Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sean Christopherson | 3116 | 68.15% | 23 | 24.73% |
Paolo Bonzini | 425 | 9.30% | 4 | 4.30% |
Jue Wang | 145 | 3.17% | 1 | 1.08% |
Andrew Jones | 135 | 2.95% | 11 | 11.83% |
Ben Gardon | 130 | 2.84% | 7 | 7.53% |
Ricardo Koller | 109 | 2.38% | 4 | 4.30% |
Anup Patel | 79 | 1.73% | 1 | 1.08% |
David Matlack | 59 | 1.29% | 4 | 4.30% |
Thomas Huth | 44 | 0.96% | 3 | 3.23% |
Vishal Annapurve | 43 | 0.94% | 3 | 3.23% |
Eric Auger | 36 | 0.79% | 1 | 1.08% |
Marc Zyngier | 34 | 0.74% | 1 | 1.08% |
Nico Boehr | 33 | 0.72% | 1 | 1.08% |
Janis Schoetterl-Glausch | 27 | 0.59% | 2 | 2.15% |
Peter Gonda | 24 | 0.52% | 3 | 3.23% |
Vitaly Kuznetsov | 21 | 0.46% | 3 | 3.23% |
Vipin Sharma | 18 | 0.39% | 1 | 1.08% |
Aaron Lewis | 17 | 0.37% | 3 | 3.23% |
Raghavendra Rao Ananta | 15 | 0.33% | 4 | 4.30% |
Oliver Upton | 14 | 0.31% | 2 | 2.15% |
Chao Peng | 10 | 0.22% | 2 | 2.15% |
Michael Roth | 10 | 0.22% | 2 | 2.15% |
Peter Xu | 10 | 0.22% | 3 | 3.23% |
Haibo Xu | 9 | 0.20% | 1 | 1.08% |
Jing Zhang | 6 | 0.13% | 1 | 1.08% |
Fuad Tabba | 2 | 0.04% | 1 | 1.08% |
Thomas Gleixner | 1 | 0.02% | 1 | 1.08% |
Total | 4572 | 93 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2018, Google LLC. */ #ifndef SELFTEST_KVM_UTIL_H #define SELFTEST_KVM_UTIL_H #include "test_util.h" #include <linux/compiler.h> #include "linux/hashtable.h" #include "linux/list.h" #include <linux/kernel.h> #include <linux/kvm.h> #include "linux/rbtree.h" #include <linux/types.h> #include <asm/atomic.h> #include <asm/kvm.h> #include <sys/ioctl.h> #include "kvm_util_arch.h" #include "kvm_util_types.h" #include "sparsebit.h" #define KVM_DEV_PATH "/dev/kvm" #define KVM_MAX_VCPUS 512 #define NSEC_PER_SEC 1000000000L struct userspace_mem_region { struct kvm_userspace_memory_region2 region; struct sparsebit *unused_phy_pages; struct sparsebit *protected_phy_pages; int fd; off_t offset; enum vm_mem_backing_src_type backing_src_type; void *host_mem; void *host_alias; void *mmap_start; void *mmap_alias; size_t mmap_size; struct rb_node gpa_node; struct rb_node hva_node; struct hlist_node slot_node; }; struct kvm_vcpu { struct list_head list; uint32_t id; int fd; struct kvm_vm *vm; struct kvm_run *run; #ifdef __x86_64__ struct kvm_cpuid2 *cpuid; #endif struct kvm_dirty_gfn *dirty_gfns; uint32_t fetch_index; uint32_t dirty_gfns_count; }; struct userspace_mem_regions { struct rb_root gpa_tree; struct rb_root hva_tree; DECLARE_HASHTABLE(slot_hash, 9); }; enum kvm_mem_region_type { MEM_REGION_CODE, MEM_REGION_DATA, MEM_REGION_PT, MEM_REGION_TEST_DATA, NR_MEM_REGIONS, }; struct kvm_vm { int mode; unsigned long type; int kvm_fd; int fd; unsigned int pgtable_levels; unsigned int page_size; unsigned int page_shift; unsigned int pa_bits; unsigned int va_bits; uint64_t max_gfn; struct list_head vcpus; struct userspace_mem_regions regions; struct sparsebit *vpages_valid; struct sparsebit *vpages_mapped; bool has_irqchip; bool pgd_created; vm_paddr_t ucall_mmio_addr; vm_paddr_t pgd; vm_vaddr_t handlers; uint32_t dirty_ring_size; uint64_t gpa_tag_mask; struct kvm_vm_arch arch; /* Cache of information for binary stats interface */ int stats_fd; struct kvm_stats_header stats_header; struct kvm_stats_desc *stats_desc; /* * KVM region slots. These are the default memslots used by page * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE] * memslot. */ uint32_t memslots[NR_MEM_REGIONS]; }; struct vcpu_reg_sublist { const char *name; long capability; int feature; int feature_type; bool finalize; __u64 *regs; __u64 regs_n; __u64 *rejects_set; __u64 rejects_set_n; __u64 *skips_set; __u64 skips_set_n; }; struct vcpu_reg_list { char *name; struct vcpu_reg_sublist sublists[]; }; #define for_each_sublist(c, s) \ for ((s) = &(c)->sublists[0]; (s)->regs; ++(s)) #define kvm_for_each_vcpu(vm, i, vcpu) \ for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \ if (!((vcpu) = vm->vcpus[i])) \ continue; \ else struct userspace_mem_region * memslot2region(struct kvm_vm *vm, uint32_t memslot); static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm, enum kvm_mem_region_type type) { assert(type < NR_MEM_REGIONS); return memslot2region(vm, vm->memslots[type]); } /* Minimum allocated guest virtual and physical addresses */ #define KVM_UTIL_MIN_VADDR 0x2000 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000 #define DEFAULT_STACK_PGS 5 enum vm_guest_mode { VM_MODE_P52V48_4K, VM_MODE_P52V48_16K, VM_MODE_P52V48_64K, VM_MODE_P48V48_4K, VM_MODE_P48V48_16K, VM_MODE_P48V48_64K, VM_MODE_P40V48_4K, VM_MODE_P40V48_16K, VM_MODE_P40V48_64K, VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */ VM_MODE_P47V64_4K, VM_MODE_P44V64_4K, VM_MODE_P36V48_4K, VM_MODE_P36V48_16K, VM_MODE_P36V48_64K, VM_MODE_P36V47_16K, NUM_VM_MODES, }; struct vm_shape { uint32_t type; uint8_t mode; uint8_t pad0; uint16_t pad1; }; kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t)); #define VM_TYPE_DEFAULT 0 #define VM_SHAPE(__mode) \ ({ \ struct vm_shape shape = { \ .mode = (__mode), \ .type = VM_TYPE_DEFAULT \ }; \ \ shape; \ }) #if defined(__aarch64__) extern enum vm_guest_mode vm_mode_default; #define VM_MODE_DEFAULT vm_mode_default #define MIN_PAGE_SHIFT 12U #define ptes_per_page(page_size) ((page_size) / 8) #elif defined(__x86_64__) #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K #define MIN_PAGE_SHIFT 12U #define ptes_per_page(page_size) ((page_size) / 8) #elif defined(__s390x__) #define VM_MODE_DEFAULT VM_MODE_P44V64_4K #define MIN_PAGE_SHIFT 12U #define ptes_per_page(page_size) ((page_size) / 16) #elif defined(__riscv) #if __riscv_xlen == 32 #error "RISC-V 32-bit kvm selftests not supported" #endif #define VM_MODE_DEFAULT VM_MODE_P40V48_4K #define MIN_PAGE_SHIFT 12U #define ptes_per_page(page_size) ((page_size) / 8) #endif #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT) #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT) #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE) struct vm_guest_mode_params { unsigned int pa_bits; unsigned int va_bits; unsigned int page_size; unsigned int page_shift; }; extern const struct vm_guest_mode_params vm_guest_mode_params[]; int open_path_or_exit(const char *path, int flags); int open_kvm_dev_path_or_exit(void); bool get_kvm_param_bool(const char *param); bool get_kvm_intel_param_bool(const char *param); bool get_kvm_amd_param_bool(const char *param); int get_kvm_param_integer(const char *param); int get_kvm_intel_param_integer(const char *param); int get_kvm_amd_param_integer(const char *param); unsigned int kvm_check_cap(long cap); static inline bool kvm_has_cap(long cap) { return kvm_check_cap(cap); } #define __KVM_SYSCALL_ERROR(_name, _ret) \ "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno) /* * Use the "inner", double-underscore macro when reporting errors from within * other macros so that the name of ioctl() and not its literal numeric value * is printed on error. The "outer" macro is strongly preferred when reporting * errors "directly", i.e. without an additional layer of macros, as it reduces * the probability of passing in the wrong string. */ #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret) #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret) #define kvm_do_ioctl(fd, cmd, arg) \ ({ \ kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \ ioctl(fd, cmd, arg); \ }) #define __kvm_ioctl(kvm_fd, cmd, arg) \ kvm_do_ioctl(kvm_fd, cmd, arg) #define kvm_ioctl(kvm_fd, cmd, arg) \ ({ \ int ret = __kvm_ioctl(kvm_fd, cmd, arg); \ \ TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \ }) static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { } #define __vm_ioctl(vm, cmd, arg) \ ({ \ static_assert_is_vm(vm); \ kvm_do_ioctl((vm)->fd, cmd, arg); \ }) /* * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM, * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before * selftests existed and (b) should never outright fail, i.e. is supposed to * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the * VM and its vCPUs, including KVM_CHECK_EXTENSION. */ #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \ do { \ int __errno = errno; \ \ static_assert_is_vm(vm); \ \ if (cond) \ break; \ \ if (errno == EIO && \ __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \ TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \ TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \ } \ errno = __errno; \ TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \ } while (0) #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \ __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm) #define vm_ioctl(vm, cmd, arg) \ ({ \ int ret = __vm_ioctl(vm, cmd, arg); \ \ __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \ }) static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { } #define __vcpu_ioctl(vcpu, cmd, arg) \ ({ \ static_assert_is_vcpu(vcpu); \ kvm_do_ioctl((vcpu)->fd, cmd, arg); \ }) #define vcpu_ioctl(vcpu, cmd, arg) \ ({ \ int ret = __vcpu_ioctl(vcpu, cmd, arg); \ \ __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \ }) /* * Looks up and returns the value corresponding to the capability * (KVM_CAP_*) given by cap. */ static inline int vm_check_cap(struct kvm_vm *vm, long cap) { int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap); TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm); return ret; } static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) { struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); } static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) { struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); } static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa, uint64_t size, uint64_t attributes) { struct kvm_memory_attributes attr = { .attributes = attributes, .address = gpa, .size = size, .flags = 0, }; /* * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows * need significant enhancements to support multiple attributes. */ TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE, "Update me to support multiple attributes!"); vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr); } static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa, uint64_t size) { vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE); } static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa, uint64_t size) { vm_set_memory_attributes(vm, gpa, size, 0); } void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size, bool punch_hole); static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa, uint64_t size) { vm_guest_mem_fallocate(vm, gpa, size, true); } static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size) { vm_guest_mem_fallocate(vm, gpa, size, false); } void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size); const char *vm_guest_mode_string(uint32_t i); void kvm_vm_free(struct kvm_vm *vmp); void kvm_vm_restart(struct kvm_vm *vmp); void kvm_vm_release(struct kvm_vm *vmp); int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, const vm_vaddr_t gva, size_t len); void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename); int kvm_memfd_alloc(size_t size, bool hugepages); void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) { struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args); } static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, uint64_t first_page, uint32_t num_pages) { struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot, .first_page = first_page, .num_pages = num_pages }; vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args); } static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) { return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL); } static inline int vm_get_stats_fd(struct kvm_vm *vm) { int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL); TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm); return fd; } static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header) { ssize_t ret; ret = pread(stats_fd, header, sizeof(*header), 0); TEST_ASSERT(ret == sizeof(*header), "Failed to read '%lu' header bytes, ret = '%ld'", sizeof(*header), ret); } struct kvm_stats_desc *read_stats_descriptors(int stats_fd, struct kvm_stats_header *header); static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header) { /* * The base size of the descriptor is defined by KVM's ABI, but the * size of the name field is variable, as far as KVM's ABI is * concerned. For a given instance of KVM, the name field is the same * size for all stats and is provided in the overall stats header. */ return sizeof(struct kvm_stats_desc) + header->name_size; } static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats, int index, struct kvm_stats_header *header) { /* * Note, size_desc includes the size of the name field, which is * variable. i.e. this is NOT equivalent to &stats_desc[i]. */ return (void *)stats + index * get_stats_descriptor_size(header); } void read_stat_data(int stats_fd, struct kvm_stats_header *header, struct kvm_stats_desc *desc, uint64_t *data, size_t max_elements); void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, size_t max_elements); static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name) { uint64_t data; __vm_get_stat(vm, stat_name, &data, 1); return data; } void vm_create_irqchip(struct kvm_vm *vm); static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, uint64_t flags) { struct kvm_create_guest_memfd guest_memfd = { .size = size, .flags = flags, }; return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd); } static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size, uint64_t flags) { int fd = __vm_create_guest_memfd(vm, size, flags); TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd)); return fd; } void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, uint64_t gpa, uint64_t size, void *hva); int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, uint64_t gpa, uint64_t size, void *hva); void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, uint64_t gpa, uint64_t size, void *hva, uint32_t guest_memfd, uint64_t guest_memfd_offset); int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags, uint64_t gpa, uint64_t size, void *hva, uint32_t guest_memfd, uint64_t guest_memfd_offset); void vm_userspace_mem_region_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, uint64_t guest_paddr, uint32_t slot, uint64_t npages, uint32_t flags); void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type, uint64_t guest_paddr, uint32_t slot, uint64_t npages, uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset); #ifndef vm_arch_has_protected_memory static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm) { return false; } #endif void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags); void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa); void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot); struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); void vm_populate_vaddr_bitmap(struct kvm_vm *vm); vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, enum kvm_mem_region_type type); vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, enum kvm_mem_region_type type); vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type); vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm); void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, unsigned int npages); void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa); void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva); vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva); void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa); #ifndef vcpu_arch_put_guest #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0) #endif static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa) { return gpa & ~vm->gpa_tag_mask; } void vcpu_run(struct kvm_vcpu *vcpu); int _vcpu_run(struct kvm_vcpu *vcpu); static inline int __vcpu_run(struct kvm_vcpu *vcpu) { return __vcpu_ioctl(vcpu, KVM_RUN, NULL); } void vcpu_run_complete_io(struct kvm_vcpu *vcpu); struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu); static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap, uint64_t arg0) { struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap); } static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu, struct kvm_guest_debug *debug) { vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug); } static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state); } static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state); } static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_ioctl(vcpu, KVM_GET_REGS, regs); } static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_ioctl(vcpu, KVM_SET_REGS, regs); } static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs); } static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); } static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); } static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { vcpu_ioctl(vcpu, KVM_GET_FPU, fpu); } static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { vcpu_ioctl(vcpu, KVM_SET_FPU, fpu); } static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) { struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); } static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) { struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); } static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) { struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®); } static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) { struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); } #ifdef __KVM_HAVE_VCPU_EVENTS static inline void vcpu_events_get(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events); } static inline void vcpu_events_set(struct kvm_vcpu *vcpu, struct kvm_vcpu_events *events) { vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events); } #endif #ifdef __x86_64__ static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu, struct kvm_nested_state *state) { vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state); } static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu, struct kvm_nested_state *state) { return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); } static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu, struct kvm_nested_state *state) { vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); } #endif static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu) { int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL); TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm); return fd; } int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr); static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) { int ret = __kvm_has_device_attr(dev_fd, group, attr); TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); } int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val); static inline void kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val) { int ret = __kvm_device_attr_get(dev_fd, group, attr, val); TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret)); } int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val); static inline void kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val) { int ret = __kvm_device_attr_set(dev_fd, group, attr, val); TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret)); } static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, uint64_t attr) { return __kvm_has_device_attr(vcpu->fd, group, attr); } static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, uint64_t attr) { kvm_has_device_attr(vcpu->fd, group, attr); } static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, uint64_t attr, void *val) { return __kvm_device_attr_get(vcpu->fd, group, attr, val); } static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, uint64_t attr, void *val) { kvm_device_attr_get(vcpu->fd, group, attr, val); } static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, uint64_t attr, void *val) { return __kvm_device_attr_set(vcpu->fd, group, attr, val); } static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, uint64_t attr, void *val) { kvm_device_attr_set(vcpu->fd, group, attr, val); } int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type); int __kvm_create_device(struct kvm_vm *vm, uint64_t type); static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type) { int fd = __kvm_create_device(vm, type); TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd)); return fd; } void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu); /* * VM VCPU Args Set * * Input Args: * vm - Virtual Machine * num - number of arguments * ... - arguments, each of type uint64_t * * Output Args: None * * Return: None * * Sets the first @num input parameters for the function at @vcpu's entry point, * per the C calling convention of the architecture, to the values given as * variable args. Each of the variable args is expected to be of type uint64_t. * The maximum @num can be is specific to the architecture. */ void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...); void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); #define KVM_MAX_IRQ_ROUTES 4096 struct kvm_irq_routing *kvm_gsi_routing_create(void); void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, uint32_t gsi, uint32_t pin); int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); const char *exit_reason_str(unsigned int exit_reason); vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, uint32_t memslot); vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, vm_paddr_t paddr_min, uint32_t memslot, bool protected); vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm); static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, vm_paddr_t paddr_min, uint32_t memslot) { /* * By default, allocate memory as protected for VMs that support * protected memory, as the majority of memory for such VMs is * protected, i.e. using shared memory is effectively opt-in. */ return __vm_phy_pages_alloc(vm, num, paddr_min, memslot, vm_arch_has_protected_memory(vm)); } /* * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also * loads the test binary into guest memory and creates an IRQ chip (x86 only). * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to * calculate the amount of memory needed for per-vCPU data, e.g. stacks. */ struct kvm_vm *____vm_create(struct vm_shape shape); struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus, uint64_t nr_extra_pages); static inline struct kvm_vm *vm_create_barebones(void) { return ____vm_create(VM_SHAPE_DEFAULT); } static inline struct kvm_vm *vm_create_barebones_type(unsigned long type) { const struct vm_shape shape = { .mode = VM_MODE_DEFAULT, .type = type, }; return ____vm_create(shape); } static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus) { return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0); } struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus, uint64_t extra_mem_pages, void *guest_code, struct kvm_vcpu *vcpus[]); static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus, void *guest_code, struct kvm_vcpu *vcpus[]) { return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0, guest_code, vcpus); } struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape, struct kvm_vcpu **vcpu, uint64_t extra_mem_pages, void *guest_code); /* * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages * additional pages of guest memory. Returns the VM and vCPU (via out param). */ static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, uint64_t extra_mem_pages, void *guest_code) { return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu, extra_mem_pages, guest_code); } static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, void *guest_code) { return __vm_create_with_one_vcpu(vcpu, 0, guest_code); } static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape, struct kvm_vcpu **vcpu, void *guest_code) { return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code); } struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm); void kvm_pin_this_task_to_pcpu(uint32_t pcpu); void kvm_print_vcpu_pinning_help(void); void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], int nr_vcpus); unsigned long vm_compute_max_gfn(struct kvm_vm *vm); unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size); unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages); unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages); static inline unsigned int vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) { unsigned int n; n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages)); #ifdef __s390x__ /* s390 requires 1M aligned guest sizes */ n = (n + 255) & ~255; #endif return n; } #define sync_global_to_guest(vm, g) ({ \ typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ memcpy(_p, &(g), sizeof(g)); \ }) #define sync_global_from_guest(vm, g) ({ \ typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ memcpy(&(g), _p, sizeof(g)); \ }) /* * Write a global value, but only in the VM's (guest's) domain. Primarily used * for "globals" that hold per-VM values (VMs always duplicate code and global * data into their own region of physical memory), but can be used anytime it's * undesirable to change the host's copy of the global. */ #define write_guest_global(vm, g, val) ({ \ typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ typeof(g) _val = val; \ \ memcpy(_p, &(_val), sizeof(g)); \ }) void assert_on_unhandled_exception(struct kvm_vcpu *vcpu); void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent); static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) { vcpu_arch_dump(stream, vcpu, indent); } /* * Adds a vCPU with reasonable defaults (e.g. a stack) * * Input Args: * vm - Virtual Machine * vcpu_id - The id of the VCPU to add to the VM. */ struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code); static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, void *guest_code) { struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id); vcpu_arch_set_entry_point(vcpu, guest_code); return vcpu; } /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */ struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id); static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id) { return vm_arch_vcpu_recreate(vm, vcpu_id); } void vcpu_arch_free(struct kvm_vcpu *vcpu); void virt_arch_pgd_alloc(struct kvm_vm *vm); static inline void virt_pgd_alloc(struct kvm_vm *vm) { virt_arch_pgd_alloc(vm); } /* * VM Virtual Page Map * * Input Args: * vm - Virtual Machine * vaddr - VM Virtual Address * paddr - VM Physical Address * memslot - Memory region slot for new virtual translation tables * * Output Args: None * * Return: None * * Within @vm, creates a virtual translation for the page starting * at @vaddr to the page starting at @paddr. */ void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr); static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) { virt_arch_pg_map(vm, vaddr, paddr); } /* * Address Guest Virtual to Guest Physical * * Input Args: * vm - Virtual Machine * gva - VM virtual address * * Output Args: None * * Return: * Equivalent VM physical address * * Returns the VM physical address of the translated VM virtual * address given by @gva. */ vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva); static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) { return addr_arch_gva2gpa(vm, gva); } /* * Virtual Translation Tables Dump * * Input Args: * stream - Output FILE stream * vm - Virtual Machine * indent - Left margin indent amount * * Output Args: None * * Return: None * * Dumps to the FILE stream given by @stream, the contents of all the * virtual translation tables for the VM given by @vm. */ void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) { virt_arch_dump(stream, vm, indent); } static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm) { return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0); } /* * Arch hook that is invoked via a constructor, i.e. before exeucting main(), * to allow for arch-specific setup that is common to all tests, e.g. computing * the default guest "mode". */ void kvm_selftest_arch_init(void); void kvm_arch_vm_post_create(struct kvm_vm *vm); bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr); uint32_t guest_get_vcpuid(void); #endif /* SELFTEST_KVM_UTIL_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1