Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jinrong Liang | 1876 | 85.16% | 5 | 38.46% |
Sean Christopherson | 309 | 14.03% | 6 | 46.15% |
Dapeng Mi | 11 | 0.50% | 1 | 7.69% |
Maxim Levitsky | 7 | 0.32% | 1 | 7.69% |
Total | 2203 | 13 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2023, Tencent, Inc. */ #include <x86intrin.h> #include "pmu.h" #include "processor.h" /* Number of iterations of the loop for the guest measurement payload. */ #define NUM_LOOPS 10 /* Each iteration of the loop retires one branch instruction. */ #define NUM_BRANCH_INSNS_RETIRED (NUM_LOOPS) /* * Number of instructions in each loop. 1 CLFLUSH/CLFLUSHOPT/NOP, 1 MFENCE, * 1 LOOP. */ #define NUM_INSNS_PER_LOOP 3 /* * Number of "extra" instructions that will be counted, i.e. the number of * instructions that are needed to set up the loop and then disable the * counter. 2 MOV, 2 XOR, 1 WRMSR. */ #define NUM_EXTRA_INSNS 5 /* Total number of instructions retired within the measured section. */ #define NUM_INSNS_RETIRED (NUM_LOOPS * NUM_INSNS_PER_LOOP + NUM_EXTRA_INSNS) static uint8_t kvm_pmu_version; static bool kvm_has_perf_caps; static struct kvm_vm *pmu_vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, void *guest_code, uint8_t pmu_version, uint64_t perf_capabilities) { struct kvm_vm *vm; vm = vm_create_with_one_vcpu(vcpu, guest_code); sync_global_to_guest(vm, kvm_pmu_version); /* * Set PERF_CAPABILITIES before PMU version as KVM disallows enabling * features via PERF_CAPABILITIES if the guest doesn't have a vPMU. */ if (kvm_has_perf_caps) vcpu_set_msr(*vcpu, MSR_IA32_PERF_CAPABILITIES, perf_capabilities); vcpu_set_cpuid_property(*vcpu, X86_PROPERTY_PMU_VERSION, pmu_version); return vm; } static void run_vcpu(struct kvm_vcpu *vcpu) { struct ucall uc; do { vcpu_run(vcpu); switch (get_ucall(vcpu, &uc)) { case UCALL_SYNC: break; case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); break; case UCALL_PRINTF: pr_info("%s", uc.buffer); break; case UCALL_DONE: break; default: TEST_FAIL("Unexpected ucall: %lu", uc.cmd); } } while (uc.cmd != UCALL_DONE); } static uint8_t guest_get_pmu_version(void) { /* * Return the effective PMU version, i.e. the minimum between what KVM * supports and what is enumerated to the guest. The host deliberately * advertises a PMU version to the guest beyond what is actually * supported by KVM to verify KVM doesn't freak out and do something * bizarre with an architecturally valid, but unsupported, version. */ return min_t(uint8_t, kvm_pmu_version, this_cpu_property(X86_PROPERTY_PMU_VERSION)); } /* * If an architectural event is supported and guaranteed to generate at least * one "hit, assert that its count is non-zero. If an event isn't supported or * the test can't guarantee the associated action will occur, then all bets are * off regarding the count, i.e. no checks can be done. * * Sanity check that in all cases, the event doesn't count when it's disabled, * and that KVM correctly emulates the write of an arbitrary value. */ static void guest_assert_event_count(uint8_t idx, struct kvm_x86_pmu_feature event, uint32_t pmc, uint32_t pmc_msr) { uint64_t count; count = _rdpmc(pmc); if (!this_pmu_has(event)) goto sanity_checks; switch (idx) { case INTEL_ARCH_INSTRUCTIONS_RETIRED_INDEX: GUEST_ASSERT_EQ(count, NUM_INSNS_RETIRED); break; case INTEL_ARCH_BRANCHES_RETIRED_INDEX: GUEST_ASSERT_EQ(count, NUM_BRANCH_INSNS_RETIRED); break; case INTEL_ARCH_LLC_REFERENCES_INDEX: case INTEL_ARCH_LLC_MISSES_INDEX: if (!this_cpu_has(X86_FEATURE_CLFLUSHOPT) && !this_cpu_has(X86_FEATURE_CLFLUSH)) break; fallthrough; case INTEL_ARCH_CPU_CYCLES_INDEX: case INTEL_ARCH_REFERENCE_CYCLES_INDEX: GUEST_ASSERT_NE(count, 0); break; case INTEL_ARCH_TOPDOWN_SLOTS_INDEX: GUEST_ASSERT(count >= NUM_INSNS_RETIRED); break; default: break; } sanity_checks: __asm__ __volatile__("loop ." : "+c"((int){NUM_LOOPS})); GUEST_ASSERT_EQ(_rdpmc(pmc), count); wrmsr(pmc_msr, 0xdead); GUEST_ASSERT_EQ(_rdpmc(pmc), 0xdead); } /* * Enable and disable the PMC in a monolithic asm blob to ensure that the * compiler can't insert _any_ code into the measured sequence. Note, ECX * doesn't need to be clobbered as the input value, @pmc_msr, is restored * before the end of the sequence. * * If CLFUSH{,OPT} is supported, flush the cacheline containing (at least) the * CLFUSH{,OPT} instruction on each loop iteration to force LLC references and * misses, i.e. to allow testing that those events actually count. * * If forced emulation is enabled (and specified), force emulation on a subset * of the measured code to verify that KVM correctly emulates instructions and * branches retired events in conjunction with hardware also counting said * events. */ #define GUEST_MEASURE_EVENT(_msr, _value, clflush, FEP) \ do { \ __asm__ __volatile__("wrmsr\n\t" \ " mov $" __stringify(NUM_LOOPS) ", %%ecx\n\t" \ "1:\n\t" \ clflush "\n\t" \ "mfence\n\t" \ FEP "loop 1b\n\t" \ FEP "mov %%edi, %%ecx\n\t" \ FEP "xor %%eax, %%eax\n\t" \ FEP "xor %%edx, %%edx\n\t" \ "wrmsr\n\t" \ :: "a"((uint32_t)_value), "d"(_value >> 32), \ "c"(_msr), "D"(_msr) \ ); \ } while (0) #define GUEST_TEST_EVENT(_idx, _event, _pmc, _pmc_msr, _ctrl_msr, _value, FEP) \ do { \ wrmsr(pmc_msr, 0); \ \ if (this_cpu_has(X86_FEATURE_CLFLUSHOPT)) \ GUEST_MEASURE_EVENT(_ctrl_msr, _value, "clflushopt .", FEP); \ else if (this_cpu_has(X86_FEATURE_CLFLUSH)) \ GUEST_MEASURE_EVENT(_ctrl_msr, _value, "clflush .", FEP); \ else \ GUEST_MEASURE_EVENT(_ctrl_msr, _value, "nop", FEP); \ \ guest_assert_event_count(_idx, _event, _pmc, _pmc_msr); \ } while (0) static void __guest_test_arch_event(uint8_t idx, struct kvm_x86_pmu_feature event, uint32_t pmc, uint32_t pmc_msr, uint32_t ctrl_msr, uint64_t ctrl_msr_value) { GUEST_TEST_EVENT(idx, event, pmc, pmc_msr, ctrl_msr, ctrl_msr_value, ""); if (is_forced_emulation_enabled) GUEST_TEST_EVENT(idx, event, pmc, pmc_msr, ctrl_msr, ctrl_msr_value, KVM_FEP); } #define X86_PMU_FEATURE_NULL \ ({ \ struct kvm_x86_pmu_feature feature = {}; \ \ feature; \ }) static bool pmu_is_null_feature(struct kvm_x86_pmu_feature event) { return !(*(u64 *)&event); } static void guest_test_arch_event(uint8_t idx) { const struct { struct kvm_x86_pmu_feature gp_event; struct kvm_x86_pmu_feature fixed_event; } intel_event_to_feature[] = { [INTEL_ARCH_CPU_CYCLES_INDEX] = { X86_PMU_FEATURE_CPU_CYCLES, X86_PMU_FEATURE_CPU_CYCLES_FIXED }, [INTEL_ARCH_INSTRUCTIONS_RETIRED_INDEX] = { X86_PMU_FEATURE_INSNS_RETIRED, X86_PMU_FEATURE_INSNS_RETIRED_FIXED }, /* * Note, the fixed counter for reference cycles is NOT the same * as the general purpose architectural event. The fixed counter * explicitly counts at the same frequency as the TSC, whereas * the GP event counts at a fixed, but uarch specific, frequency. * Bundle them here for simplicity. */ [INTEL_ARCH_REFERENCE_CYCLES_INDEX] = { X86_PMU_FEATURE_REFERENCE_CYCLES, X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED }, [INTEL_ARCH_LLC_REFERENCES_INDEX] = { X86_PMU_FEATURE_LLC_REFERENCES, X86_PMU_FEATURE_NULL }, [INTEL_ARCH_LLC_MISSES_INDEX] = { X86_PMU_FEATURE_LLC_MISSES, X86_PMU_FEATURE_NULL }, [INTEL_ARCH_BRANCHES_RETIRED_INDEX] = { X86_PMU_FEATURE_BRANCH_INSNS_RETIRED, X86_PMU_FEATURE_NULL }, [INTEL_ARCH_BRANCHES_MISPREDICTED_INDEX] = { X86_PMU_FEATURE_BRANCHES_MISPREDICTED, X86_PMU_FEATURE_NULL }, [INTEL_ARCH_TOPDOWN_SLOTS_INDEX] = { X86_PMU_FEATURE_TOPDOWN_SLOTS, X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED }, }; uint32_t nr_gp_counters = this_cpu_property(X86_PROPERTY_PMU_NR_GP_COUNTERS); uint32_t pmu_version = guest_get_pmu_version(); /* PERF_GLOBAL_CTRL exists only for Architectural PMU Version 2+. */ bool guest_has_perf_global_ctrl = pmu_version >= 2; struct kvm_x86_pmu_feature gp_event, fixed_event; uint32_t base_pmc_msr; unsigned int i; /* The host side shouldn't invoke this without a guest PMU. */ GUEST_ASSERT(pmu_version); if (this_cpu_has(X86_FEATURE_PDCM) && rdmsr(MSR_IA32_PERF_CAPABILITIES) & PMU_CAP_FW_WRITES) base_pmc_msr = MSR_IA32_PMC0; else base_pmc_msr = MSR_IA32_PERFCTR0; gp_event = intel_event_to_feature[idx].gp_event; GUEST_ASSERT_EQ(idx, gp_event.f.bit); GUEST_ASSERT(nr_gp_counters); for (i = 0; i < nr_gp_counters; i++) { uint64_t eventsel = ARCH_PERFMON_EVENTSEL_OS | ARCH_PERFMON_EVENTSEL_ENABLE | intel_pmu_arch_events[idx]; wrmsr(MSR_P6_EVNTSEL0 + i, 0); if (guest_has_perf_global_ctrl) wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, BIT_ULL(i)); __guest_test_arch_event(idx, gp_event, i, base_pmc_msr + i, MSR_P6_EVNTSEL0 + i, eventsel); } if (!guest_has_perf_global_ctrl) return; fixed_event = intel_event_to_feature[idx].fixed_event; if (pmu_is_null_feature(fixed_event) || !this_pmu_has(fixed_event)) return; i = fixed_event.f.bit; wrmsr(MSR_CORE_PERF_FIXED_CTR_CTRL, FIXED_PMC_CTRL(i, FIXED_PMC_KERNEL)); __guest_test_arch_event(idx, fixed_event, i | INTEL_RDPMC_FIXED, MSR_CORE_PERF_FIXED_CTR0 + i, MSR_CORE_PERF_GLOBAL_CTRL, FIXED_PMC_GLOBAL_CTRL_ENABLE(i)); } static void guest_test_arch_events(void) { uint8_t i; for (i = 0; i < NR_INTEL_ARCH_EVENTS; i++) guest_test_arch_event(i); GUEST_DONE(); } static void test_arch_events(uint8_t pmu_version, uint64_t perf_capabilities, uint8_t length, uint8_t unavailable_mask) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; /* Testing arch events requires a vPMU (there are no negative tests). */ if (!pmu_version) return; vm = pmu_vm_create_with_one_vcpu(&vcpu, guest_test_arch_events, pmu_version, perf_capabilities); vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH, length); vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_EVENTS_MASK, unavailable_mask); run_vcpu(vcpu); kvm_vm_free(vm); } /* * Limit testing to MSRs that are actually defined by Intel (in the SDM). MSRs * that aren't defined counter MSRs *probably* don't exist, but there's no * guarantee that currently undefined MSR indices won't be used for something * other than PMCs in the future. */ #define MAX_NR_GP_COUNTERS 8 #define MAX_NR_FIXED_COUNTERS 3 #define GUEST_ASSERT_PMC_MSR_ACCESS(insn, msr, expect_gp, vector) \ __GUEST_ASSERT(expect_gp ? vector == GP_VECTOR : !vector, \ "Expected %s on " #insn "(0x%x), got vector %u", \ expect_gp ? "#GP" : "no fault", msr, vector) \ #define GUEST_ASSERT_PMC_VALUE(insn, msr, val, expected) \ __GUEST_ASSERT(val == expected_val, \ "Expected " #insn "(0x%x) to yield 0x%lx, got 0x%lx", \ msr, expected_val, val); static void guest_test_rdpmc(uint32_t rdpmc_idx, bool expect_success, uint64_t expected_val) { uint8_t vector; uint64_t val; vector = rdpmc_safe(rdpmc_idx, &val); GUEST_ASSERT_PMC_MSR_ACCESS(RDPMC, rdpmc_idx, !expect_success, vector); if (expect_success) GUEST_ASSERT_PMC_VALUE(RDPMC, rdpmc_idx, val, expected_val); if (!is_forced_emulation_enabled) return; vector = rdpmc_safe_fep(rdpmc_idx, &val); GUEST_ASSERT_PMC_MSR_ACCESS(RDPMC, rdpmc_idx, !expect_success, vector); if (expect_success) GUEST_ASSERT_PMC_VALUE(RDPMC, rdpmc_idx, val, expected_val); } static void guest_rd_wr_counters(uint32_t base_msr, uint8_t nr_possible_counters, uint8_t nr_counters, uint32_t or_mask) { const bool pmu_has_fast_mode = !guest_get_pmu_version(); uint8_t i; for (i = 0; i < nr_possible_counters; i++) { /* * TODO: Test a value that validates full-width writes and the * width of the counters. */ const uint64_t test_val = 0xffff; const uint32_t msr = base_msr + i; /* * Fixed counters are supported if the counter is less than the * number of enumerated contiguous counters *or* the counter is * explicitly enumerated in the supported counters mask. */ const bool expect_success = i < nr_counters || (or_mask & BIT(i)); /* * KVM drops writes to MSR_P6_PERFCTR[0|1] if the counters are * unsupported, i.e. doesn't #GP and reads back '0'. */ const uint64_t expected_val = expect_success ? test_val : 0; const bool expect_gp = !expect_success && msr != MSR_P6_PERFCTR0 && msr != MSR_P6_PERFCTR1; uint32_t rdpmc_idx; uint8_t vector; uint64_t val; vector = wrmsr_safe(msr, test_val); GUEST_ASSERT_PMC_MSR_ACCESS(WRMSR, msr, expect_gp, vector); vector = rdmsr_safe(msr, &val); GUEST_ASSERT_PMC_MSR_ACCESS(RDMSR, msr, expect_gp, vector); /* On #GP, the result of RDMSR is undefined. */ if (!expect_gp) GUEST_ASSERT_PMC_VALUE(RDMSR, msr, val, expected_val); /* * Redo the read tests with RDPMC, which has different indexing * semantics and additional capabilities. */ rdpmc_idx = i; if (base_msr == MSR_CORE_PERF_FIXED_CTR0) rdpmc_idx |= INTEL_RDPMC_FIXED; guest_test_rdpmc(rdpmc_idx, expect_success, expected_val); /* * KVM doesn't support non-architectural PMUs, i.e. it should * impossible to have fast mode RDPMC. Verify that attempting * to use fast RDPMC always #GPs. */ GUEST_ASSERT(!expect_success || !pmu_has_fast_mode); rdpmc_idx |= INTEL_RDPMC_FAST; guest_test_rdpmc(rdpmc_idx, false, -1ull); vector = wrmsr_safe(msr, 0); GUEST_ASSERT_PMC_MSR_ACCESS(WRMSR, msr, expect_gp, vector); } } static void guest_test_gp_counters(void) { uint8_t pmu_version = guest_get_pmu_version(); uint8_t nr_gp_counters = 0; uint32_t base_msr; if (pmu_version) nr_gp_counters = this_cpu_property(X86_PROPERTY_PMU_NR_GP_COUNTERS); /* * For v2+ PMUs, PERF_GLOBAL_CTRL's architectural post-RESET value is * "Sets bits n-1:0 and clears the upper bits", where 'n' is the number * of GP counters. If there are no GP counters, require KVM to leave * PERF_GLOBAL_CTRL '0'. This edge case isn't covered by the SDM, but * follow the spirit of the architecture and only globally enable GP * counters, of which there are none. */ if (pmu_version > 1) { uint64_t global_ctrl = rdmsr(MSR_CORE_PERF_GLOBAL_CTRL); if (nr_gp_counters) GUEST_ASSERT_EQ(global_ctrl, GENMASK_ULL(nr_gp_counters - 1, 0)); else GUEST_ASSERT_EQ(global_ctrl, 0); } if (this_cpu_has(X86_FEATURE_PDCM) && rdmsr(MSR_IA32_PERF_CAPABILITIES) & PMU_CAP_FW_WRITES) base_msr = MSR_IA32_PMC0; else base_msr = MSR_IA32_PERFCTR0; guest_rd_wr_counters(base_msr, MAX_NR_GP_COUNTERS, nr_gp_counters, 0); GUEST_DONE(); } static void test_gp_counters(uint8_t pmu_version, uint64_t perf_capabilities, uint8_t nr_gp_counters) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; vm = pmu_vm_create_with_one_vcpu(&vcpu, guest_test_gp_counters, pmu_version, perf_capabilities); vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_NR_GP_COUNTERS, nr_gp_counters); run_vcpu(vcpu); kvm_vm_free(vm); } static void guest_test_fixed_counters(void) { uint64_t supported_bitmask = 0; uint8_t nr_fixed_counters = 0; uint8_t i; /* Fixed counters require Architectural vPMU Version 2+. */ if (guest_get_pmu_version() >= 2) nr_fixed_counters = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); /* * The supported bitmask for fixed counters was introduced in PMU * version 5. */ if (guest_get_pmu_version() >= 5) supported_bitmask = this_cpu_property(X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK); guest_rd_wr_counters(MSR_CORE_PERF_FIXED_CTR0, MAX_NR_FIXED_COUNTERS, nr_fixed_counters, supported_bitmask); for (i = 0; i < MAX_NR_FIXED_COUNTERS; i++) { uint8_t vector; uint64_t val; if (i >= nr_fixed_counters && !(supported_bitmask & BIT_ULL(i))) { vector = wrmsr_safe(MSR_CORE_PERF_FIXED_CTR_CTRL, FIXED_PMC_CTRL(i, FIXED_PMC_KERNEL)); __GUEST_ASSERT(vector == GP_VECTOR, "Expected #GP for counter %u in FIXED_CTR_CTRL", i); vector = wrmsr_safe(MSR_CORE_PERF_GLOBAL_CTRL, FIXED_PMC_GLOBAL_CTRL_ENABLE(i)); __GUEST_ASSERT(vector == GP_VECTOR, "Expected #GP for counter %u in PERF_GLOBAL_CTRL", i); continue; } wrmsr(MSR_CORE_PERF_FIXED_CTR0 + i, 0); wrmsr(MSR_CORE_PERF_FIXED_CTR_CTRL, FIXED_PMC_CTRL(i, FIXED_PMC_KERNEL)); wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, FIXED_PMC_GLOBAL_CTRL_ENABLE(i)); __asm__ __volatile__("loop ." : "+c"((int){NUM_LOOPS})); wrmsr(MSR_CORE_PERF_GLOBAL_CTRL, 0); val = rdmsr(MSR_CORE_PERF_FIXED_CTR0 + i); GUEST_ASSERT_NE(val, 0); } GUEST_DONE(); } static void test_fixed_counters(uint8_t pmu_version, uint64_t perf_capabilities, uint8_t nr_fixed_counters, uint32_t supported_bitmask) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; vm = pmu_vm_create_with_one_vcpu(&vcpu, guest_test_fixed_counters, pmu_version, perf_capabilities); vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK, supported_bitmask); vcpu_set_cpuid_property(vcpu, X86_PROPERTY_PMU_NR_FIXED_COUNTERS, nr_fixed_counters); run_vcpu(vcpu); kvm_vm_free(vm); } static void test_intel_counters(void) { uint8_t nr_arch_events = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); uint8_t nr_fixed_counters = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); uint8_t nr_gp_counters = kvm_cpu_property(X86_PROPERTY_PMU_NR_GP_COUNTERS); uint8_t pmu_version = kvm_cpu_property(X86_PROPERTY_PMU_VERSION); unsigned int i; uint8_t v, j; uint32_t k; const uint64_t perf_caps[] = { 0, PMU_CAP_FW_WRITES, }; /* * Test up to PMU v5, which is the current maximum version defined by * Intel, i.e. is the last version that is guaranteed to be backwards * compatible with KVM's existing behavior. */ uint8_t max_pmu_version = max_t(typeof(pmu_version), pmu_version, 5); /* * Detect the existence of events that aren't supported by selftests. * This will (obviously) fail any time the kernel adds support for a * new event, but it's worth paying that price to keep the test fresh. */ TEST_ASSERT(nr_arch_events <= NR_INTEL_ARCH_EVENTS, "New architectural event(s) detected; please update this test (length = %u, mask = %x)", nr_arch_events, kvm_cpu_property(X86_PROPERTY_PMU_EVENTS_MASK)); /* * Force iterating over known arch events regardless of whether or not * KVM/hardware supports a given event. */ nr_arch_events = max_t(typeof(nr_arch_events), nr_arch_events, NR_INTEL_ARCH_EVENTS); for (v = 0; v <= max_pmu_version; v++) { for (i = 0; i < ARRAY_SIZE(perf_caps); i++) { if (!kvm_has_perf_caps && perf_caps[i]) continue; pr_info("Testing arch events, PMU version %u, perf_caps = %lx\n", v, perf_caps[i]); /* * To keep the total runtime reasonable, test every * possible non-zero, non-reserved bitmap combination * only with the native PMU version and the full bit * vector length. */ if (v == pmu_version) { for (k = 1; k < (BIT(nr_arch_events) - 1); k++) test_arch_events(v, perf_caps[i], nr_arch_events, k); } /* * Test single bits for all PMU version and lengths up * the number of events +1 (to verify KVM doesn't do * weird things if the guest length is greater than the * host length). Explicitly test a mask of '0' and all * ones i.e. all events being available and unavailable. */ for (j = 0; j <= nr_arch_events + 1; j++) { test_arch_events(v, perf_caps[i], j, 0); test_arch_events(v, perf_caps[i], j, 0xff); for (k = 0; k < nr_arch_events; k++) test_arch_events(v, perf_caps[i], j, BIT(k)); } pr_info("Testing GP counters, PMU version %u, perf_caps = %lx\n", v, perf_caps[i]); for (j = 0; j <= nr_gp_counters; j++) test_gp_counters(v, perf_caps[i], j); pr_info("Testing fixed counters, PMU version %u, perf_caps = %lx\n", v, perf_caps[i]); for (j = 0; j <= nr_fixed_counters; j++) { for (k = 0; k <= (BIT(nr_fixed_counters) - 1); k++) test_fixed_counters(v, perf_caps[i], j, k); } } } } int main(int argc, char *argv[]) { TEST_REQUIRE(kvm_is_pmu_enabled()); TEST_REQUIRE(host_cpu_is_intel); TEST_REQUIRE(kvm_cpu_has_p(X86_PROPERTY_PMU_VERSION)); TEST_REQUIRE(kvm_cpu_property(X86_PROPERTY_PMU_VERSION) > 0); kvm_pmu_version = kvm_cpu_property(X86_PROPERTY_PMU_VERSION); kvm_has_perf_caps = kvm_cpu_has(X86_FEATURE_PDCM); test_intel_counters(); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1