Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Ahern | 4453 | 23.71% | 14 | 6.06% |
Arnaldo Carvalho de Melo | 4024 | 21.43% | 56 | 24.24% |
Ingo Molnar | 2559 | 13.63% | 27 | 11.69% |
Namhyung Kim | 1766 | 9.40% | 27 | 11.69% |
Frédéric Weisbecker | 1541 | 8.21% | 14 | 6.06% |
Madadi Vineeth Reddy | 945 | 5.03% | 5 | 2.16% |
Jiri Olsa | 798 | 4.25% | 20 | 8.66% |
Yang Jihong | 480 | 2.56% | 8 | 3.46% |
Josef Bacik | 394 | 2.10% | 1 | 0.43% |
Ian Rogers | 380 | 2.02% | 11 | 4.76% |
Yunlong Song | 307 | 1.63% | 9 | 3.90% |
Changbin Du | 256 | 1.36% | 2 | 0.87% |
Mike Galbraith | 204 | 1.09% | 2 | 0.87% |
Brendan Gregg | 120 | 0.64% | 1 | 0.43% |
Steven Rostedt | 120 | 0.64% | 1 | 0.43% |
Joel A Fernandes | 52 | 0.28% | 1 | 0.43% |
Davidlohr Bueso A | 47 | 0.25% | 1 | 0.43% |
Chunxin Zang | 45 | 0.24% | 1 | 0.43% |
Xiao Guangrong | 41 | 0.22% | 2 | 0.87% |
Fernand Sieber | 38 | 0.20% | 2 | 0.87% |
Dongsheng Yang | 37 | 0.20% | 3 | 1.30% |
Li Wei | 30 | 0.16% | 1 | 0.43% |
Adrian Hunter | 22 | 0.12% | 3 | 1.30% |
Ze Gao | 21 | 0.11% | 1 | 0.43% |
Ramkumar Ramachandra | 19 | 0.10% | 2 | 0.87% |
Mamatha Inamdar | 15 | 0.08% | 1 | 0.43% |
Irina Tirdea | 14 | 0.07% | 2 | 0.87% |
James Clark | 13 | 0.07% | 1 | 0.43% |
Masami Hiramatsu | 13 | 0.07% | 1 | 0.43% |
Hari Bathini | 5 | 0.03% | 1 | 0.43% |
Yann Droneaud | 5 | 0.03% | 1 | 0.43% |
Jiri Pirko | 5 | 0.03% | 1 | 0.43% |
Andi Kleen | 3 | 0.02% | 1 | 0.43% |
Markus Trippelsdorf | 3 | 0.02% | 1 | 0.43% |
Tom Zanussi | 1 | 0.01% | 1 | 0.43% |
Rasmus Villemoes | 1 | 0.01% | 1 | 0.43% |
Stéphane Eranian | 1 | 0.01% | 1 | 0.43% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.43% |
Ian Munsie | 1 | 0.01% | 1 | 0.43% |
Josh Poimboeuf | 1 | 0.01% | 1 | 0.43% |
Total | 18781 | 231 |
// SPDX-License-Identifier: GPL-2.0 #include "builtin.h" #include "perf-sys.h" #include "util/cpumap.h" #include "util/evlist.h" #include "util/evsel.h" #include "util/evsel_fprintf.h" #include "util/mutex.h" #include "util/symbol.h" #include "util/thread.h" #include "util/header.h" #include "util/session.h" #include "util/tool.h" #include "util/cloexec.h" #include "util/thread_map.h" #include "util/color.h" #include "util/stat.h" #include "util/string2.h" #include "util/callchain.h" #include "util/time-utils.h" #include <subcmd/pager.h> #include <subcmd/parse-options.h> #include "util/trace-event.h" #include "util/debug.h" #include "util/event.h" #include "util/util.h" #include <linux/kernel.h> #include <linux/log2.h> #include <linux/zalloc.h> #include <sys/prctl.h> #include <sys/resource.h> #include <inttypes.h> #include <errno.h> #include <semaphore.h> #include <pthread.h> #include <math.h> #include <api/fs/fs.h> #include <perf/cpumap.h> #include <linux/time64.h> #include <linux/err.h> #include <linux/ctype.h> #define PR_SET_NAME 15 /* Set process name */ #define MAX_CPUS 4096 #define COMM_LEN 20 #define SYM_LEN 129 #define MAX_PID 1024000 static const char *cpu_list; static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS); struct sched_atom; struct task_desc { unsigned long nr; unsigned long pid; char comm[COMM_LEN]; unsigned long nr_events; unsigned long curr_event; struct sched_atom **atoms; pthread_t thread; sem_t sleep_sem; sem_t ready_for_work; sem_t work_done_sem; u64 cpu_usage; }; enum sched_event_type { SCHED_EVENT_RUN, SCHED_EVENT_SLEEP, SCHED_EVENT_WAKEUP, SCHED_EVENT_MIGRATION, }; struct sched_atom { enum sched_event_type type; int specific_wait; u64 timestamp; u64 duration; unsigned long nr; sem_t *wait_sem; struct task_desc *wakee; }; enum thread_state { THREAD_SLEEPING = 0, THREAD_WAIT_CPU, THREAD_SCHED_IN, THREAD_IGNORE }; struct work_atom { struct list_head list; enum thread_state state; u64 sched_out_time; u64 wake_up_time; u64 sched_in_time; u64 runtime; }; struct work_atoms { struct list_head work_list; struct thread *thread; struct rb_node node; u64 max_lat; u64 max_lat_start; u64 max_lat_end; u64 total_lat; u64 nb_atoms; u64 total_runtime; int num_merged; }; typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); struct perf_sched; struct trace_sched_handler { int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine); int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine); int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine); /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ int (*fork_event)(struct perf_sched *sched, union perf_event *event, struct machine *machine); int (*migrate_task_event)(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine); }; #define COLOR_PIDS PERF_COLOR_BLUE #define COLOR_CPUS PERF_COLOR_BG_RED struct perf_sched_map { DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); struct perf_cpu *comp_cpus; bool comp; struct perf_thread_map *color_pids; const char *color_pids_str; struct perf_cpu_map *color_cpus; const char *color_cpus_str; const char *task_name; struct strlist *task_names; bool fuzzy; struct perf_cpu_map *cpus; const char *cpus_str; }; struct perf_sched { struct perf_tool tool; const char *sort_order; unsigned long nr_tasks; struct task_desc **pid_to_task; struct task_desc **tasks; const struct trace_sched_handler *tp_handler; struct mutex start_work_mutex; struct mutex work_done_wait_mutex; int profile_cpu; /* * Track the current task - that way we can know whether there's any * weird events, such as a task being switched away that is not current. */ struct perf_cpu max_cpu; u32 *curr_pid; struct thread **curr_thread; struct thread **curr_out_thread; char next_shortname1; char next_shortname2; unsigned int replay_repeat; unsigned long nr_run_events; unsigned long nr_sleep_events; unsigned long nr_wakeup_events; unsigned long nr_sleep_corrections; unsigned long nr_run_events_optimized; unsigned long targetless_wakeups; unsigned long multitarget_wakeups; unsigned long nr_runs; unsigned long nr_timestamps; unsigned long nr_unordered_timestamps; unsigned long nr_context_switch_bugs; unsigned long nr_events; unsigned long nr_lost_chunks; unsigned long nr_lost_events; u64 run_measurement_overhead; u64 sleep_measurement_overhead; u64 start_time; u64 cpu_usage; u64 runavg_cpu_usage; u64 parent_cpu_usage; u64 runavg_parent_cpu_usage; u64 sum_runtime; u64 sum_fluct; u64 run_avg; u64 all_runtime; u64 all_count; u64 *cpu_last_switched; struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; struct list_head sort_list, cmp_pid; bool force; bool skip_merge; struct perf_sched_map map; /* options for timehist command */ bool summary; bool summary_only; bool idle_hist; bool show_callchain; unsigned int max_stack; bool show_cpu_visual; bool show_wakeups; bool show_next; bool show_migrations; bool show_state; u64 skipped_samples; const char *time_str; struct perf_time_interval ptime; struct perf_time_interval hist_time; volatile bool thread_funcs_exit; }; /* per thread run time data */ struct thread_runtime { u64 last_time; /* time of previous sched in/out event */ u64 dt_run; /* run time */ u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ u64 dt_delay; /* time between wakeup and sched-in */ u64 ready_to_run; /* time of wakeup */ struct stats run_stats; u64 total_run_time; u64 total_sleep_time; u64 total_iowait_time; u64 total_preempt_time; u64 total_delay_time; char last_state; char shortname[3]; bool comm_changed; u64 migrations; }; /* per event run time data */ struct evsel_runtime { u64 *last_time; /* time this event was last seen per cpu */ u32 ncpu; /* highest cpu slot allocated */ }; /* per cpu idle time data */ struct idle_thread_runtime { struct thread_runtime tr; struct thread *last_thread; struct rb_root_cached sorted_root; struct callchain_root callchain; struct callchain_cursor cursor; }; /* track idle times per cpu */ static struct thread **idle_threads; static int idle_max_cpu; static char idle_comm[] = "<idle>"; static u64 get_nsecs(void) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; } static void burn_nsecs(struct perf_sched *sched, u64 nsecs) { u64 T0 = get_nsecs(), T1; do { T1 = get_nsecs(); } while (T1 + sched->run_measurement_overhead < T0 + nsecs); } static void sleep_nsecs(u64 nsecs) { struct timespec ts; ts.tv_nsec = nsecs % 999999999; ts.tv_sec = nsecs / 999999999; nanosleep(&ts, NULL); } static void calibrate_run_measurement_overhead(struct perf_sched *sched) { u64 T0, T1, delta, min_delta = NSEC_PER_SEC; int i; for (i = 0; i < 10; i++) { T0 = get_nsecs(); burn_nsecs(sched, 0); T1 = get_nsecs(); delta = T1-T0; min_delta = min(min_delta, delta); } sched->run_measurement_overhead = min_delta; printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); } static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) { u64 T0, T1, delta, min_delta = NSEC_PER_SEC; int i; for (i = 0; i < 10; i++) { T0 = get_nsecs(); sleep_nsecs(10000); T1 = get_nsecs(); delta = T1-T0; min_delta = min(min_delta, delta); } min_delta -= 10000; sched->sleep_measurement_overhead = min_delta; printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); } static struct sched_atom * get_new_event(struct task_desc *task, u64 timestamp) { struct sched_atom *event = zalloc(sizeof(*event)); unsigned long idx = task->nr_events; size_t size; event->timestamp = timestamp; event->nr = idx; task->nr_events++; size = sizeof(struct sched_atom *) * task->nr_events; task->atoms = realloc(task->atoms, size); BUG_ON(!task->atoms); task->atoms[idx] = event; return event; } static struct sched_atom *last_event(struct task_desc *task) { if (!task->nr_events) return NULL; return task->atoms[task->nr_events - 1]; } static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, u64 timestamp, u64 duration) { struct sched_atom *event, *curr_event = last_event(task); /* * optimize an existing RUN event by merging this one * to it: */ if (curr_event && curr_event->type == SCHED_EVENT_RUN) { sched->nr_run_events_optimized++; curr_event->duration += duration; return; } event = get_new_event(task, timestamp); event->type = SCHED_EVENT_RUN; event->duration = duration; sched->nr_run_events++; } static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, u64 timestamp, struct task_desc *wakee) { struct sched_atom *event, *wakee_event; event = get_new_event(task, timestamp); event->type = SCHED_EVENT_WAKEUP; event->wakee = wakee; wakee_event = last_event(wakee); if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { sched->targetless_wakeups++; return; } if (wakee_event->wait_sem) { sched->multitarget_wakeups++; return; } wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); sem_init(wakee_event->wait_sem, 0, 0); wakee_event->specific_wait = 1; event->wait_sem = wakee_event->wait_sem; sched->nr_wakeup_events++; } static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, u64 timestamp, const char task_state __maybe_unused) { struct sched_atom *event = get_new_event(task, timestamp); event->type = SCHED_EVENT_SLEEP; sched->nr_sleep_events++; } static struct task_desc *register_pid(struct perf_sched *sched, unsigned long pid, const char *comm) { struct task_desc *task; static int pid_max; if (sched->pid_to_task == NULL) { if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) pid_max = MAX_PID; BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); } if (pid >= (unsigned long)pid_max) { BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * sizeof(struct task_desc *))) == NULL); while (pid >= (unsigned long)pid_max) sched->pid_to_task[pid_max++] = NULL; } task = sched->pid_to_task[pid]; if (task) return task; task = zalloc(sizeof(*task)); task->pid = pid; task->nr = sched->nr_tasks; strcpy(task->comm, comm); /* * every task starts in sleeping state - this gets ignored * if there's no wakeup pointing to this sleep state: */ add_sched_event_sleep(sched, task, 0, 0); sched->pid_to_task[pid] = task; sched->nr_tasks++; sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); BUG_ON(!sched->tasks); sched->tasks[task->nr] = task; if (verbose > 0) printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); return task; } static void print_task_traces(struct perf_sched *sched) { struct task_desc *task; unsigned long i; for (i = 0; i < sched->nr_tasks; i++) { task = sched->tasks[i]; printf("task %6ld (%20s:%10ld), nr_events: %ld\n", task->nr, task->comm, task->pid, task->nr_events); } } static void add_cross_task_wakeups(struct perf_sched *sched) { struct task_desc *task1, *task2; unsigned long i, j; for (i = 0; i < sched->nr_tasks; i++) { task1 = sched->tasks[i]; j = i + 1; if (j == sched->nr_tasks) j = 0; task2 = sched->tasks[j]; add_sched_event_wakeup(sched, task1, 0, task2); } } static void perf_sched__process_event(struct perf_sched *sched, struct sched_atom *atom) { int ret = 0; switch (atom->type) { case SCHED_EVENT_RUN: burn_nsecs(sched, atom->duration); break; case SCHED_EVENT_SLEEP: if (atom->wait_sem) ret = sem_wait(atom->wait_sem); BUG_ON(ret); break; case SCHED_EVENT_WAKEUP: if (atom->wait_sem) ret = sem_post(atom->wait_sem); BUG_ON(ret); break; case SCHED_EVENT_MIGRATION: break; default: BUG_ON(1); } } static u64 get_cpu_usage_nsec_parent(void) { struct rusage ru; u64 sum; int err; err = getrusage(RUSAGE_SELF, &ru); BUG_ON(err); sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; return sum; } static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) { struct perf_event_attr attr; char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; int fd; struct rlimit limit; bool need_privilege = false; memset(&attr, 0, sizeof(attr)); attr.type = PERF_TYPE_SOFTWARE; attr.config = PERF_COUNT_SW_TASK_CLOCK; force_again: fd = sys_perf_event_open(&attr, 0, -1, -1, perf_event_open_cloexec_flag()); if (fd < 0) { if (errno == EMFILE) { if (sched->force) { BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); limit.rlim_cur += sched->nr_tasks - cur_task; if (limit.rlim_cur > limit.rlim_max) { limit.rlim_max = limit.rlim_cur; need_privilege = true; } if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { if (need_privilege && errno == EPERM) strcpy(info, "Need privilege\n"); } else goto force_again; } else strcpy(info, "Have a try with -f option\n"); } pr_err("Error: sys_perf_event_open() syscall returned " "with %d (%s)\n%s", fd, str_error_r(errno, sbuf, sizeof(sbuf)), info); exit(EXIT_FAILURE); } return fd; } static u64 get_cpu_usage_nsec_self(int fd) { u64 runtime; int ret; ret = read(fd, &runtime, sizeof(runtime)); BUG_ON(ret != sizeof(runtime)); return runtime; } struct sched_thread_parms { struct task_desc *task; struct perf_sched *sched; int fd; }; static void *thread_func(void *ctx) { struct sched_thread_parms *parms = ctx; struct task_desc *this_task = parms->task; struct perf_sched *sched = parms->sched; u64 cpu_usage_0, cpu_usage_1; unsigned long i, ret; char comm2[22]; int fd = parms->fd; zfree(&parms); sprintf(comm2, ":%s", this_task->comm); prctl(PR_SET_NAME, comm2); if (fd < 0) return NULL; while (!sched->thread_funcs_exit) { ret = sem_post(&this_task->ready_for_work); BUG_ON(ret); mutex_lock(&sched->start_work_mutex); mutex_unlock(&sched->start_work_mutex); cpu_usage_0 = get_cpu_usage_nsec_self(fd); for (i = 0; i < this_task->nr_events; i++) { this_task->curr_event = i; perf_sched__process_event(sched, this_task->atoms[i]); } cpu_usage_1 = get_cpu_usage_nsec_self(fd); this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; ret = sem_post(&this_task->work_done_sem); BUG_ON(ret); mutex_lock(&sched->work_done_wait_mutex); mutex_unlock(&sched->work_done_wait_mutex); } return NULL; } static void create_tasks(struct perf_sched *sched) EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex) EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex) { struct task_desc *task; pthread_attr_t attr; unsigned long i; int err; err = pthread_attr_init(&attr); BUG_ON(err); err = pthread_attr_setstacksize(&attr, (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN)); BUG_ON(err); mutex_lock(&sched->start_work_mutex); mutex_lock(&sched->work_done_wait_mutex); for (i = 0; i < sched->nr_tasks; i++) { struct sched_thread_parms *parms = malloc(sizeof(*parms)); BUG_ON(parms == NULL); parms->task = task = sched->tasks[i]; parms->sched = sched; parms->fd = self_open_counters(sched, i); sem_init(&task->sleep_sem, 0, 0); sem_init(&task->ready_for_work, 0, 0); sem_init(&task->work_done_sem, 0, 0); task->curr_event = 0; err = pthread_create(&task->thread, &attr, thread_func, parms); BUG_ON(err); } } static void destroy_tasks(struct perf_sched *sched) UNLOCK_FUNCTION(sched->start_work_mutex) UNLOCK_FUNCTION(sched->work_done_wait_mutex) { struct task_desc *task; unsigned long i; int err; mutex_unlock(&sched->start_work_mutex); mutex_unlock(&sched->work_done_wait_mutex); /* Get rid of threads so they won't be upset by mutex destrunction */ for (i = 0; i < sched->nr_tasks; i++) { task = sched->tasks[i]; err = pthread_join(task->thread, NULL); BUG_ON(err); sem_destroy(&task->sleep_sem); sem_destroy(&task->ready_for_work); sem_destroy(&task->work_done_sem); } } static void wait_for_tasks(struct perf_sched *sched) EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) { u64 cpu_usage_0, cpu_usage_1; struct task_desc *task; unsigned long i, ret; sched->start_time = get_nsecs(); sched->cpu_usage = 0; mutex_unlock(&sched->work_done_wait_mutex); for (i = 0; i < sched->nr_tasks; i++) { task = sched->tasks[i]; ret = sem_wait(&task->ready_for_work); BUG_ON(ret); sem_init(&task->ready_for_work, 0, 0); } mutex_lock(&sched->work_done_wait_mutex); cpu_usage_0 = get_cpu_usage_nsec_parent(); mutex_unlock(&sched->start_work_mutex); for (i = 0; i < sched->nr_tasks; i++) { task = sched->tasks[i]; ret = sem_wait(&task->work_done_sem); BUG_ON(ret); sem_init(&task->work_done_sem, 0, 0); sched->cpu_usage += task->cpu_usage; task->cpu_usage = 0; } cpu_usage_1 = get_cpu_usage_nsec_parent(); if (!sched->runavg_cpu_usage) sched->runavg_cpu_usage = sched->cpu_usage; sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; if (!sched->runavg_parent_cpu_usage) sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + sched->parent_cpu_usage)/sched->replay_repeat; mutex_lock(&sched->start_work_mutex); for (i = 0; i < sched->nr_tasks; i++) { task = sched->tasks[i]; sem_init(&task->sleep_sem, 0, 0); task->curr_event = 0; } } static void run_one_test(struct perf_sched *sched) EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) { u64 T0, T1, delta, avg_delta, fluct; T0 = get_nsecs(); wait_for_tasks(sched); T1 = get_nsecs(); delta = T1 - T0; sched->sum_runtime += delta; sched->nr_runs++; avg_delta = sched->sum_runtime / sched->nr_runs; if (delta < avg_delta) fluct = avg_delta - delta; else fluct = delta - avg_delta; sched->sum_fluct += fluct; if (!sched->run_avg) sched->run_avg = delta; sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); printf("cpu: %0.2f / %0.2f", (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); #if 0 /* * rusage statistics done by the parent, these are less * accurate than the sched->sum_exec_runtime based statistics: */ printf(" [%0.2f / %0.2f]", (double)sched->parent_cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); #endif printf("\n"); if (sched->nr_sleep_corrections) printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); sched->nr_sleep_corrections = 0; } static void test_calibrations(struct perf_sched *sched) { u64 T0, T1; T0 = get_nsecs(); burn_nsecs(sched, NSEC_PER_MSEC); T1 = get_nsecs(); printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); T0 = get_nsecs(); sleep_nsecs(NSEC_PER_MSEC); T1 = get_nsecs(); printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); } static int replay_wakeup_event(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine __maybe_unused) { const char *comm = evsel__strval(evsel, sample, "comm"); const u32 pid = evsel__intval(evsel, sample, "pid"); struct task_desc *waker, *wakee; if (verbose > 0) { printf("sched_wakeup event %p\n", evsel); printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); } waker = register_pid(sched, sample->tid, "<unknown>"); wakee = register_pid(sched, pid, comm); add_sched_event_wakeup(sched, waker, sample->time, wakee); return 0; } static int replay_switch_event(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine __maybe_unused) { const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"), *next_comm = evsel__strval(evsel, sample, "next_comm"); const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), next_pid = evsel__intval(evsel, sample, "next_pid"); const char prev_state = evsel__taskstate(evsel, sample, "prev_state"); struct task_desc *prev, __maybe_unused *next; u64 timestamp0, timestamp = sample->time; int cpu = sample->cpu; s64 delta; if (verbose > 0) printf("sched_switch event %p\n", evsel); if (cpu >= MAX_CPUS || cpu < 0) return 0; timestamp0 = sched->cpu_last_switched[cpu]; if (timestamp0) delta = timestamp - timestamp0; else delta = 0; if (delta < 0) { pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); return -1; } pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", prev_comm, prev_pid, next_comm, next_pid, delta); prev = register_pid(sched, prev_pid, prev_comm); next = register_pid(sched, next_pid, next_comm); sched->cpu_last_switched[cpu] = timestamp; add_sched_event_run(sched, prev, timestamp, delta); add_sched_event_sleep(sched, prev, timestamp, prev_state); return 0; } static int replay_fork_event(struct perf_sched *sched, union perf_event *event, struct machine *machine) { struct thread *child, *parent; child = machine__findnew_thread(machine, event->fork.pid, event->fork.tid); parent = machine__findnew_thread(machine, event->fork.ppid, event->fork.ptid); if (child == NULL || parent == NULL) { pr_debug("thread does not exist on fork event: child %p, parent %p\n", child, parent); goto out_put; } if (verbose > 0) { printf("fork event\n"); printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent)); printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child)); } register_pid(sched, thread__tid(parent), thread__comm_str(parent)); register_pid(sched, thread__tid(child), thread__comm_str(child)); out_put: thread__put(child); thread__put(parent); return 0; } struct sort_dimension { const char *name; sort_fn_t cmp; struct list_head list; }; /* * handle runtime stats saved per thread */ static struct thread_runtime *thread__init_runtime(struct thread *thread) { struct thread_runtime *r; r = zalloc(sizeof(struct thread_runtime)); if (!r) return NULL; init_stats(&r->run_stats); thread__set_priv(thread, r); return r; } static struct thread_runtime *thread__get_runtime(struct thread *thread) { struct thread_runtime *tr; tr = thread__priv(thread); if (tr == NULL) { tr = thread__init_runtime(thread); if (tr == NULL) pr_debug("Failed to malloc memory for runtime data.\n"); } return tr; } static int thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) { struct sort_dimension *sort; int ret = 0; BUG_ON(list_empty(list)); list_for_each_entry(sort, list, list) { ret = sort->cmp(l, r); if (ret) return ret; } return ret; } static struct work_atoms * thread_atoms_search(struct rb_root_cached *root, struct thread *thread, struct list_head *sort_list) { struct rb_node *node = root->rb_root.rb_node; struct work_atoms key = { .thread = thread }; while (node) { struct work_atoms *atoms; int cmp; atoms = container_of(node, struct work_atoms, node); cmp = thread_lat_cmp(sort_list, &key, atoms); if (cmp > 0) node = node->rb_left; else if (cmp < 0) node = node->rb_right; else { BUG_ON(thread != atoms->thread); return atoms; } } return NULL; } static void __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, struct list_head *sort_list) { struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; bool leftmost = true; while (*new) { struct work_atoms *this; int cmp; this = container_of(*new, struct work_atoms, node); parent = *new; cmp = thread_lat_cmp(sort_list, data, this); if (cmp > 0) new = &((*new)->rb_left); else { new = &((*new)->rb_right); leftmost = false; } } rb_link_node(&data->node, parent, new); rb_insert_color_cached(&data->node, root, leftmost); } static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) { struct work_atoms *atoms = zalloc(sizeof(*atoms)); if (!atoms) { pr_err("No memory at %s\n", __func__); return -1; } atoms->thread = thread__get(thread); INIT_LIST_HEAD(&atoms->work_list); __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); return 0; } static int add_sched_out_event(struct work_atoms *atoms, char run_state, u64 timestamp) { struct work_atom *atom = zalloc(sizeof(*atom)); if (!atom) { pr_err("Non memory at %s", __func__); return -1; } atom->sched_out_time = timestamp; if (run_state == 'R') { atom->state = THREAD_WAIT_CPU; atom->wake_up_time = atom->sched_out_time; } list_add_tail(&atom->list, &atoms->work_list); return 0; } static void add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __maybe_unused) { struct work_atom *atom; BUG_ON(list_empty(&atoms->work_list)); atom = list_entry(atoms->work_list.prev, struct work_atom, list); atom->runtime += delta; atoms->total_runtime += delta; } static void add_sched_in_event(struct work_atoms *atoms, u64 timestamp) { struct work_atom *atom; u64 delta; if (list_empty(&atoms->work_list)) return; atom = list_entry(atoms->work_list.prev, struct work_atom, list); if (atom->state != THREAD_WAIT_CPU) return; if (timestamp < atom->wake_up_time) { atom->state = THREAD_IGNORE; return; } atom->state = THREAD_SCHED_IN; atom->sched_in_time = timestamp; delta = atom->sched_in_time - atom->wake_up_time; atoms->total_lat += delta; if (delta > atoms->max_lat) { atoms->max_lat = delta; atoms->max_lat_start = atom->wake_up_time; atoms->max_lat_end = timestamp; } atoms->nb_atoms++; } static int latency_switch_event(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), next_pid = evsel__intval(evsel, sample, "next_pid"); const char prev_state = evsel__taskstate(evsel, sample, "prev_state"); struct work_atoms *out_events, *in_events; struct thread *sched_out, *sched_in; u64 timestamp0, timestamp = sample->time; int cpu = sample->cpu, err = -1; s64 delta; BUG_ON(cpu >= MAX_CPUS || cpu < 0); timestamp0 = sched->cpu_last_switched[cpu]; sched->cpu_last_switched[cpu] = timestamp; if (timestamp0) delta = timestamp - timestamp0; else delta = 0; if (delta < 0) { pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); return -1; } sched_out = machine__findnew_thread(machine, -1, prev_pid); sched_in = machine__findnew_thread(machine, -1, next_pid); if (sched_out == NULL || sched_in == NULL) goto out_put; out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); if (!out_events) { if (thread_atoms_insert(sched, sched_out)) goto out_put; out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); if (!out_events) { pr_err("out-event: Internal tree error"); goto out_put; } } if (add_sched_out_event(out_events, prev_state, timestamp)) return -1; in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); if (!in_events) { if (thread_atoms_insert(sched, sched_in)) goto out_put; in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); if (!in_events) { pr_err("in-event: Internal tree error"); goto out_put; } /* * Take came in we have not heard about yet, * add in an initial atom in runnable state: */ if (add_sched_out_event(in_events, 'R', timestamp)) goto out_put; } add_sched_in_event(in_events, timestamp); err = 0; out_put: thread__put(sched_out); thread__put(sched_in); return err; } static int latency_runtime_event(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 pid = evsel__intval(evsel, sample, "pid"); const u64 runtime = evsel__intval(evsel, sample, "runtime"); struct thread *thread = machine__findnew_thread(machine, -1, pid); struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); u64 timestamp = sample->time; int cpu = sample->cpu, err = -1; if (thread == NULL) return -1; BUG_ON(cpu >= MAX_CPUS || cpu < 0); if (!atoms) { if (thread_atoms_insert(sched, thread)) goto out_put; atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); if (!atoms) { pr_err("in-event: Internal tree error"); goto out_put; } if (add_sched_out_event(atoms, 'R', timestamp)) goto out_put; } add_runtime_event(atoms, runtime, timestamp); err = 0; out_put: thread__put(thread); return err; } static int latency_wakeup_event(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 pid = evsel__intval(evsel, sample, "pid"); struct work_atoms *atoms; struct work_atom *atom; struct thread *wakee; u64 timestamp = sample->time; int err = -1; wakee = machine__findnew_thread(machine, -1, pid); if (wakee == NULL) return -1; atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); if (!atoms) { if (thread_atoms_insert(sched, wakee)) goto out_put; atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); if (!atoms) { pr_err("wakeup-event: Internal tree error"); goto out_put; } if (add_sched_out_event(atoms, 'S', timestamp)) goto out_put; } BUG_ON(list_empty(&atoms->work_list)); atom = list_entry(atoms->work_list.prev, struct work_atom, list); /* * As we do not guarantee the wakeup event happens when * task is out of run queue, also may happen when task is * on run queue and wakeup only change ->state to TASK_RUNNING, * then we should not set the ->wake_up_time when wake up a * task which is on run queue. * * You WILL be missing events if you've recorded only * one CPU, or are only looking at only one, so don't * skip in this case. */ if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) goto out_ok; sched->nr_timestamps++; if (atom->sched_out_time > timestamp) { sched->nr_unordered_timestamps++; goto out_ok; } atom->state = THREAD_WAIT_CPU; atom->wake_up_time = timestamp; out_ok: err = 0; out_put: thread__put(wakee); return err; } static int latency_migrate_task_event(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 pid = evsel__intval(evsel, sample, "pid"); u64 timestamp = sample->time; struct work_atoms *atoms; struct work_atom *atom; struct thread *migrant; int err = -1; /* * Only need to worry about migration when profiling one CPU. */ if (sched->profile_cpu == -1) return 0; migrant = machine__findnew_thread(machine, -1, pid); if (migrant == NULL) return -1; atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); if (!atoms) { if (thread_atoms_insert(sched, migrant)) goto out_put; register_pid(sched, thread__tid(migrant), thread__comm_str(migrant)); atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); if (!atoms) { pr_err("migration-event: Internal tree error"); goto out_put; } if (add_sched_out_event(atoms, 'R', timestamp)) goto out_put; } BUG_ON(list_empty(&atoms->work_list)); atom = list_entry(atoms->work_list.prev, struct work_atom, list); atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; sched->nr_timestamps++; if (atom->sched_out_time > timestamp) sched->nr_unordered_timestamps++; err = 0; out_put: thread__put(migrant); return err; } static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) { int i; int ret; u64 avg; char max_lat_start[32], max_lat_end[32]; if (!work_list->nb_atoms) return; /* * Ignore idle threads: */ if (!strcmp(thread__comm_str(work_list->thread), "swapper")) return; sched->all_runtime += work_list->total_runtime; sched->all_count += work_list->nb_atoms; if (work_list->num_merged > 1) { ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); } else { ret = printf(" %s:%d ", thread__comm_str(work_list->thread), thread__tid(work_list->thread)); } for (i = 0; i < 24 - ret; i++) printf(" "); avg = work_list->total_lat / work_list->nb_atoms; timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start)); timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end)); printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n", (double)work_list->total_runtime / NSEC_PER_MSEC, work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, (double)work_list->max_lat / NSEC_PER_MSEC, max_lat_start, max_lat_end); } static int pid_cmp(struct work_atoms *l, struct work_atoms *r) { pid_t l_tid, r_tid; if (RC_CHK_EQUAL(l->thread, r->thread)) return 0; l_tid = thread__tid(l->thread); r_tid = thread__tid(r->thread); if (l_tid < r_tid) return -1; if (l_tid > r_tid) return 1; return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread)); } static int avg_cmp(struct work_atoms *l, struct work_atoms *r) { u64 avgl, avgr; if (!l->nb_atoms) return -1; if (!r->nb_atoms) return 1; avgl = l->total_lat / l->nb_atoms; avgr = r->total_lat / r->nb_atoms; if (avgl < avgr) return -1; if (avgl > avgr) return 1; return 0; } static int max_cmp(struct work_atoms *l, struct work_atoms *r) { if (l->max_lat < r->max_lat) return -1; if (l->max_lat > r->max_lat) return 1; return 0; } static int switch_cmp(struct work_atoms *l, struct work_atoms *r) { if (l->nb_atoms < r->nb_atoms) return -1; if (l->nb_atoms > r->nb_atoms) return 1; return 0; } static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) { if (l->total_runtime < r->total_runtime) return -1; if (l->total_runtime > r->total_runtime) return 1; return 0; } static int sort_dimension__add(const char *tok, struct list_head *list) { size_t i; static struct sort_dimension avg_sort_dimension = { .name = "avg", .cmp = avg_cmp, }; static struct sort_dimension max_sort_dimension = { .name = "max", .cmp = max_cmp, }; static struct sort_dimension pid_sort_dimension = { .name = "pid", .cmp = pid_cmp, }; static struct sort_dimension runtime_sort_dimension = { .name = "runtime", .cmp = runtime_cmp, }; static struct sort_dimension switch_sort_dimension = { .name = "switch", .cmp = switch_cmp, }; struct sort_dimension *available_sorts[] = { &pid_sort_dimension, &avg_sort_dimension, &max_sort_dimension, &switch_sort_dimension, &runtime_sort_dimension, }; for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { if (!strcmp(available_sorts[i]->name, tok)) { list_add_tail(&available_sorts[i]->list, list); return 0; } } return -1; } static void perf_sched__sort_lat(struct perf_sched *sched) { struct rb_node *node; struct rb_root_cached *root = &sched->atom_root; again: for (;;) { struct work_atoms *data; node = rb_first_cached(root); if (!node) break; rb_erase_cached(node, root); data = rb_entry(node, struct work_atoms, node); __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); } if (root == &sched->atom_root) { root = &sched->merged_atom_root; goto again; } } static int process_sched_wakeup_event(struct perf_tool *tool, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); if (sched->tp_handler->wakeup_event) return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); return 0; } static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused, struct evsel *evsel __maybe_unused, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { return 0; } union map_priv { void *ptr; bool color; }; static bool thread__has_color(struct thread *thread) { union map_priv priv = { .ptr = thread__priv(thread), }; return priv.color; } static struct thread* map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) { struct thread *thread = machine__findnew_thread(machine, pid, tid); union map_priv priv = { .color = false, }; if (!sched->map.color_pids || !thread || thread__priv(thread)) return thread; if (thread_map__has(sched->map.color_pids, tid)) priv.color = true; thread__set_priv(thread, priv.ptr); return thread; } static bool sched_match_task(struct perf_sched *sched, const char *comm_str) { bool fuzzy_match = sched->map.fuzzy; struct strlist *task_names = sched->map.task_names; struct str_node *node; strlist__for_each_entry(node, task_names) { bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) : !strcmp(comm_str, node->s); if (match_found) return true; } return false; } static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr, const char *color, bool sched_out) { for (int i = 0; i < cpus_nr; i++) { struct perf_cpu cpu = { .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i, }; struct thread *curr_thread = sched->curr_thread[cpu.cpu]; struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu]; struct thread_runtime *curr_tr; const char *pid_color = color; const char *cpu_color = color; char symbol = ' '; struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread; if (thread_to_check && thread__has_color(thread_to_check)) pid_color = COLOR_PIDS; if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu)) cpu_color = COLOR_CPUS; if (cpu.cpu == this_cpu.cpu) symbol = '*'; color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol); thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] : sched->curr_thread[cpu.cpu]; if (thread_to_check) { curr_tr = thread__get_runtime(thread_to_check); if (curr_tr == NULL) return; if (sched_out) { if (cpu.cpu == this_cpu.cpu) color_fprintf(stdout, color, "- "); else { curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]); if (curr_tr != NULL) color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); } } else color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); } else color_fprintf(stdout, color, " "); } } static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"); struct thread *sched_in, *sched_out; struct thread_runtime *tr; int new_shortname; u64 timestamp0, timestamp = sample->time; s64 delta; struct perf_cpu this_cpu = { .cpu = sample->cpu, }; int cpus_nr; int proceed; bool new_cpu = false; const char *color = PERF_COLOR_NORMAL; char stimestamp[32]; const char *str; BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0); if (this_cpu.cpu > sched->max_cpu.cpu) sched->max_cpu = this_cpu; if (sched->map.comp) { cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) { sched->map.comp_cpus[cpus_nr++] = this_cpu; new_cpu = true; } } else cpus_nr = sched->max_cpu.cpu; timestamp0 = sched->cpu_last_switched[this_cpu.cpu]; sched->cpu_last_switched[this_cpu.cpu] = timestamp; if (timestamp0) delta = timestamp - timestamp0; else delta = 0; if (delta < 0) { pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); return -1; } sched_in = map__findnew_thread(sched, machine, -1, next_pid); sched_out = map__findnew_thread(sched, machine, -1, prev_pid); if (sched_in == NULL || sched_out == NULL) return -1; tr = thread__get_runtime(sched_in); if (tr == NULL) { thread__put(sched_in); return -1; } sched->curr_thread[this_cpu.cpu] = thread__get(sched_in); sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out); str = thread__comm_str(sched_in); new_shortname = 0; if (!tr->shortname[0]) { if (!strcmp(thread__comm_str(sched_in), "swapper")) { /* * Don't allocate a letter-number for swapper:0 * as a shortname. Instead, we use '.' for it. */ tr->shortname[0] = '.'; tr->shortname[1] = ' '; } else if (!sched->map.task_name || sched_match_task(sched, str)) { tr->shortname[0] = sched->next_shortname1; tr->shortname[1] = sched->next_shortname2; if (sched->next_shortname1 < 'Z') { sched->next_shortname1++; } else { sched->next_shortname1 = 'A'; if (sched->next_shortname2 < '9') sched->next_shortname2++; else sched->next_shortname2 = '0'; } } else { tr->shortname[0] = '-'; tr->shortname[1] = ' '; } new_shortname = 1; } if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu)) goto out; proceed = 0; str = thread__comm_str(sched_in); /* * Check which of sched_in and sched_out matches the passed --task-name * arguments and call the corresponding print_sched_map. */ if (sched->map.task_name && !sched_match_task(sched, str)) { if (!sched_match_task(sched, thread__comm_str(sched_out))) goto out; else goto sched_out; } else { str = thread__comm_str(sched_out); if (!(sched->map.task_name && !sched_match_task(sched, str))) proceed = 1; } printf(" "); print_sched_map(sched, this_cpu, cpus_nr, color, false); timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); color_fprintf(stdout, color, " %12s secs ", stimestamp); if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) { const char *pid_color = color; if (thread__has_color(sched_in)) pid_color = COLOR_PIDS; color_fprintf(stdout, pid_color, "%s => %s:%d", tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in)); tr->comm_changed = false; } if (sched->map.comp && new_cpu) color_fprintf(stdout, color, " (CPU %d)", this_cpu); if (proceed != 1) { color_fprintf(stdout, color, "\n"); goto out; } sched_out: if (sched->map.task_name) { tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]); if (strcmp(tr->shortname, "") == 0) goto out; if (proceed == 1) color_fprintf(stdout, color, "\n"); printf(" "); print_sched_map(sched, this_cpu, cpus_nr, color, true); timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); color_fprintf(stdout, color, " %12s secs ", stimestamp); } color_fprintf(stdout, color, "\n"); out: if (sched->map.task_name) thread__put(sched_out); thread__put(sched_in); return 0; } static int process_sched_switch_event(struct perf_tool *tool, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); int this_cpu = sample->cpu, err = 0; u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), next_pid = evsel__intval(evsel, sample, "next_pid"); if (sched->curr_pid[this_cpu] != (u32)-1) { /* * Are we trying to switch away a PID that is * not current? */ if (sched->curr_pid[this_cpu] != prev_pid) sched->nr_context_switch_bugs++; } if (sched->tp_handler->switch_event) err = sched->tp_handler->switch_event(sched, evsel, sample, machine); sched->curr_pid[this_cpu] = next_pid; return err; } static int process_sched_runtime_event(struct perf_tool *tool, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); if (sched->tp_handler->runtime_event) return sched->tp_handler->runtime_event(sched, evsel, sample, machine); return 0; } static int perf_sched__process_fork_event(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); /* run the fork event through the perf machinery */ perf_event__process_fork(tool, event, sample, machine); /* and then run additional processing needed for this command */ if (sched->tp_handler->fork_event) return sched->tp_handler->fork_event(sched, event, machine); return 0; } static int process_sched_migrate_task_event(struct perf_tool *tool, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); if (sched->tp_handler->migrate_task_event) return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); return 0; } typedef int (*tracepoint_handler)(struct perf_tool *tool, struct evsel *evsel, struct perf_sample *sample, struct machine *machine); static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct perf_sample *sample, struct evsel *evsel, struct machine *machine) { int err = 0; if (evsel->handler != NULL) { tracepoint_handler f = evsel->handler; err = f(tool, evsel, sample, machine); } return err; } static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine) { struct thread *thread; struct thread_runtime *tr; int err; err = perf_event__process_comm(tool, event, sample, machine); if (err) return err; thread = machine__find_thread(machine, sample->pid, sample->tid); if (!thread) { pr_err("Internal error: can't find thread\n"); return -1; } tr = thread__get_runtime(thread); if (tr == NULL) { thread__put(thread); return -1; } tr->comm_changed = true; thread__put(thread); return 0; } static int perf_sched__read_events(struct perf_sched *sched) { struct evsel_str_handler handlers[] = { { "sched:sched_switch", process_sched_switch_event, }, { "sched:sched_stat_runtime", process_sched_runtime_event, }, { "sched:sched_wakeup", process_sched_wakeup_event, }, { "sched:sched_waking", process_sched_wakeup_event, }, { "sched:sched_wakeup_new", process_sched_wakeup_event, }, { "sched:sched_migrate_task", process_sched_migrate_task_event, }, }; struct perf_session *session; struct perf_data data = { .path = input_name, .mode = PERF_DATA_MODE_READ, .force = sched->force, }; int rc = -1; session = perf_session__new(&data, &sched->tool); if (IS_ERR(session)) { pr_debug("Error creating perf session"); return PTR_ERR(session); } symbol__init(&session->header.env); /* prefer sched_waking if it is captured */ if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) handlers[2].handler = process_sched_wakeup_ignore; if (perf_session__set_tracepoints_handlers(session, handlers)) goto out_delete; if (perf_session__has_traces(session, "record -R")) { int err = perf_session__process_events(session); if (err) { pr_err("Failed to process events, error %d", err); goto out_delete; } sched->nr_events = session->evlist->stats.nr_events[0]; sched->nr_lost_events = session->evlist->stats.total_lost; sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; } rc = 0; out_delete: perf_session__delete(session); return rc; } /* * scheduling times are printed as msec.usec */ static inline void print_sched_time(unsigned long long nsecs, int width) { unsigned long msecs; unsigned long usecs; msecs = nsecs / NSEC_PER_MSEC; nsecs -= msecs * NSEC_PER_MSEC; usecs = nsecs / NSEC_PER_USEC; printf("%*lu.%03lu ", width, msecs, usecs); } /* * returns runtime data for event, allocating memory for it the * first time it is used. */ static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel) { struct evsel_runtime *r = evsel->priv; if (r == NULL) { r = zalloc(sizeof(struct evsel_runtime)); evsel->priv = r; } return r; } /* * save last time event was seen per cpu */ static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu) { struct evsel_runtime *r = evsel__get_runtime(evsel); if (r == NULL) return; if ((cpu >= r->ncpu) || (r->last_time == NULL)) { int i, n = __roundup_pow_of_two(cpu+1); void *p = r->last_time; p = realloc(r->last_time, n * sizeof(u64)); if (!p) return; r->last_time = p; for (i = r->ncpu; i < n; ++i) r->last_time[i] = (u64) 0; r->ncpu = n; } r->last_time[cpu] = timestamp; } /* returns last time this event was seen on the given cpu */ static u64 evsel__get_time(struct evsel *evsel, u32 cpu) { struct evsel_runtime *r = evsel__get_runtime(evsel); if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) return 0; return r->last_time[cpu]; } static int comm_width = 30; static char *timehist_get_commstr(struct thread *thread) { static char str[32]; const char *comm = thread__comm_str(thread); pid_t tid = thread__tid(thread); pid_t pid = thread__pid(thread); int n; if (pid == 0) n = scnprintf(str, sizeof(str), "%s", comm); else if (tid != pid) n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); else n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); if (n > comm_width) comm_width = n; return str; } static void timehist_header(struct perf_sched *sched) { u32 ncpus = sched->max_cpu.cpu + 1; u32 i, j; printf("%15s %6s ", "time", "cpu"); if (sched->show_cpu_visual) { printf(" "); for (i = 0, j = 0; i < ncpus; ++i) { printf("%x", j++); if (j > 15) j = 0; } printf(" "); } printf(" %-*s %9s %9s %9s", comm_width, "task name", "wait time", "sch delay", "run time"); if (sched->show_state) printf(" %s", "state"); printf("\n"); /* * units row */ printf("%15s %-6s ", "", ""); if (sched->show_cpu_visual) printf(" %*s ", ncpus, ""); printf(" %-*s %9s %9s %9s", comm_width, "[tid/pid]", "(msec)", "(msec)", "(msec)"); if (sched->show_state) printf(" %5s", ""); printf("\n"); /* * separator */ printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); if (sched->show_cpu_visual) printf(" %.*s ", ncpus, graph_dotted_line); printf(" %.*s %.9s %.9s %.9s", comm_width, graph_dotted_line, graph_dotted_line, graph_dotted_line, graph_dotted_line); if (sched->show_state) printf(" %.5s", graph_dotted_line); printf("\n"); } static void timehist_print_sample(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct addr_location *al, struct thread *thread, u64 t, const char state) { struct thread_runtime *tr = thread__priv(thread); const char *next_comm = evsel__strval(evsel, sample, "next_comm"); const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); u32 max_cpus = sched->max_cpu.cpu + 1; char tstr[64]; char nstr[30]; u64 wait_time; if (cpu_list && !test_bit(sample->cpu, cpu_bitmap)) return; timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); printf("%15s [%04d] ", tstr, sample->cpu); if (sched->show_cpu_visual) { u32 i; char c; printf(" "); for (i = 0; i < max_cpus; ++i) { /* flag idle times with 'i'; others are sched events */ if (i == sample->cpu) c = (thread__tid(thread) == 0) ? 'i' : 's'; else c = ' '; printf("%c", c); } printf(" "); } printf(" %-*s ", comm_width, timehist_get_commstr(thread)); wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; print_sched_time(wait_time, 6); print_sched_time(tr->dt_delay, 6); print_sched_time(tr->dt_run, 6); if (sched->show_state) printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state); if (sched->show_next) { snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); printf(" %-*s", comm_width, nstr); } if (sched->show_wakeups && !sched->show_next) printf(" %-*s", comm_width, ""); if (thread__tid(thread) == 0) goto out; if (sched->show_callchain) printf(" "); sample__fprintf_sym(sample, al, 0, EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | EVSEL__PRINT_CALLCHAIN_ARROW | EVSEL__PRINT_SKIP_IGNORED, get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout); out: printf("\n"); } /* * Explanation of delta-time stats: * * t = time of current schedule out event * tprev = time of previous sched out event * also time of schedule-in event for current task * last_time = time of last sched change event for current task * (i.e, time process was last scheduled out) * ready_to_run = time of wakeup for current task * * -----|------------|------------|------------|------ * last ready tprev t * time to run * * |-------- dt_wait --------| * |- dt_delay -|-- dt_run --| * * dt_run = run time of current task * dt_wait = time between last schedule out event for task and tprev * represents time spent off the cpu * dt_delay = time between wakeup and schedule-in of task */ static void timehist_update_runtime_stats(struct thread_runtime *r, u64 t, u64 tprev) { r->dt_delay = 0; r->dt_sleep = 0; r->dt_iowait = 0; r->dt_preempt = 0; r->dt_run = 0; if (tprev) { r->dt_run = t - tprev; if (r->ready_to_run) { if (r->ready_to_run > tprev) pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); else r->dt_delay = tprev - r->ready_to_run; } if (r->last_time > tprev) pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); else if (r->last_time) { u64 dt_wait = tprev - r->last_time; if (r->last_state == 'R') r->dt_preempt = dt_wait; else if (r->last_state == 'D') r->dt_iowait = dt_wait; else r->dt_sleep = dt_wait; } } update_stats(&r->run_stats, r->dt_run); r->total_run_time += r->dt_run; r->total_delay_time += r->dt_delay; r->total_sleep_time += r->dt_sleep; r->total_iowait_time += r->dt_iowait; r->total_preempt_time += r->dt_preempt; } static bool is_idle_sample(struct perf_sample *sample, struct evsel *evsel) { /* pid 0 == swapper == idle task */ if (evsel__name_is(evsel, "sched:sched_switch")) return evsel__intval(evsel, sample, "prev_pid") == 0; return sample->pid == 0; } static void save_task_callchain(struct perf_sched *sched, struct perf_sample *sample, struct evsel *evsel, struct machine *machine) { struct callchain_cursor *cursor; struct thread *thread; /* want main thread for process - has maps */ thread = machine__findnew_thread(machine, sample->pid, sample->pid); if (thread == NULL) { pr_debug("Failed to get thread for pid %d.\n", sample->pid); return; } if (!sched->show_callchain || sample->callchain == NULL) return; cursor = get_tls_callchain_cursor(); if (thread__resolve_callchain(thread, cursor, evsel, sample, NULL, NULL, sched->max_stack + 2) != 0) { if (verbose > 0) pr_err("Failed to resolve callchain. Skipping\n"); return; } callchain_cursor_commit(cursor); while (true) { struct callchain_cursor_node *node; struct symbol *sym; node = callchain_cursor_current(cursor); if (node == NULL) break; sym = node->ms.sym; if (sym) { if (!strcmp(sym->name, "schedule") || !strcmp(sym->name, "__schedule") || !strcmp(sym->name, "preempt_schedule")) sym->ignore = 1; } callchain_cursor_advance(cursor); } } static int init_idle_thread(struct thread *thread) { struct idle_thread_runtime *itr; thread__set_comm(thread, idle_comm, 0); itr = zalloc(sizeof(*itr)); if (itr == NULL) return -ENOMEM; init_stats(&itr->tr.run_stats); callchain_init(&itr->callchain); callchain_cursor_reset(&itr->cursor); thread__set_priv(thread, itr); return 0; } /* * Track idle stats per cpu by maintaining a local thread * struct for the idle task on each cpu. */ static int init_idle_threads(int ncpu) { int i, ret; idle_threads = zalloc(ncpu * sizeof(struct thread *)); if (!idle_threads) return -ENOMEM; idle_max_cpu = ncpu; /* allocate the actual thread struct if needed */ for (i = 0; i < ncpu; ++i) { idle_threads[i] = thread__new(0, 0); if (idle_threads[i] == NULL) return -ENOMEM; ret = init_idle_thread(idle_threads[i]); if (ret < 0) return ret; } return 0; } static void free_idle_threads(void) { int i; if (idle_threads == NULL) return; for (i = 0; i < idle_max_cpu; ++i) { if ((idle_threads[i])) thread__delete(idle_threads[i]); } free(idle_threads); } static struct thread *get_idle_thread(int cpu) { /* * expand/allocate array of pointers to local thread * structs if needed */ if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { int i, j = __roundup_pow_of_two(cpu+1); void *p; p = realloc(idle_threads, j * sizeof(struct thread *)); if (!p) return NULL; idle_threads = (struct thread **) p; for (i = idle_max_cpu; i < j; ++i) idle_threads[i] = NULL; idle_max_cpu = j; } /* allocate a new thread struct if needed */ if (idle_threads[cpu] == NULL) { idle_threads[cpu] = thread__new(0, 0); if (idle_threads[cpu]) { if (init_idle_thread(idle_threads[cpu]) < 0) return NULL; } } return idle_threads[cpu]; } static void save_idle_callchain(struct perf_sched *sched, struct idle_thread_runtime *itr, struct perf_sample *sample) { struct callchain_cursor *cursor; if (!sched->show_callchain || sample->callchain == NULL) return; cursor = get_tls_callchain_cursor(); if (cursor == NULL) return; callchain_cursor__copy(&itr->cursor, cursor); } static struct thread *timehist_get_thread(struct perf_sched *sched, struct perf_sample *sample, struct machine *machine, struct evsel *evsel) { struct thread *thread; if (is_idle_sample(sample, evsel)) { thread = get_idle_thread(sample->cpu); if (thread == NULL) pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); } else { /* there were samples with tid 0 but non-zero pid */ thread = machine__findnew_thread(machine, sample->pid, sample->tid ?: sample->pid); if (thread == NULL) { pr_debug("Failed to get thread for tid %d. skipping sample.\n", sample->tid); } save_task_callchain(sched, sample, evsel, machine); if (sched->idle_hist) { struct thread *idle; struct idle_thread_runtime *itr; idle = get_idle_thread(sample->cpu); if (idle == NULL) { pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); return NULL; } itr = thread__priv(idle); if (itr == NULL) return NULL; itr->last_thread = thread; /* copy task callchain when entering to idle */ if (evsel__intval(evsel, sample, "next_pid") == 0) save_idle_callchain(sched, itr, sample); } } return thread; } static bool timehist_skip_sample(struct perf_sched *sched, struct thread *thread, struct evsel *evsel, struct perf_sample *sample) { bool rc = false; if (thread__is_filtered(thread)) { rc = true; sched->skipped_samples++; } if (sched->idle_hist) { if (!evsel__name_is(evsel, "sched:sched_switch")) rc = true; else if (evsel__intval(evsel, sample, "prev_pid") != 0 && evsel__intval(evsel, sample, "next_pid") != 0) rc = true; } return rc; } static void timehist_print_wakeup_event(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine, struct thread *awakened) { struct thread *thread; char tstr[64]; thread = machine__findnew_thread(machine, sample->pid, sample->tid); if (thread == NULL) return; /* show wakeup unless both awakee and awaker are filtered */ if (timehist_skip_sample(sched, thread, evsel, sample) && timehist_skip_sample(sched, awakened, evsel, sample)) { return; } timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); printf("%15s [%04d] ", tstr, sample->cpu); if (sched->show_cpu_visual) printf(" %*s ", sched->max_cpu.cpu + 1, ""); printf(" %-*s ", comm_width, timehist_get_commstr(thread)); /* dt spacer */ printf(" %9s %9s %9s ", "", "", ""); printf("awakened: %s", timehist_get_commstr(awakened)); printf("\n"); } static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused, union perf_event *event __maybe_unused, struct evsel *evsel __maybe_unused, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { return 0; } static int timehist_sched_wakeup_event(struct perf_tool *tool, union perf_event *event __maybe_unused, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); struct thread *thread; struct thread_runtime *tr = NULL; /* want pid of awakened task not pid in sample */ const u32 pid = evsel__intval(evsel, sample, "pid"); thread = machine__findnew_thread(machine, 0, pid); if (thread == NULL) return -1; tr = thread__get_runtime(thread); if (tr == NULL) return -1; if (tr->ready_to_run == 0) tr->ready_to_run = sample->time; /* show wakeups if requested */ if (sched->show_wakeups && !perf_time__skip_sample(&sched->ptime, sample->time)) timehist_print_wakeup_event(sched, evsel, sample, machine, thread); return 0; } static void timehist_print_migration_event(struct perf_sched *sched, struct evsel *evsel, struct perf_sample *sample, struct machine *machine, struct thread *migrated) { struct thread *thread; char tstr[64]; u32 max_cpus; u32 ocpu, dcpu; if (sched->summary_only) return; max_cpus = sched->max_cpu.cpu + 1; ocpu = evsel__intval(evsel, sample, "orig_cpu"); dcpu = evsel__intval(evsel, sample, "dest_cpu"); thread = machine__findnew_thread(machine, sample->pid, sample->tid); if (thread == NULL) return; if (timehist_skip_sample(sched, thread, evsel, sample) && timehist_skip_sample(sched, migrated, evsel, sample)) { return; } timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); printf("%15s [%04d] ", tstr, sample->cpu); if (sched->show_cpu_visual) { u32 i; char c; printf(" "); for (i = 0; i < max_cpus; ++i) { c = (i == sample->cpu) ? 'm' : ' '; printf("%c", c); } printf(" "); } printf(" %-*s ", comm_width, timehist_get_commstr(thread)); /* dt spacer */ printf(" %9s %9s %9s ", "", "", ""); printf("migrated: %s", timehist_get_commstr(migrated)); printf(" cpu %d => %d", ocpu, dcpu); printf("\n"); } static int timehist_migrate_task_event(struct perf_tool *tool, union perf_event *event __maybe_unused, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); struct thread *thread; struct thread_runtime *tr = NULL; /* want pid of migrated task not pid in sample */ const u32 pid = evsel__intval(evsel, sample, "pid"); thread = machine__findnew_thread(machine, 0, pid); if (thread == NULL) return -1; tr = thread__get_runtime(thread); if (tr == NULL) return -1; tr->migrations++; /* show migrations if requested */ timehist_print_migration_event(sched, evsel, sample, machine, thread); return 0; } static int timehist_sched_change_event(struct perf_tool *tool, union perf_event *event, struct evsel *evsel, struct perf_sample *sample, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); struct perf_time_interval *ptime = &sched->ptime; struct addr_location al; struct thread *thread; struct thread_runtime *tr = NULL; u64 tprev, t = sample->time; int rc = 0; const char state = evsel__taskstate(evsel, sample, "prev_state"); addr_location__init(&al); if (machine__resolve(machine, &al, sample) < 0) { pr_err("problem processing %d event. skipping it\n", event->header.type); rc = -1; goto out; } thread = timehist_get_thread(sched, sample, machine, evsel); if (thread == NULL) { rc = -1; goto out; } if (timehist_skip_sample(sched, thread, evsel, sample)) goto out; tr = thread__get_runtime(thread); if (tr == NULL) { rc = -1; goto out; } tprev = evsel__get_time(evsel, sample->cpu); /* * If start time given: * - sample time is under window user cares about - skip sample * - tprev is under window user cares about - reset to start of window */ if (ptime->start && ptime->start > t) goto out; if (tprev && ptime->start > tprev) tprev = ptime->start; /* * If end time given: * - previous sched event is out of window - we are done * - sample time is beyond window user cares about - reset it * to close out stats for time window interest */ if (ptime->end) { if (tprev > ptime->end) goto out; if (t > ptime->end) t = ptime->end; } if (!sched->idle_hist || thread__tid(thread) == 0) { if (!cpu_list || test_bit(sample->cpu, cpu_bitmap)) timehist_update_runtime_stats(tr, t, tprev); if (sched->idle_hist) { struct idle_thread_runtime *itr = (void *)tr; struct thread_runtime *last_tr; BUG_ON(thread__tid(thread) != 0); if (itr->last_thread == NULL) goto out; /* add current idle time as last thread's runtime */ last_tr = thread__get_runtime(itr->last_thread); if (last_tr == NULL) goto out; timehist_update_runtime_stats(last_tr, t, tprev); /* * remove delta time of last thread as it's not updated * and otherwise it will show an invalid value next * time. we only care total run time and run stat. */ last_tr->dt_run = 0; last_tr->dt_delay = 0; last_tr->dt_sleep = 0; last_tr->dt_iowait = 0; last_tr->dt_preempt = 0; if (itr->cursor.nr) callchain_append(&itr->callchain, &itr->cursor, t - tprev); itr->last_thread = NULL; } } if (!sched->summary_only) timehist_print_sample(sched, evsel, sample, &al, thread, t, state); out: if (sched->hist_time.start == 0 && t >= ptime->start) sched->hist_time.start = t; if (ptime->end == 0 || t <= ptime->end) sched->hist_time.end = t; if (tr) { /* time of this sched_switch event becomes last time task seen */ tr->last_time = sample->time; /* last state is used to determine where to account wait time */ tr->last_state = state; /* sched out event for task so reset ready to run time */ if (state == 'R') tr->ready_to_run = t; else tr->ready_to_run = 0; } evsel__save_time(evsel, sample->time, sample->cpu); addr_location__exit(&al); return rc; } static int timehist_sched_switch_event(struct perf_tool *tool, union perf_event *event, struct evsel *evsel, struct perf_sample *sample, struct machine *machine __maybe_unused) { return timehist_sched_change_event(tool, event, evsel, sample, machine); } static int process_lost(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_sample *sample, struct machine *machine __maybe_unused) { char tstr[64]; timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); printf("%15s ", tstr); printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); return 0; } static void print_thread_runtime(struct thread *t, struct thread_runtime *r) { double mean = avg_stats(&r->run_stats); float stddev; printf("%*s %5d %9" PRIu64 " ", comm_width, timehist_get_commstr(t), thread__ppid(t), (u64) r->run_stats.n); print_sched_time(r->total_run_time, 8); stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); print_sched_time(r->run_stats.min, 6); printf(" "); print_sched_time((u64) mean, 6); printf(" "); print_sched_time(r->run_stats.max, 6); printf(" "); printf("%5.2f", stddev); printf(" %5" PRIu64, r->migrations); printf("\n"); } static void print_thread_waittime(struct thread *t, struct thread_runtime *r) { printf("%*s %5d %9" PRIu64 " ", comm_width, timehist_get_commstr(t), thread__ppid(t), (u64) r->run_stats.n); print_sched_time(r->total_run_time, 8); print_sched_time(r->total_sleep_time, 6); printf(" "); print_sched_time(r->total_iowait_time, 6); printf(" "); print_sched_time(r->total_preempt_time, 6); printf(" "); print_sched_time(r->total_delay_time, 6); printf("\n"); } struct total_run_stats { struct perf_sched *sched; u64 sched_count; u64 task_count; u64 total_run_time; }; static int show_thread_runtime(struct thread *t, void *priv) { struct total_run_stats *stats = priv; struct thread_runtime *r; if (thread__is_filtered(t)) return 0; r = thread__priv(t); if (r && r->run_stats.n) { stats->task_count++; stats->sched_count += r->run_stats.n; stats->total_run_time += r->total_run_time; if (stats->sched->show_state) print_thread_waittime(t, r); else print_thread_runtime(t, r); } return 0; } static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) { const char *sep = " <- "; struct callchain_list *chain; size_t ret = 0; char bf[1024]; bool first; if (node == NULL) return 0; ret = callchain__fprintf_folded(fp, node->parent); first = (ret == 0); list_for_each_entry(chain, &node->val, list) { if (chain->ip >= PERF_CONTEXT_MAX) continue; if (chain->ms.sym && chain->ms.sym->ignore) continue; ret += fprintf(fp, "%s%s", first ? "" : sep, callchain_list__sym_name(chain, bf, sizeof(bf), false)); first = false; } return ret; } static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) { size_t ret = 0; FILE *fp = stdout; struct callchain_node *chain; struct rb_node *rb_node = rb_first_cached(root); printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, graph_dotted_line); while (rb_node) { chain = rb_entry(rb_node, struct callchain_node, rb_node); rb_node = rb_next(rb_node); ret += fprintf(fp, " "); print_sched_time(chain->hit, 12); ret += 16; /* print_sched_time returns 2nd arg + 4 */ ret += fprintf(fp, " %8d ", chain->count); ret += callchain__fprintf_folded(fp, chain); ret += fprintf(fp, "\n"); } return ret; } static void timehist_print_summary(struct perf_sched *sched, struct perf_session *session) { struct machine *m = &session->machines.host; struct total_run_stats totals; u64 task_count; struct thread *t; struct thread_runtime *r; int i; u64 hist_time = sched->hist_time.end - sched->hist_time.start; memset(&totals, 0, sizeof(totals)); totals.sched = sched; if (sched->idle_hist) { printf("\nIdle-time summary\n"); printf("%*s parent sched-out ", comm_width, "comm"); printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); } else if (sched->show_state) { printf("\nWait-time summary\n"); printf("%*s parent sched-in ", comm_width, "comm"); printf(" run-time sleep iowait preempt delay\n"); } else { printf("\nRuntime summary\n"); printf("%*s parent sched-in ", comm_width, "comm"); printf(" run-time min-run avg-run max-run stddev migrations\n"); } printf("%*s (count) ", comm_width, ""); printf(" (msec) (msec) (msec) (msec) %s\n", sched->show_state ? "(msec)" : "%"); printf("%.117s\n", graph_dotted_line); machine__for_each_thread(m, show_thread_runtime, &totals); task_count = totals.task_count; if (!task_count) printf("<no still running tasks>\n"); /* CPU idle stats not tracked when samples were skipped */ if (sched->skipped_samples && !sched->idle_hist) return; printf("\nIdle stats:\n"); for (i = 0; i < idle_max_cpu; ++i) { if (cpu_list && !test_bit(i, cpu_bitmap)) continue; t = idle_threads[i]; if (!t) continue; r = thread__priv(t); if (r && r->run_stats.n) { totals.sched_count += r->run_stats.n; printf(" CPU %2d idle for ", i); print_sched_time(r->total_run_time, 6); printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); } else printf(" CPU %2d idle entire time window\n", i); } if (sched->idle_hist && sched->show_callchain) { callchain_param.mode = CHAIN_FOLDED; callchain_param.value = CCVAL_PERIOD; callchain_register_param(&callchain_param); printf("\nIdle stats by callchain:\n"); for (i = 0; i < idle_max_cpu; ++i) { struct idle_thread_runtime *itr; t = idle_threads[i]; if (!t) continue; itr = thread__priv(t); if (itr == NULL) continue; callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 0, &callchain_param); printf(" CPU %2d:", i); print_sched_time(itr->tr.total_run_time, 6); printf(" msec\n"); timehist_print_idlehist_callchain(&itr->sorted_root); printf("\n"); } } printf("\n" " Total number of unique tasks: %" PRIu64 "\n" "Total number of context switches: %" PRIu64 "\n", totals.task_count, totals.sched_count); printf(" Total run time (msec): "); print_sched_time(totals.total_run_time, 2); printf("\n"); printf(" Total scheduling time (msec): "); print_sched_time(hist_time, 2); printf(" (x %d)\n", sched->max_cpu.cpu); } typedef int (*sched_handler)(struct perf_tool *tool, union perf_event *event, struct evsel *evsel, struct perf_sample *sample, struct machine *machine); static int perf_timehist__process_sample(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct evsel *evsel, struct machine *machine) { struct perf_sched *sched = container_of(tool, struct perf_sched, tool); int err = 0; struct perf_cpu this_cpu = { .cpu = sample->cpu, }; if (this_cpu.cpu > sched->max_cpu.cpu) sched->max_cpu = this_cpu; if (evsel->handler != NULL) { sched_handler f = evsel->handler; err = f(tool, event, evsel, sample, machine); } return err; } static int timehist_check_attr(struct perf_sched *sched, struct evlist *evlist) { struct evsel *evsel; struct evsel_runtime *er; list_for_each_entry(evsel, &evlist->core.entries, core.node) { er = evsel__get_runtime(evsel); if (er == NULL) { pr_err("Failed to allocate memory for evsel runtime data\n"); return -1; } /* only need to save callchain related to sched_switch event */ if (sched->show_callchain && evsel__name_is(evsel, "sched:sched_switch") && !evsel__has_callchain(evsel)) { pr_info("Samples of sched_switch event do not have callchains.\n"); sched->show_callchain = 0; symbol_conf.use_callchain = 0; } } return 0; } static int perf_sched__timehist(struct perf_sched *sched) { struct evsel_str_handler handlers[] = { { "sched:sched_switch", timehist_sched_switch_event, }, { "sched:sched_wakeup", timehist_sched_wakeup_event, }, { "sched:sched_waking", timehist_sched_wakeup_event, }, { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, }; const struct evsel_str_handler migrate_handlers[] = { { "sched:sched_migrate_task", timehist_migrate_task_event, }, }; struct perf_data data = { .path = input_name, .mode = PERF_DATA_MODE_READ, .force = sched->force, }; struct perf_session *session; struct evlist *evlist; int err = -1; /* * event handlers for timehist option */ sched->tool.sample = perf_timehist__process_sample; sched->tool.mmap = perf_event__process_mmap; sched->tool.comm = perf_event__process_comm; sched->tool.exit = perf_event__process_exit; sched->tool.fork = perf_event__process_fork; sched->tool.lost = process_lost; sched->tool.attr = perf_event__process_attr; sched->tool.tracing_data = perf_event__process_tracing_data; sched->tool.build_id = perf_event__process_build_id; sched->tool.ordered_events = true; sched->tool.ordering_requires_timestamps = true; symbol_conf.use_callchain = sched->show_callchain; session = perf_session__new(&data, &sched->tool); if (IS_ERR(session)) return PTR_ERR(session); if (cpu_list) { err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap); if (err < 0) goto out; } evlist = session->evlist; symbol__init(&session->header.env); if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { pr_err("Invalid time string\n"); return -EINVAL; } if (timehist_check_attr(sched, evlist) != 0) goto out; setup_pager(); /* prefer sched_waking if it is captured */ if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) handlers[1].handler = timehist_sched_wakeup_ignore; /* setup per-evsel handlers */ if (perf_session__set_tracepoints_handlers(session, handlers)) goto out; /* sched_switch event at a minimum needs to exist */ if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) { pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); goto out; } if (sched->show_migrations && perf_session__set_tracepoints_handlers(session, migrate_handlers)) goto out; /* pre-allocate struct for per-CPU idle stats */ sched->max_cpu.cpu = session->header.env.nr_cpus_online; if (sched->max_cpu.cpu == 0) sched->max_cpu.cpu = 4; if (init_idle_threads(sched->max_cpu.cpu)) goto out; /* summary_only implies summary option, but don't overwrite summary if set */ if (sched->summary_only) sched->summary = sched->summary_only; if (!sched->summary_only) timehist_header(sched); err = perf_session__process_events(session); if (err) { pr_err("Failed to process events, error %d", err); goto out; } sched->nr_events = evlist->stats.nr_events[0]; sched->nr_lost_events = evlist->stats.total_lost; sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; if (sched->summary) timehist_print_summary(sched, session); out: free_idle_threads(); perf_session__delete(session); return err; } static void print_bad_events(struct perf_sched *sched) { if (sched->nr_unordered_timestamps && sched->nr_timestamps) { printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, sched->nr_unordered_timestamps, sched->nr_timestamps); } if (sched->nr_lost_events && sched->nr_events) { printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); } if (sched->nr_context_switch_bugs && sched->nr_timestamps) { printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, sched->nr_context_switch_bugs, sched->nr_timestamps); if (sched->nr_lost_events) printf(" (due to lost events?)"); printf("\n"); } } static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) { struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; struct work_atoms *this; const char *comm = thread__comm_str(data->thread), *this_comm; bool leftmost = true; while (*new) { int cmp; this = container_of(*new, struct work_atoms, node); parent = *new; this_comm = thread__comm_str(this->thread); cmp = strcmp(comm, this_comm); if (cmp > 0) { new = &((*new)->rb_left); } else if (cmp < 0) { new = &((*new)->rb_right); leftmost = false; } else { this->num_merged++; this->total_runtime += data->total_runtime; this->nb_atoms += data->nb_atoms; this->total_lat += data->total_lat; list_splice(&data->work_list, &this->work_list); if (this->max_lat < data->max_lat) { this->max_lat = data->max_lat; this->max_lat_start = data->max_lat_start; this->max_lat_end = data->max_lat_end; } zfree(&data); return; } } data->num_merged++; rb_link_node(&data->node, parent, new); rb_insert_color_cached(&data->node, root, leftmost); } static void perf_sched__merge_lat(struct perf_sched *sched) { struct work_atoms *data; struct rb_node *node; if (sched->skip_merge) return; while ((node = rb_first_cached(&sched->atom_root))) { rb_erase_cached(node, &sched->atom_root); data = rb_entry(node, struct work_atoms, node); __merge_work_atoms(&sched->merged_atom_root, data); } } static int setup_cpus_switch_event(struct perf_sched *sched) { unsigned int i; sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched))); if (!sched->cpu_last_switched) return -1; sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid))); if (!sched->curr_pid) { zfree(&sched->cpu_last_switched); return -1; } for (i = 0; i < MAX_CPUS; i++) sched->curr_pid[i] = -1; return 0; } static void free_cpus_switch_event(struct perf_sched *sched) { zfree(&sched->curr_pid); zfree(&sched->cpu_last_switched); } static int perf_sched__lat(struct perf_sched *sched) { int rc = -1; struct rb_node *next; setup_pager(); if (setup_cpus_switch_event(sched)) return rc; if (perf_sched__read_events(sched)) goto out_free_cpus_switch_event; perf_sched__merge_lat(sched); perf_sched__sort_lat(sched); printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n"); printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n"); printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n"); next = rb_first_cached(&sched->sorted_atom_root); while (next) { struct work_atoms *work_list; work_list = rb_entry(next, struct work_atoms, node); output_lat_thread(sched, work_list); next = rb_next(next); thread__zput(work_list->thread); } printf(" -----------------------------------------------------------------------------------------------------------------\n"); printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); printf(" ---------------------------------------------------\n"); print_bad_events(sched); printf("\n"); rc = 0; out_free_cpus_switch_event: free_cpus_switch_event(sched); return rc; } static int setup_map_cpus(struct perf_sched *sched) { sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF); if (sched->map.comp) { sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int)); if (!sched->map.comp_cpus) return -1; } if (sched->map.cpus_str) { sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str); if (!sched->map.cpus) { pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); zfree(&sched->map.comp_cpus); return -1; } } return 0; } static int setup_color_pids(struct perf_sched *sched) { struct perf_thread_map *map; if (!sched->map.color_pids_str) return 0; map = thread_map__new_by_tid_str(sched->map.color_pids_str); if (!map) { pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); return -1; } sched->map.color_pids = map; return 0; } static int setup_color_cpus(struct perf_sched *sched) { struct perf_cpu_map *map; if (!sched->map.color_cpus_str) return 0; map = perf_cpu_map__new(sched->map.color_cpus_str); if (!map) { pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); return -1; } sched->map.color_cpus = map; return 0; } static int perf_sched__map(struct perf_sched *sched) { int rc = -1; sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread))); if (!sched->curr_thread) return rc; sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread))); if (!sched->curr_out_thread) return rc; if (setup_cpus_switch_event(sched)) goto out_free_curr_thread; if (setup_map_cpus(sched)) goto out_free_cpus_switch_event; if (setup_color_pids(sched)) goto out_put_map_cpus; if (setup_color_cpus(sched)) goto out_put_color_pids; setup_pager(); if (perf_sched__read_events(sched)) goto out_put_color_cpus; rc = 0; print_bad_events(sched); out_put_color_cpus: perf_cpu_map__put(sched->map.color_cpus); out_put_color_pids: perf_thread_map__put(sched->map.color_pids); out_put_map_cpus: zfree(&sched->map.comp_cpus); perf_cpu_map__put(sched->map.cpus); out_free_cpus_switch_event: free_cpus_switch_event(sched); out_free_curr_thread: zfree(&sched->curr_thread); return rc; } static int perf_sched__replay(struct perf_sched *sched) { int ret; unsigned long i; mutex_init(&sched->start_work_mutex); mutex_init(&sched->work_done_wait_mutex); ret = setup_cpus_switch_event(sched); if (ret) goto out_mutex_destroy; calibrate_run_measurement_overhead(sched); calibrate_sleep_measurement_overhead(sched); test_calibrations(sched); ret = perf_sched__read_events(sched); if (ret) goto out_free_cpus_switch_event; printf("nr_run_events: %ld\n", sched->nr_run_events); printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); if (sched->targetless_wakeups) printf("target-less wakeups: %ld\n", sched->targetless_wakeups); if (sched->multitarget_wakeups) printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); if (sched->nr_run_events_optimized) printf("run atoms optimized: %ld\n", sched->nr_run_events_optimized); print_task_traces(sched); add_cross_task_wakeups(sched); sched->thread_funcs_exit = false; create_tasks(sched); printf("------------------------------------------------------------\n"); if (sched->replay_repeat == 0) sched->replay_repeat = UINT_MAX; for (i = 0; i < sched->replay_repeat; i++) run_one_test(sched); sched->thread_funcs_exit = true; destroy_tasks(sched); out_free_cpus_switch_event: free_cpus_switch_event(sched); out_mutex_destroy: mutex_destroy(&sched->start_work_mutex); mutex_destroy(&sched->work_done_wait_mutex); return ret; } static void setup_sorting(struct perf_sched *sched, const struct option *options, const char * const usage_msg[]) { char *tmp, *tok, *str = strdup(sched->sort_order); for (tok = strtok_r(str, ", ", &tmp); tok; tok = strtok_r(NULL, ", ", &tmp)) { if (sort_dimension__add(tok, &sched->sort_list) < 0) { usage_with_options_msg(usage_msg, options, "Unknown --sort key: `%s'", tok); } } free(str); sort_dimension__add("pid", &sched->cmp_pid); } static bool schedstat_events_exposed(void) { /* * Select "sched:sched_stat_wait" event to check * whether schedstat tracepoints are exposed. */ return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ? false : true; } static int __cmd_record(int argc, const char **argv) { unsigned int rec_argc, i, j; char **rec_argv; const char **rec_argv_copy; const char * const record_args[] = { "record", "-a", "-R", "-m", "1024", "-c", "1", "-e", "sched:sched_switch", "-e", "sched:sched_stat_runtime", "-e", "sched:sched_process_fork", "-e", "sched:sched_wakeup_new", "-e", "sched:sched_migrate_task", }; /* * The tracepoints trace_sched_stat_{wait, sleep, iowait} * are not exposed to user if CONFIG_SCHEDSTATS is not set, * to prevent "perf sched record" execution failure, determine * whether to record schedstat events according to actual situation. */ const char * const schedstat_args[] = { "-e", "sched:sched_stat_wait", "-e", "sched:sched_stat_sleep", "-e", "sched:sched_stat_iowait", }; unsigned int schedstat_argc = schedstat_events_exposed() ? ARRAY_SIZE(schedstat_args) : 0; struct tep_event *waking_event; int ret; /* * +2 for either "-e", "sched:sched_wakeup" or * "-e", "sched:sched_waking" */ rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1; rec_argv = calloc(rec_argc + 1, sizeof(char *)); if (rec_argv == NULL) return -ENOMEM; rec_argv_copy = calloc(rec_argc + 1, sizeof(char *)); if (rec_argv_copy == NULL) { free(rec_argv); return -ENOMEM; } for (i = 0; i < ARRAY_SIZE(record_args); i++) rec_argv[i] = strdup(record_args[i]); rec_argv[i++] = strdup("-e"); waking_event = trace_event__tp_format("sched", "sched_waking"); if (!IS_ERR(waking_event)) rec_argv[i++] = strdup("sched:sched_waking"); else rec_argv[i++] = strdup("sched:sched_wakeup"); for (j = 0; j < schedstat_argc; j++) rec_argv[i++] = strdup(schedstat_args[j]); for (j = 1; j < (unsigned int)argc; j++, i++) rec_argv[i] = strdup(argv[j]); BUG_ON(i != rec_argc); memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc); ret = cmd_record(rec_argc, rec_argv_copy); for (i = 0; i < rec_argc; i++) free(rec_argv[i]); free(rec_argv); free(rec_argv_copy); return ret; } int cmd_sched(int argc, const char **argv) { static const char default_sort_order[] = "avg, max, switch, runtime"; struct perf_sched sched = { .tool = { .sample = perf_sched__process_tracepoint_sample, .comm = perf_sched__process_comm, .namespaces = perf_event__process_namespaces, .lost = perf_event__process_lost, .fork = perf_sched__process_fork_event, .ordered_events = true, }, .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), .sort_list = LIST_HEAD_INIT(sched.sort_list), .sort_order = default_sort_order, .replay_repeat = 10, .profile_cpu = -1, .next_shortname1 = 'A', .next_shortname2 = '0', .skip_merge = 0, .show_callchain = 1, .max_stack = 5, }; const struct option sched_options[] = { OPT_STRING('i', "input", &input_name, "file", "input file name"), OPT_INCR('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), OPT_END() }; const struct option latency_options[] = { OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", "sort by key(s): runtime, switch, avg, max"), OPT_INTEGER('C', "CPU", &sched.profile_cpu, "CPU to profile on"), OPT_BOOLEAN('p', "pids", &sched.skip_merge, "latency stats per pid instead of per comm"), OPT_PARENT(sched_options) }; const struct option replay_options[] = { OPT_UINTEGER('r', "repeat", &sched.replay_repeat, "repeat the workload replay N times (0: infinite)"), OPT_PARENT(sched_options) }; const struct option map_options[] = { OPT_BOOLEAN(0, "compact", &sched.map.comp, "map output in compact mode"), OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", "highlight given pids in map"), OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", "highlight given CPUs in map"), OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", "display given CPUs in map"), OPT_STRING(0, "task-name", &sched.map.task_name, "task", "map output only for the given task name(s)."), OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy, "given command name can be partially matched (fuzzy matching)"), OPT_PARENT(sched_options) }; const struct option timehist_options[] = { OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, "file", "vmlinux pathname"), OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, "file", "kallsyms pathname"), OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, "Display call chains if present (default on)"), OPT_UINTEGER(0, "max-stack", &sched.max_stack, "Maximum number of functions to display backtrace."), OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", "Look for files with symbols relative to this directory"), OPT_BOOLEAN('s', "summary", &sched.summary_only, "Show only syscall summary with statistics"), OPT_BOOLEAN('S', "with-summary", &sched.summary, "Show all syscalls and summary with statistics"), OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), OPT_STRING(0, "time", &sched.time_str, "str", "Time span for analysis (start,stop)"), OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", "analyze events only for given process id(s)"), OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", "analyze events only for given thread id(s)"), OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"), OPT_PARENT(sched_options) }; const char * const latency_usage[] = { "perf sched latency [<options>]", NULL }; const char * const replay_usage[] = { "perf sched replay [<options>]", NULL }; const char * const map_usage[] = { "perf sched map [<options>]", NULL }; const char * const timehist_usage[] = { "perf sched timehist [<options>]", NULL }; const char *const sched_subcommands[] = { "record", "latency", "map", "replay", "script", "timehist", NULL }; const char *sched_usage[] = { NULL, NULL }; struct trace_sched_handler lat_ops = { .wakeup_event = latency_wakeup_event, .switch_event = latency_switch_event, .runtime_event = latency_runtime_event, .migrate_task_event = latency_migrate_task_event, }; struct trace_sched_handler map_ops = { .switch_event = map_switch_event, }; struct trace_sched_handler replay_ops = { .wakeup_event = replay_wakeup_event, .switch_event = replay_switch_event, .fork_event = replay_fork_event, }; int ret; argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); if (!argc) usage_with_options(sched_usage, sched_options); /* * Aliased to 'perf script' for now: */ if (!strcmp(argv[0], "script")) { return cmd_script(argc, argv); } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) { return __cmd_record(argc, argv); } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) { sched.tp_handler = &lat_ops; if (argc > 1) { argc = parse_options(argc, argv, latency_options, latency_usage, 0); if (argc) usage_with_options(latency_usage, latency_options); } setup_sorting(&sched, latency_options, latency_usage); return perf_sched__lat(&sched); } else if (!strcmp(argv[0], "map")) { if (argc) { argc = parse_options(argc, argv, map_options, map_usage, 0); if (argc) usage_with_options(map_usage, map_options); if (sched.map.task_name) { sched.map.task_names = strlist__new(sched.map.task_name, NULL); if (sched.map.task_names == NULL) { fprintf(stderr, "Failed to parse task names\n"); return -1; } } } sched.tp_handler = &map_ops; setup_sorting(&sched, latency_options, latency_usage); return perf_sched__map(&sched); } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) { sched.tp_handler = &replay_ops; if (argc) { argc = parse_options(argc, argv, replay_options, replay_usage, 0); if (argc) usage_with_options(replay_usage, replay_options); } return perf_sched__replay(&sched); } else if (!strcmp(argv[0], "timehist")) { if (argc) { argc = parse_options(argc, argv, timehist_options, timehist_usage, 0); if (argc) usage_with_options(timehist_usage, timehist_options); } if ((sched.show_wakeups || sched.show_next) && sched.summary_only) { pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); parse_options_usage(timehist_usage, timehist_options, "s", true); if (sched.show_wakeups) parse_options_usage(NULL, timehist_options, "w", true); if (sched.show_next) parse_options_usage(NULL, timehist_options, "n", true); return -EINVAL; } ret = symbol__validate_sym_arguments(); if (ret) return ret; return perf_sched__timehist(&sched); } else { usage_with_options(sched_usage, sched_options); } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1