Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexei Starovoitov | 5240 | 98.57% | 3 | 25.00% |
Andrii Nakryiko | 32 | 0.60% | 2 | 16.67% |
Ilya Leoshkevich | 16 | 0.30% | 1 | 8.33% |
Jose E. Marchesi | 11 | 0.21% | 1 | 8.33% |
Andrei Matei | 8 | 0.15% | 1 | 8.33% |
Nikolay Borisov | 3 | 0.06% | 1 | 8.33% |
Jiri Olsa | 3 | 0.06% | 1 | 8.33% |
Christian Brauner | 2 | 0.04% | 1 | 8.33% |
Artem Savkov | 1 | 0.02% | 1 | 8.33% |
Total | 5316 | 12 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2020 Facebook */ #include <vmlinux.h> #include <bpf/bpf_core_read.h> #include <bpf/bpf_helpers.h> #include <bpf/bpf_tracing.h> #include "profiler.h" #include "err.h" #include "bpf_experimental.h" #include "bpf_compiler.h" #include "bpf_misc.h" #ifndef NULL #define NULL 0 #endif #define O_WRONLY 00000001 #define O_RDWR 00000002 #define O_DIRECTORY 00200000 #define __O_TMPFILE 020000000 #define O_TMPFILE (__O_TMPFILE | O_DIRECTORY) #define S_IFMT 00170000 #define S_IFSOCK 0140000 #define S_IFLNK 0120000 #define S_IFREG 0100000 #define S_IFBLK 0060000 #define S_IFDIR 0040000 #define S_IFCHR 0020000 #define S_IFIFO 0010000 #define S_ISUID 0004000 #define S_ISGID 0002000 #define S_ISVTX 0001000 #define S_ISLNK(m) (((m)&S_IFMT) == S_IFLNK) #define S_ISDIR(m) (((m)&S_IFMT) == S_IFDIR) #define S_ISCHR(m) (((m)&S_IFMT) == S_IFCHR) #define S_ISBLK(m) (((m)&S_IFMT) == S_IFBLK) #define S_ISFIFO(m) (((m)&S_IFMT) == S_IFIFO) #define S_ISSOCK(m) (((m)&S_IFMT) == S_IFSOCK) #define KILL_DATA_ARRAY_SIZE 8 struct var_kill_data_arr_t { struct var_kill_data_t array[KILL_DATA_ARRAY_SIZE]; }; union any_profiler_data_t { struct var_exec_data_t var_exec; struct var_kill_data_t var_kill; struct var_sysctl_data_t var_sysctl; struct var_filemod_data_t var_filemod; struct var_fork_data_t var_fork; struct var_kill_data_arr_t var_kill_data_arr; }; volatile struct profiler_config_struct bpf_config = {}; #define FETCH_CGROUPS_FROM_BPF (bpf_config.fetch_cgroups_from_bpf) #define CGROUP_FS_INODE (bpf_config.cgroup_fs_inode) #define CGROUP_LOGIN_SESSION_INODE \ (bpf_config.cgroup_login_session_inode) #define KILL_SIGNALS (bpf_config.kill_signals_mask) #define STALE_INFO (bpf_config.stale_info_secs) #define INODE_FILTER (bpf_config.inode_filter) #define READ_ENVIRON_FROM_EXEC (bpf_config.read_environ_from_exec) #define ENABLE_CGROUP_V1_RESOLVER (bpf_config.enable_cgroup_v1_resolver) struct kernfs_iattrs___52 { struct iattr ia_iattr; }; struct kernfs_node___52 { union /* kernfs_node_id */ { struct { u32 ino; u32 generation; }; u64 id; } id; }; struct { __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); __uint(max_entries, 1); __type(key, u32); __type(value, union any_profiler_data_t); } data_heap SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY); __uint(key_size, sizeof(int)); __uint(value_size, sizeof(int)); } events SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __uint(max_entries, KILL_DATA_ARRAY_SIZE); __type(key, u32); __type(value, struct var_kill_data_arr_t); } var_tpid_to_data SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_PERCPU_ARRAY); __uint(max_entries, profiler_bpf_max_function_id); __type(key, u32); __type(value, struct bpf_func_stats_data); } bpf_func_stats SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __type(key, u32); __type(value, bool); __uint(max_entries, 16); } allowed_devices SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __type(key, u64); __type(value, bool); __uint(max_entries, 1024); } allowed_file_inodes SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __type(key, u64); __type(value, bool); __uint(max_entries, 1024); } allowed_directory_inodes SEC(".maps"); struct { __uint(type, BPF_MAP_TYPE_HASH); __type(key, u32); __type(value, bool); __uint(max_entries, 16); } disallowed_exec_inodes SEC(".maps"); static INLINE bool IS_ERR(const void* ptr) { return IS_ERR_VALUE((unsigned long)ptr); } static INLINE u32 get_userspace_pid() { return bpf_get_current_pid_tgid() >> 32; } static INLINE bool is_init_process(u32 tgid) { return tgid == 1 || tgid == 0; } static INLINE unsigned long probe_read_lim(void* dst, void* src, unsigned long len, unsigned long max) { len = len < max ? len : max; if (len > 1) { if (bpf_probe_read_kernel(dst, len, src)) return 0; } else if (len == 1) { if (bpf_probe_read_kernel(dst, 1, src)) return 0; } return len; } static INLINE int get_var_spid_index(struct var_kill_data_arr_t* arr_struct, int spid) { #ifdef UNROLL __pragma_loop_unroll #endif for (int i = 0; i < ARRAY_SIZE(arr_struct->array); i++) if (arr_struct->array[i].meta.pid == spid) return i; return -1; } static INLINE void populate_ancestors(struct task_struct* task, struct ancestors_data_t* ancestors_data) { struct task_struct* parent = task; u32 num_ancestors, ppid; ancestors_data->num_ancestors = 0; #ifdef UNROLL __pragma_loop_unroll #endif for (num_ancestors = 0; num_ancestors < MAX_ANCESTORS; num_ancestors++) { parent = BPF_CORE_READ(parent, real_parent); if (parent == NULL) break; ppid = BPF_CORE_READ(parent, tgid); if (is_init_process(ppid)) break; ancestors_data->ancestor_pids[num_ancestors] = ppid; ancestors_data->ancestor_exec_ids[num_ancestors] = BPF_CORE_READ(parent, self_exec_id); ancestors_data->ancestor_start_times[num_ancestors] = BPF_CORE_READ(parent, start_time); ancestors_data->num_ancestors = num_ancestors; } } static INLINE void* read_full_cgroup_path(struct kernfs_node* cgroup_node, struct kernfs_node* cgroup_root_node, void* payload, int* root_pos) { void* payload_start = payload; size_t filepart_length; #ifdef UNROLL __pragma_loop_unroll #endif for (int i = 0; i < MAX_CGROUPS_PATH_DEPTH; i++) { filepart_length = bpf_probe_read_kernel_str(payload, MAX_PATH, BPF_CORE_READ(cgroup_node, name)); if (!cgroup_node) return payload; if (cgroup_node == cgroup_root_node) *root_pos = payload - payload_start; if (bpf_cmp_likely(filepart_length, <=, MAX_PATH)) { payload += filepart_length; } cgroup_node = BPF_CORE_READ(cgroup_node, parent); } return payload; } static ino_t get_inode_from_kernfs(struct kernfs_node* node) { struct kernfs_node___52* node52 = (void*)node; if (bpf_core_field_exists(node52->id.ino)) { barrier_var(node52); return BPF_CORE_READ(node52, id.ino); } else { barrier_var(node); return (u64)BPF_CORE_READ(node, id); } } extern bool CONFIG_CGROUP_PIDS __kconfig __weak; enum cgroup_subsys_id___local { pids_cgrp_id___local = 123, /* value doesn't matter */ }; static INLINE void* populate_cgroup_info(struct cgroup_data_t* cgroup_data, struct task_struct* task, void* payload) { struct kernfs_node* root_kernfs = BPF_CORE_READ(task, nsproxy, cgroup_ns, root_cset, dfl_cgrp, kn); struct kernfs_node* proc_kernfs = BPF_CORE_READ(task, cgroups, dfl_cgrp, kn); #if __has_builtin(__builtin_preserve_enum_value) if (ENABLE_CGROUP_V1_RESOLVER && CONFIG_CGROUP_PIDS) { int cgrp_id = bpf_core_enum_value(enum cgroup_subsys_id___local, pids_cgrp_id___local); #ifdef UNROLL __pragma_loop_unroll #endif for (int i = 0; i < CGROUP_SUBSYS_COUNT; i++) { struct cgroup_subsys_state* subsys = BPF_CORE_READ(task, cgroups, subsys[i]); if (subsys != NULL) { int subsys_id = BPF_CORE_READ(subsys, ss, id); if (subsys_id == cgrp_id) { proc_kernfs = BPF_CORE_READ(subsys, cgroup, kn); root_kernfs = BPF_CORE_READ(subsys, ss, root, kf_root, kn); break; } } } } #endif cgroup_data->cgroup_root_inode = get_inode_from_kernfs(root_kernfs); cgroup_data->cgroup_proc_inode = get_inode_from_kernfs(proc_kernfs); if (bpf_core_field_exists(root_kernfs->iattr->ia_mtime)) { cgroup_data->cgroup_root_mtime = BPF_CORE_READ(root_kernfs, iattr, ia_mtime.tv_nsec); cgroup_data->cgroup_proc_mtime = BPF_CORE_READ(proc_kernfs, iattr, ia_mtime.tv_nsec); } else { struct kernfs_iattrs___52* root_iattr = (struct kernfs_iattrs___52*)BPF_CORE_READ(root_kernfs, iattr); cgroup_data->cgroup_root_mtime = BPF_CORE_READ(root_iattr, ia_iattr.ia_mtime.tv_nsec); struct kernfs_iattrs___52* proc_iattr = (struct kernfs_iattrs___52*)BPF_CORE_READ(proc_kernfs, iattr); cgroup_data->cgroup_proc_mtime = BPF_CORE_READ(proc_iattr, ia_iattr.ia_mtime.tv_nsec); } cgroup_data->cgroup_root_length = 0; cgroup_data->cgroup_proc_length = 0; cgroup_data->cgroup_full_length = 0; size_t cgroup_root_length = bpf_probe_read_kernel_str(payload, MAX_PATH, BPF_CORE_READ(root_kernfs, name)); if (bpf_cmp_likely(cgroup_root_length, <=, MAX_PATH)) { cgroup_data->cgroup_root_length = cgroup_root_length; payload += cgroup_root_length; } size_t cgroup_proc_length = bpf_probe_read_kernel_str(payload, MAX_PATH, BPF_CORE_READ(proc_kernfs, name)); if (bpf_cmp_likely(cgroup_proc_length, <=, MAX_PATH)) { cgroup_data->cgroup_proc_length = cgroup_proc_length; payload += cgroup_proc_length; } if (FETCH_CGROUPS_FROM_BPF) { cgroup_data->cgroup_full_path_root_pos = -1; void* payload_end_pos = read_full_cgroup_path(proc_kernfs, root_kernfs, payload, &cgroup_data->cgroup_full_path_root_pos); cgroup_data->cgroup_full_length = payload_end_pos - payload; payload = payload_end_pos; } return (void*)payload; } static INLINE void* populate_var_metadata(struct var_metadata_t* metadata, struct task_struct* task, u32 pid, void* payload) { u64 uid_gid = bpf_get_current_uid_gid(); metadata->uid = (u32)uid_gid; metadata->gid = uid_gid >> 32; metadata->pid = pid; metadata->exec_id = BPF_CORE_READ(task, self_exec_id); metadata->start_time = BPF_CORE_READ(task, start_time); metadata->comm_length = 0; size_t comm_length = bpf_core_read_str(payload, TASK_COMM_LEN, &task->comm); if (bpf_cmp_likely(comm_length, <=, TASK_COMM_LEN)) { metadata->comm_length = comm_length; payload += comm_length; } return (void*)payload; } static INLINE struct var_kill_data_t* get_var_kill_data(struct pt_regs* ctx, int spid, int tpid, int sig) { int zero = 0; struct var_kill_data_t* kill_data = bpf_map_lookup_elem(&data_heap, &zero); if (kill_data == NULL) return NULL; struct task_struct* task = (struct task_struct*)bpf_get_current_task(); void* payload = populate_var_metadata(&kill_data->meta, task, spid, kill_data->payload); payload = populate_cgroup_info(&kill_data->cgroup_data, task, payload); size_t payload_length = payload - (void*)kill_data->payload; kill_data->payload_length = payload_length; populate_ancestors(task, &kill_data->ancestors_info); kill_data->meta.type = KILL_EVENT; kill_data->kill_target_pid = tpid; kill_data->kill_sig = sig; kill_data->kill_count = 1; kill_data->last_kill_time = bpf_ktime_get_ns(); return kill_data; } static INLINE int trace_var_sys_kill(void* ctx, int tpid, int sig) { if ((KILL_SIGNALS & (1ULL << sig)) == 0) return 0; u32 spid = get_userspace_pid(); struct var_kill_data_arr_t* arr_struct = bpf_map_lookup_elem(&var_tpid_to_data, &tpid); if (arr_struct == NULL) { struct var_kill_data_t* kill_data = get_var_kill_data(ctx, spid, tpid, sig); int zero = 0; if (kill_data == NULL) return 0; arr_struct = bpf_map_lookup_elem(&data_heap, &zero); if (arr_struct == NULL) return 0; bpf_probe_read_kernel(&arr_struct->array[0], sizeof(arr_struct->array[0]), kill_data); } else { int index = get_var_spid_index(arr_struct, spid); if (index == -1) { struct var_kill_data_t* kill_data = get_var_kill_data(ctx, spid, tpid, sig); if (kill_data == NULL) return 0; #ifdef UNROLL __pragma_loop_unroll #endif for (int i = 0; i < ARRAY_SIZE(arr_struct->array); i++) if (arr_struct->array[i].meta.pid == 0) { bpf_probe_read_kernel(&arr_struct->array[i], sizeof(arr_struct->array[i]), kill_data); bpf_map_update_elem(&var_tpid_to_data, &tpid, arr_struct, 0); return 0; } return 0; } struct var_kill_data_t* kill_data = &arr_struct->array[index]; u64 delta_sec = (bpf_ktime_get_ns() - kill_data->last_kill_time) / 1000000000; if (delta_sec < STALE_INFO) { kill_data->kill_count++; kill_data->last_kill_time = bpf_ktime_get_ns(); bpf_probe_read_kernel(&arr_struct->array[index], sizeof(arr_struct->array[index]), kill_data); } else { struct var_kill_data_t* kill_data = get_var_kill_data(ctx, spid, tpid, sig); if (kill_data == NULL) return 0; bpf_probe_read_kernel(&arr_struct->array[index], sizeof(arr_struct->array[index]), kill_data); } } bpf_map_update_elem(&var_tpid_to_data, &tpid, arr_struct, 0); return 0; } static INLINE void bpf_stats_enter(struct bpf_func_stats_ctx* bpf_stat_ctx, enum bpf_function_id func_id) { int func_id_key = func_id; bpf_stat_ctx->start_time_ns = bpf_ktime_get_ns(); bpf_stat_ctx->bpf_func_stats_data_val = bpf_map_lookup_elem(&bpf_func_stats, &func_id_key); if (bpf_stat_ctx->bpf_func_stats_data_val) bpf_stat_ctx->bpf_func_stats_data_val->num_executions++; } static INLINE void bpf_stats_exit(struct bpf_func_stats_ctx* bpf_stat_ctx) { if (bpf_stat_ctx->bpf_func_stats_data_val) bpf_stat_ctx->bpf_func_stats_data_val->time_elapsed_ns += bpf_ktime_get_ns() - bpf_stat_ctx->start_time_ns; } static INLINE void bpf_stats_pre_submit_var_perf_event(struct bpf_func_stats_ctx* bpf_stat_ctx, struct var_metadata_t* meta) { if (bpf_stat_ctx->bpf_func_stats_data_val) { bpf_stat_ctx->bpf_func_stats_data_val->num_perf_events++; meta->bpf_stats_num_perf_events = bpf_stat_ctx->bpf_func_stats_data_val->num_perf_events; } meta->bpf_stats_start_ktime_ns = bpf_stat_ctx->start_time_ns; meta->cpu_id = bpf_get_smp_processor_id(); } static INLINE size_t read_absolute_file_path_from_dentry(struct dentry* filp_dentry, void* payload) { size_t length = 0; size_t filepart_length; struct dentry* parent_dentry; #ifdef UNROLL __pragma_loop_unroll #endif for (int i = 0; i < MAX_PATH_DEPTH; i++) { filepart_length = bpf_probe_read_kernel_str(payload, MAX_PATH, BPF_CORE_READ(filp_dentry, d_name.name)); bpf_nop_mov(filepart_length); if (bpf_cmp_unlikely(filepart_length, >, MAX_PATH)) break; payload += filepart_length; length += filepart_length; parent_dentry = BPF_CORE_READ(filp_dentry, d_parent); if (filp_dentry == parent_dentry) break; filp_dentry = parent_dentry; } return length; } static INLINE bool is_ancestor_in_allowed_inodes(struct dentry* filp_dentry) { struct dentry* parent_dentry; #ifdef UNROLL __pragma_loop_unroll #endif for (int i = 0; i < MAX_PATH_DEPTH; i++) { u64 dir_ino = BPF_CORE_READ(filp_dentry, d_inode, i_ino); bool* allowed_dir = bpf_map_lookup_elem(&allowed_directory_inodes, &dir_ino); if (allowed_dir != NULL) return true; parent_dentry = BPF_CORE_READ(filp_dentry, d_parent); if (filp_dentry == parent_dentry) break; filp_dentry = parent_dentry; } return false; } static INLINE bool is_dentry_allowed_for_filemod(struct dentry* file_dentry, u32* device_id, u64* file_ino) { u32 dev_id = BPF_CORE_READ(file_dentry, d_sb, s_dev); *device_id = dev_id; bool* allowed_device = bpf_map_lookup_elem(&allowed_devices, &dev_id); if (allowed_device == NULL) return false; u64 ino = BPF_CORE_READ(file_dentry, d_inode, i_ino); *file_ino = ino; bool* allowed_file = bpf_map_lookup_elem(&allowed_file_inodes, &ino); if (allowed_file == NULL) if (!is_ancestor_in_allowed_inodes(BPF_CORE_READ(file_dentry, d_parent))) return false; return true; } SEC("kprobe/proc_sys_write") ssize_t BPF_KPROBE(kprobe__proc_sys_write, struct file* filp, const char* buf, size_t count, loff_t* ppos) { struct bpf_func_stats_ctx stats_ctx; bpf_stats_enter(&stats_ctx, profiler_bpf_proc_sys_write); u32 pid = get_userspace_pid(); int zero = 0; struct var_sysctl_data_t* sysctl_data = bpf_map_lookup_elem(&data_heap, &zero); if (!sysctl_data) goto out; struct task_struct* task = (struct task_struct*)bpf_get_current_task(); sysctl_data->meta.type = SYSCTL_EVENT; void* payload = populate_var_metadata(&sysctl_data->meta, task, pid, sysctl_data->payload); payload = populate_cgroup_info(&sysctl_data->cgroup_data, task, payload); populate_ancestors(task, &sysctl_data->ancestors_info); sysctl_data->sysctl_val_length = 0; sysctl_data->sysctl_path_length = 0; size_t sysctl_val_length = bpf_probe_read_kernel_str(payload, CTL_MAXNAME, buf); if (bpf_cmp_likely(sysctl_val_length, <=, CTL_MAXNAME)) { sysctl_data->sysctl_val_length = sysctl_val_length; payload += sysctl_val_length; } size_t sysctl_path_length = bpf_probe_read_kernel_str(payload, MAX_PATH, BPF_CORE_READ(filp, f_path.dentry, d_name.name)); if (bpf_cmp_likely(sysctl_path_length, <=, MAX_PATH)) { sysctl_data->sysctl_path_length = sysctl_path_length; payload += sysctl_path_length; } bpf_stats_pre_submit_var_perf_event(&stats_ctx, &sysctl_data->meta); unsigned long data_len = payload - (void*)sysctl_data; data_len = data_len > sizeof(struct var_sysctl_data_t) ? sizeof(struct var_sysctl_data_t) : data_len; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, sysctl_data, data_len); out: bpf_stats_exit(&stats_ctx); return 0; } SEC("tracepoint/syscalls/sys_enter_kill") int tracepoint__syscalls__sys_enter_kill(struct syscall_trace_enter* ctx) { struct bpf_func_stats_ctx stats_ctx; bpf_stats_enter(&stats_ctx, profiler_bpf_sys_enter_kill); int pid = ctx->args[0]; int sig = ctx->args[1]; int ret = trace_var_sys_kill(ctx, pid, sig); bpf_stats_exit(&stats_ctx); return ret; }; SEC("raw_tracepoint/sched_process_exit") int raw_tracepoint__sched_process_exit(void* ctx) { int zero = 0; struct bpf_func_stats_ctx stats_ctx; bpf_stats_enter(&stats_ctx, profiler_bpf_sched_process_exit); u32 tpid = get_userspace_pid(); struct var_kill_data_arr_t* arr_struct = bpf_map_lookup_elem(&var_tpid_to_data, &tpid); struct var_kill_data_t* kill_data = bpf_map_lookup_elem(&data_heap, &zero); if (arr_struct == NULL || kill_data == NULL) goto out; struct task_struct* task = (struct task_struct*)bpf_get_current_task(); struct kernfs_node* proc_kernfs = BPF_CORE_READ(task, cgroups, dfl_cgrp, kn); #ifdef UNROLL __pragma_loop_unroll #endif for (int i = 0; i < ARRAY_SIZE(arr_struct->array); i++) { struct var_kill_data_t* past_kill_data = &arr_struct->array[i]; if (past_kill_data != NULL && past_kill_data->kill_target_pid == (pid_t)tpid) { bpf_probe_read_kernel(kill_data, sizeof(*past_kill_data), past_kill_data); void* payload = kill_data->payload; size_t offset = kill_data->payload_length; if (offset >= MAX_METADATA_PAYLOAD_LEN + MAX_CGROUP_PAYLOAD_LEN) return 0; payload += offset; kill_data->kill_target_name_length = 0; kill_data->kill_target_cgroup_proc_length = 0; size_t comm_length = bpf_core_read_str(payload, TASK_COMM_LEN, &task->comm); if (bpf_cmp_likely(comm_length, <=, TASK_COMM_LEN)) { kill_data->kill_target_name_length = comm_length; payload += comm_length; } size_t cgroup_proc_length = bpf_probe_read_kernel_str(payload, KILL_TARGET_LEN, BPF_CORE_READ(proc_kernfs, name)); if (bpf_cmp_likely(cgroup_proc_length, <=, KILL_TARGET_LEN)) { kill_data->kill_target_cgroup_proc_length = cgroup_proc_length; payload += cgroup_proc_length; } bpf_stats_pre_submit_var_perf_event(&stats_ctx, &kill_data->meta); unsigned long data_len = (void*)payload - (void*)kill_data; data_len = data_len > sizeof(struct var_kill_data_t) ? sizeof(struct var_kill_data_t) : data_len; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, kill_data, data_len); } } bpf_map_delete_elem(&var_tpid_to_data, &tpid); out: bpf_stats_exit(&stats_ctx); return 0; } SEC("raw_tracepoint/sched_process_exec") int raw_tracepoint__sched_process_exec(struct bpf_raw_tracepoint_args* ctx) { struct bpf_func_stats_ctx stats_ctx; bpf_stats_enter(&stats_ctx, profiler_bpf_sched_process_exec); struct linux_binprm* bprm = (struct linux_binprm*)ctx->args[2]; u64 inode = BPF_CORE_READ(bprm, file, f_inode, i_ino); bool* should_filter_binprm = bpf_map_lookup_elem(&disallowed_exec_inodes, &inode); if (should_filter_binprm != NULL) goto out; int zero = 0; struct var_exec_data_t* proc_exec_data = bpf_map_lookup_elem(&data_heap, &zero); if (!proc_exec_data) goto out; if (INODE_FILTER && inode != INODE_FILTER) return 0; u32 pid = get_userspace_pid(); struct task_struct* task = (struct task_struct*)bpf_get_current_task(); proc_exec_data->meta.type = EXEC_EVENT; proc_exec_data->bin_path_length = 0; proc_exec_data->cmdline_length = 0; proc_exec_data->environment_length = 0; void* payload = populate_var_metadata(&proc_exec_data->meta, task, pid, proc_exec_data->payload); payload = populate_cgroup_info(&proc_exec_data->cgroup_data, task, payload); struct task_struct* parent_task = BPF_CORE_READ(task, real_parent); proc_exec_data->parent_pid = BPF_CORE_READ(parent_task, tgid); proc_exec_data->parent_uid = BPF_CORE_READ(parent_task, real_cred, uid.val); proc_exec_data->parent_exec_id = BPF_CORE_READ(parent_task, self_exec_id); proc_exec_data->parent_start_time = BPF_CORE_READ(parent_task, start_time); const char* filename = BPF_CORE_READ(bprm, filename); size_t bin_path_length = bpf_probe_read_kernel_str(payload, MAX_FILENAME_LEN, filename); if (bpf_cmp_likely(bin_path_length, <=, MAX_FILENAME_LEN)) { proc_exec_data->bin_path_length = bin_path_length; payload += bin_path_length; } void* arg_start = (void*)BPF_CORE_READ(task, mm, arg_start); void* arg_end = (void*)BPF_CORE_READ(task, mm, arg_end); unsigned int cmdline_length = probe_read_lim(payload, arg_start, arg_end - arg_start, MAX_ARGS_LEN); if (bpf_cmp_likely(cmdline_length, <=, MAX_ARGS_LEN)) { proc_exec_data->cmdline_length = cmdline_length; payload += cmdline_length; } if (READ_ENVIRON_FROM_EXEC) { void* env_start = (void*)BPF_CORE_READ(task, mm, env_start); void* env_end = (void*)BPF_CORE_READ(task, mm, env_end); unsigned long env_len = probe_read_lim(payload, env_start, env_end - env_start, MAX_ENVIRON_LEN); if (cmdline_length <= MAX_ENVIRON_LEN) { proc_exec_data->environment_length = env_len; payload += env_len; } } bpf_stats_pre_submit_var_perf_event(&stats_ctx, &proc_exec_data->meta); unsigned long data_len = payload - (void*)proc_exec_data; data_len = data_len > sizeof(struct var_exec_data_t) ? sizeof(struct var_exec_data_t) : data_len; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, proc_exec_data, data_len); out: bpf_stats_exit(&stats_ctx); return 0; } SEC("kretprobe/do_filp_open") int kprobe_ret__do_filp_open(struct pt_regs* ctx) { struct bpf_func_stats_ctx stats_ctx; bpf_stats_enter(&stats_ctx, profiler_bpf_do_filp_open_ret); struct file* filp = (struct file*)PT_REGS_RC_CORE(ctx); if (filp == NULL || IS_ERR(filp)) goto out; unsigned int flags = BPF_CORE_READ(filp, f_flags); if ((flags & (O_RDWR | O_WRONLY)) == 0) goto out; if ((flags & O_TMPFILE) > 0) goto out; struct inode* file_inode = BPF_CORE_READ(filp, f_inode); umode_t mode = BPF_CORE_READ(file_inode, i_mode); if (S_ISDIR(mode) || S_ISCHR(mode) || S_ISBLK(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) goto out; struct dentry* filp_dentry = BPF_CORE_READ(filp, f_path.dentry); u32 device_id = 0; u64 file_ino = 0; if (!is_dentry_allowed_for_filemod(filp_dentry, &device_id, &file_ino)) goto out; int zero = 0; struct var_filemod_data_t* filemod_data = bpf_map_lookup_elem(&data_heap, &zero); if (!filemod_data) goto out; u32 pid = get_userspace_pid(); struct task_struct* task = (struct task_struct*)bpf_get_current_task(); filemod_data->meta.type = FILEMOD_EVENT; filemod_data->fmod_type = FMOD_OPEN; filemod_data->dst_flags = flags; filemod_data->src_inode = 0; filemod_data->dst_inode = file_ino; filemod_data->src_device_id = 0; filemod_data->dst_device_id = device_id; filemod_data->src_filepath_length = 0; filemod_data->dst_filepath_length = 0; void* payload = populate_var_metadata(&filemod_data->meta, task, pid, filemod_data->payload); payload = populate_cgroup_info(&filemod_data->cgroup_data, task, payload); size_t len = read_absolute_file_path_from_dentry(filp_dentry, payload); if (bpf_cmp_likely(len, <=, MAX_FILEPATH_LENGTH)) { payload += len; filemod_data->dst_filepath_length = len; } bpf_stats_pre_submit_var_perf_event(&stats_ctx, &filemod_data->meta); unsigned long data_len = payload - (void*)filemod_data; data_len = data_len > sizeof(*filemod_data) ? sizeof(*filemod_data) : data_len; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, filemod_data, data_len); out: bpf_stats_exit(&stats_ctx); return 0; } SEC("kprobe/vfs_link") int BPF_KPROBE(kprobe__vfs_link, struct dentry* old_dentry, struct mnt_idmap *idmap, struct inode* dir, struct dentry* new_dentry, struct inode** delegated_inode) { struct bpf_func_stats_ctx stats_ctx; bpf_stats_enter(&stats_ctx, profiler_bpf_vfs_link); u32 src_device_id = 0; u64 src_file_ino = 0; u32 dst_device_id = 0; u64 dst_file_ino = 0; if (!is_dentry_allowed_for_filemod(old_dentry, &src_device_id, &src_file_ino) && !is_dentry_allowed_for_filemod(new_dentry, &dst_device_id, &dst_file_ino)) goto out; int zero = 0; struct var_filemod_data_t* filemod_data = bpf_map_lookup_elem(&data_heap, &zero); if (!filemod_data) goto out; u32 pid = get_userspace_pid(); struct task_struct* task = (struct task_struct*)bpf_get_current_task(); filemod_data->meta.type = FILEMOD_EVENT; filemod_data->fmod_type = FMOD_LINK; filemod_data->dst_flags = 0; filemod_data->src_inode = src_file_ino; filemod_data->dst_inode = dst_file_ino; filemod_data->src_device_id = src_device_id; filemod_data->dst_device_id = dst_device_id; filemod_data->src_filepath_length = 0; filemod_data->dst_filepath_length = 0; void* payload = populate_var_metadata(&filemod_data->meta, task, pid, filemod_data->payload); payload = populate_cgroup_info(&filemod_data->cgroup_data, task, payload); size_t len = read_absolute_file_path_from_dentry(old_dentry, payload); if (bpf_cmp_likely(len, <=, MAX_FILEPATH_LENGTH)) { payload += len; filemod_data->src_filepath_length = len; } len = read_absolute_file_path_from_dentry(new_dentry, payload); if (bpf_cmp_likely(len, <=, MAX_FILEPATH_LENGTH)) { payload += len; filemod_data->dst_filepath_length = len; } bpf_stats_pre_submit_var_perf_event(&stats_ctx, &filemod_data->meta); unsigned long data_len = payload - (void*)filemod_data; data_len = data_len > sizeof(*filemod_data) ? sizeof(*filemod_data) : data_len; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, filemod_data, data_len); out: bpf_stats_exit(&stats_ctx); return 0; } SEC("kprobe/vfs_symlink") int BPF_KPROBE(kprobe__vfs_symlink, struct inode* dir, struct dentry* dentry, const char* oldname) { struct bpf_func_stats_ctx stats_ctx; bpf_stats_enter(&stats_ctx, profiler_bpf_vfs_symlink); u32 dst_device_id = 0; u64 dst_file_ino = 0; if (!is_dentry_allowed_for_filemod(dentry, &dst_device_id, &dst_file_ino)) goto out; int zero = 0; struct var_filemod_data_t* filemod_data = bpf_map_lookup_elem(&data_heap, &zero); if (!filemod_data) goto out; u32 pid = get_userspace_pid(); struct task_struct* task = (struct task_struct*)bpf_get_current_task(); filemod_data->meta.type = FILEMOD_EVENT; filemod_data->fmod_type = FMOD_SYMLINK; filemod_data->dst_flags = 0; filemod_data->src_inode = 0; filemod_data->dst_inode = dst_file_ino; filemod_data->src_device_id = 0; filemod_data->dst_device_id = dst_device_id; filemod_data->src_filepath_length = 0; filemod_data->dst_filepath_length = 0; void* payload = populate_var_metadata(&filemod_data->meta, task, pid, filemod_data->payload); payload = populate_cgroup_info(&filemod_data->cgroup_data, task, payload); size_t len = bpf_probe_read_kernel_str(payload, MAX_FILEPATH_LENGTH, oldname); if (bpf_cmp_likely(len, <=, MAX_FILEPATH_LENGTH)) { payload += len; filemod_data->src_filepath_length = len; } len = read_absolute_file_path_from_dentry(dentry, payload); if (bpf_cmp_likely(len, <=, MAX_FILEPATH_LENGTH)) { payload += len; filemod_data->dst_filepath_length = len; } bpf_stats_pre_submit_var_perf_event(&stats_ctx, &filemod_data->meta); unsigned long data_len = payload - (void*)filemod_data; data_len = data_len > sizeof(*filemod_data) ? sizeof(*filemod_data) : data_len; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, filemod_data, data_len); out: bpf_stats_exit(&stats_ctx); return 0; } SEC("raw_tracepoint/sched_process_fork") int raw_tracepoint__sched_process_fork(struct bpf_raw_tracepoint_args* ctx) { struct bpf_func_stats_ctx stats_ctx; bpf_stats_enter(&stats_ctx, profiler_bpf_sched_process_fork); int zero = 0; struct var_fork_data_t* fork_data = bpf_map_lookup_elem(&data_heap, &zero); if (!fork_data) goto out; struct task_struct* parent = (struct task_struct*)ctx->args[0]; struct task_struct* child = (struct task_struct*)ctx->args[1]; fork_data->meta.type = FORK_EVENT; void* payload = populate_var_metadata(&fork_data->meta, child, BPF_CORE_READ(child, pid), fork_data->payload); fork_data->parent_pid = BPF_CORE_READ(parent, pid); fork_data->parent_exec_id = BPF_CORE_READ(parent, self_exec_id); fork_data->parent_start_time = BPF_CORE_READ(parent, start_time); bpf_stats_pre_submit_var_perf_event(&stats_ctx, &fork_data->meta); unsigned long data_len = payload - (void*)fork_data; data_len = data_len > sizeof(*fork_data) ? sizeof(*fork_data) : data_len; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, fork_data, data_len); out: bpf_stats_exit(&stats_ctx); return 0; } char _license[] SEC("license") = "GPL";
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1