev, sizeof(*priv->dai), GFP_KERNEL); if (!priv->dai) return -ENOMEM; priv->pdev = pdev; ret = sti_uniperiph_cpu_dai_of(node, priv); if (ret < 0) return ret; dev_set_drvdata(&pdev->dev, priv); ret = devm_snd_soc_register_component(&pdev->dev, &sti_uniperiph_dai_component, priv->dai, 1); if (ret < 0) return ret; return devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0); } static struct platform_driver sti_uniperiph_driver = { .driver = { .name = "sti-uniperiph-dai", .of_match_table = snd_soc_sti_match, }, .probe = sti_uniperiph_probe, }; module_platform_driver(sti_uniperiph_driver); MODULE_DESCRIPTION("uniperipheral DAI driver"); MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1