Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ian Rogers | 1470 | 62.24% | 24 | 42.86% |
Jiri Olsa | 647 | 27.39% | 15 | 26.79% |
James Clark | 67 | 2.84% | 2 | 3.57% |
Miaoqian Lin | 42 | 1.78% | 2 | 3.57% |
Kan Liang | 41 | 1.74% | 1 | 1.79% |
Andi Kleen | 36 | 1.52% | 2 | 3.57% |
Arnaldo Carvalho de Melo | 31 | 1.31% | 5 | 8.93% |
Jing Zhang | 13 | 0.55% | 1 | 1.79% |
Eduard Zingerman | 10 | 0.42% | 1 | 1.79% |
Namhyung Kim | 2 | 0.08% | 1 | 1.79% |
Jin Yao | 2 | 0.08% | 1 | 1.79% |
Irina Tirdea | 1 | 0.04% | 1 | 1.79% |
Total | 2362 | 56 |
// SPDX-License-Identifier: GPL-2.0 #include <stdbool.h> #include <assert.h> #include <errno.h> #include <stdlib.h> #include <string.h> #include "metricgroup.h" #include "cpumap.h" #include "cputopo.h" #include "debug.h" #include "evlist.h" #include "expr.h" #include <util/expr-bison.h> #include <util/expr-flex.h> #include "util/hashmap.h" #include "util/header.h" #include "util/pmu.h" #include "smt.h" #include "tsc.h" #include <api/fs/fs.h> #include <linux/err.h> #include <linux/kernel.h> #include <linux/zalloc.h> #include <ctype.h> #include <math.h> #include "pmu.h" struct expr_id_data { union { struct { double val; int source_count; } val; struct { double val; const char *metric_name; const char *metric_expr; } ref; }; enum { /* Holding a double value. */ EXPR_ID_DATA__VALUE, /* Reference to another metric. */ EXPR_ID_DATA__REF, /* A reference but the value has been computed. */ EXPR_ID_DATA__REF_VALUE, } kind; }; static size_t key_hash(long key, void *ctx __maybe_unused) { const char *str = (const char *)key; size_t hash = 0; while (*str != '\0') { hash *= 31; hash += *str; str++; } return hash; } static bool key_equal(long key1, long key2, void *ctx __maybe_unused) { return !strcmp((const char *)key1, (const char *)key2); } struct hashmap *ids__new(void) { struct hashmap *hash; hash = hashmap__new(key_hash, key_equal, NULL); if (IS_ERR(hash)) return NULL; return hash; } void ids__free(struct hashmap *ids) { struct hashmap_entry *cur; size_t bkt; if (ids == NULL) return; hashmap__for_each_entry(ids, cur, bkt) { zfree(&cur->pkey); zfree(&cur->pvalue); } hashmap__free(ids); } int ids__insert(struct hashmap *ids, const char *id) { struct expr_id_data *data_ptr = NULL, *old_data = NULL; char *old_key = NULL; int ret; ret = hashmap__set(ids, id, data_ptr, &old_key, &old_data); if (ret) free(data_ptr); free(old_key); free(old_data); return ret; } struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2) { size_t bkt; struct hashmap_entry *cur; int ret; struct expr_id_data *old_data = NULL; char *old_key = NULL; if (!ids1) return ids2; if (!ids2) return ids1; if (hashmap__size(ids1) < hashmap__size(ids2)) { struct hashmap *tmp = ids1; ids1 = ids2; ids2 = tmp; } hashmap__for_each_entry(ids2, cur, bkt) { ret = hashmap__set(ids1, cur->key, cur->value, &old_key, &old_data); free(old_key); free(old_data); if (ret) { hashmap__free(ids1); hashmap__free(ids2); return NULL; } } hashmap__free(ids2); return ids1; } /* Caller must make sure id is allocated */ int expr__add_id(struct expr_parse_ctx *ctx, const char *id) { return ids__insert(ctx->ids, id); } /* Caller must make sure id is allocated */ int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val) { return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1); } /* Caller must make sure id is allocated */ int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id, double val, int source_count) { struct expr_id_data *data_ptr = NULL, *old_data = NULL; char *old_key = NULL; int ret; data_ptr = malloc(sizeof(*data_ptr)); if (!data_ptr) return -ENOMEM; data_ptr->val.val = val; data_ptr->val.source_count = source_count; data_ptr->kind = EXPR_ID_DATA__VALUE; ret = hashmap__set(ctx->ids, id, data_ptr, &old_key, &old_data); if (ret) free(data_ptr); free(old_key); free(old_data); return ret; } int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref) { struct expr_id_data *data_ptr = NULL, *old_data = NULL; char *old_key = NULL; char *name; int ret; data_ptr = zalloc(sizeof(*data_ptr)); if (!data_ptr) return -ENOMEM; name = strdup(ref->metric_name); if (!name) { free(data_ptr); return -ENOMEM; } /* * Intentionally passing just const char pointers, * originally from 'struct pmu_event' object. * We don't need to change them, so there's no * need to create our own copy. */ data_ptr->ref.metric_name = ref->metric_name; data_ptr->ref.metric_expr = ref->metric_expr; data_ptr->kind = EXPR_ID_DATA__REF; ret = hashmap__set(ctx->ids, name, data_ptr, &old_key, &old_data); if (ret) free(data_ptr); pr_debug2("adding ref metric %s: %s\n", ref->metric_name, ref->metric_expr); free(old_key); free(old_data); return ret; } int expr__get_id(struct expr_parse_ctx *ctx, const char *id, struct expr_id_data **data) { return hashmap__find(ctx->ids, id, data) ? 0 : -1; } bool expr__subset_of_ids(struct expr_parse_ctx *haystack, struct expr_parse_ctx *needles) { struct hashmap_entry *cur; size_t bkt; struct expr_id_data *data; hashmap__for_each_entry(needles->ids, cur, bkt) { if (expr__get_id(haystack, cur->pkey, &data)) return false; } return true; } int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id, struct expr_id_data **datap) { struct expr_id_data *data; if (expr__get_id(ctx, id, datap) || !*datap) { pr_debug("%s not found\n", id); return -1; } data = *datap; switch (data->kind) { case EXPR_ID_DATA__VALUE: pr_debug2("lookup(%s): val %f\n", id, data->val.val); break; case EXPR_ID_DATA__REF: pr_debug2("lookup(%s): ref metric name %s\n", id, data->ref.metric_name); pr_debug("processing metric: %s ENTRY\n", id); data->kind = EXPR_ID_DATA__REF_VALUE; if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) { pr_debug("%s failed to count\n", id); return -1; } pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val); break; case EXPR_ID_DATA__REF_VALUE: pr_debug2("lookup(%s): ref val %f metric name %s\n", id, data->ref.val, data->ref.metric_name); break; default: assert(0); /* Unreachable. */ } return 0; } void expr__del_id(struct expr_parse_ctx *ctx, const char *id) { struct expr_id_data *old_val = NULL; char *old_key = NULL; hashmap__delete(ctx->ids, id, &old_key, &old_val); free(old_key); free(old_val); } struct expr_parse_ctx *expr__ctx_new(void) { struct expr_parse_ctx *ctx; ctx = malloc(sizeof(struct expr_parse_ctx)); if (!ctx) return NULL; ctx->ids = hashmap__new(key_hash, key_equal, NULL); if (IS_ERR(ctx->ids)) { free(ctx); return NULL; } ctx->sctx.user_requested_cpu_list = NULL; ctx->sctx.runtime = 0; ctx->sctx.system_wide = false; return ctx; } void expr__ctx_clear(struct expr_parse_ctx *ctx) { struct hashmap_entry *cur; size_t bkt; hashmap__for_each_entry(ctx->ids, cur, bkt) { zfree(&cur->pkey); zfree(&cur->pvalue); } hashmap__clear(ctx->ids); } void expr__ctx_free(struct expr_parse_ctx *ctx) { struct hashmap_entry *cur; size_t bkt; if (!ctx) return; zfree(&ctx->sctx.user_requested_cpu_list); hashmap__for_each_entry(ctx->ids, cur, bkt) { zfree(&cur->pkey); zfree(&cur->pvalue); } hashmap__free(ctx->ids); free(ctx); } static int __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr, bool compute_ids) { YY_BUFFER_STATE buffer; void *scanner; int ret; pr_debug2("parsing metric: %s\n", expr); ret = expr_lex_init_extra(&ctx->sctx, &scanner); if (ret) return ret; buffer = expr__scan_string(expr, scanner); #ifdef PARSER_DEBUG expr_debug = 1; expr_set_debug(1, scanner); #endif ret = expr_parse(val, ctx, compute_ids, scanner); expr__flush_buffer(buffer, scanner); expr__delete_buffer(buffer, scanner); expr_lex_destroy(scanner); return ret; } int expr__parse(double *final_val, struct expr_parse_ctx *ctx, const char *expr) { return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0; } int expr__find_ids(const char *expr, const char *one, struct expr_parse_ctx *ctx) { int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true); if (one) expr__del_id(ctx, one); return ret; } double expr_id_data__value(const struct expr_id_data *data) { if (data->kind == EXPR_ID_DATA__VALUE) return data->val.val; assert(data->kind == EXPR_ID_DATA__REF_VALUE); return data->ref.val; } double expr_id_data__source_count(const struct expr_id_data *data) { assert(data->kind == EXPR_ID_DATA__VALUE); return data->val.source_count; } #if !defined(__i386__) && !defined(__x86_64__) double arch_get_tsc_freq(void) { return 0.0; } #endif static double has_pmem(void) { static bool has_pmem, cached; const char *sysfs = sysfs__mountpoint(); char path[PATH_MAX]; if (!cached) { snprintf(path, sizeof(path), "%s/firmware/acpi/tables/NFIT", sysfs); has_pmem = access(path, F_OK) == 0; cached = true; } return has_pmem ? 1.0 : 0.0; } double expr__get_literal(const char *literal, const struct expr_scanner_ctx *ctx) { const struct cpu_topology *topology; double result = NAN; if (!strcmp("#num_cpus", literal)) { result = cpu__max_present_cpu().cpu; goto out; } if (!strcmp("#num_cpus_online", literal)) { struct perf_cpu_map *online = cpu_map__online(); if (online) result = perf_cpu_map__nr(online); goto out; } if (!strcasecmp("#system_tsc_freq", literal)) { result = arch_get_tsc_freq(); goto out; } /* * Assume that topology strings are consistent, such as CPUs "0-1" * wouldn't be listed as "0,1", and so after deduplication the number of * these strings gives an indication of the number of packages, dies, * etc. */ if (!strcasecmp("#smt_on", literal)) { result = smt_on() ? 1.0 : 0.0; goto out; } if (!strcmp("#core_wide", literal)) { result = core_wide(ctx->system_wide, ctx->user_requested_cpu_list) ? 1.0 : 0.0; goto out; } if (!strcmp("#num_packages", literal)) { topology = online_topology(); result = topology->package_cpus_lists; goto out; } if (!strcmp("#num_dies", literal)) { topology = online_topology(); result = topology->die_cpus_lists; goto out; } if (!strcmp("#num_cores", literal)) { topology = online_topology(); result = topology->core_cpus_lists; goto out; } if (!strcmp("#slots", literal)) { result = perf_pmu__cpu_slots_per_cycle(); goto out; } if (!strcmp("#has_pmem", literal)) { result = has_pmem(); goto out; } pr_err("Unrecognized literal '%s'", literal); out: pr_debug2("literal: %s = %f\n", literal, result); return result; } /* Does the event 'id' parse? Determine via ctx->ids if possible. */ double expr__has_event(const struct expr_parse_ctx *ctx, bool compute_ids, const char *id) { struct evlist *tmp; double ret; if (hashmap__find(ctx->ids, id, /*value=*/NULL)) return 1.0; if (!compute_ids) return 0.0; tmp = evlist__new(); if (!tmp) return NAN; if (strchr(id, '@')) { char *tmp_id, *p; tmp_id = strdup(id); if (!tmp_id) { ret = NAN; goto out; } p = strchr(tmp_id, '@'); *p = '/'; p = strrchr(tmp_id, '@'); *p = '/'; ret = parse_event(tmp, tmp_id) ? 0 : 1; free(tmp_id); } else { ret = parse_event(tmp, id) ? 0 : 1; } out: evlist__delete(tmp); return ret; } double expr__strcmp_cpuid_str(const struct expr_parse_ctx *ctx __maybe_unused, bool compute_ids __maybe_unused, const char *test_id) { double ret; struct perf_pmu *pmu = perf_pmus__find_core_pmu(); char *cpuid = perf_pmu__getcpuid(pmu); if (!cpuid) return NAN; ret = !strcmp_cpuid_str(test_id, cpuid); free(cpuid); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1