Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vishal Annapurve | 2009 | 99.70% | 1 | 33.33% |
Dongli Zhang | 5 | 0.25% | 1 | 33.33% |
Sean Christopherson | 1 | 0.05% | 1 | 33.33% |
Total | 2015 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2022, Google LLC. */ #include <fcntl.h> #include <limits.h> #include <pthread.h> #include <sched.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <linux/compiler.h> #include <linux/kernel.h> #include <linux/kvm_para.h> #include <linux/memfd.h> #include <linux/sizes.h> #include <test_util.h> #include <kvm_util.h> #include <processor.h> #define BASE_DATA_SLOT 10 #define BASE_DATA_GPA ((uint64_t)(1ull << 32)) #define PER_CPU_DATA_SIZE ((uint64_t)(SZ_2M + PAGE_SIZE)) /* Horrific macro so that the line info is captured accurately :-( */ #define memcmp_g(gpa, pattern, size) \ do { \ uint8_t *mem = (uint8_t *)gpa; \ size_t i; \ \ for (i = 0; i < size; i++) \ __GUEST_ASSERT(mem[i] == pattern, \ "Guest expected 0x%x at offset %lu (gpa 0x%lx), got 0x%x", \ pattern, i, gpa + i, mem[i]); \ } while (0) static void memcmp_h(uint8_t *mem, uint64_t gpa, uint8_t pattern, size_t size) { size_t i; for (i = 0; i < size; i++) TEST_ASSERT(mem[i] == pattern, "Host expected 0x%x at gpa 0x%lx, got 0x%x", pattern, gpa + i, mem[i]); } /* * Run memory conversion tests with explicit conversion: * Execute KVM hypercall to map/unmap gpa range which will cause userspace exit * to back/unback private memory. Subsequent accesses by guest to the gpa range * will not cause exit to userspace. * * Test memory conversion scenarios with following steps: * 1) Access private memory using private access and verify that memory contents * are not visible to userspace. * 2) Convert memory to shared using explicit conversions and ensure that * userspace is able to access the shared regions. * 3) Convert memory back to private using explicit conversions and ensure that * userspace is again not able to access converted private regions. */ #define GUEST_STAGE(o, s) { .offset = o, .size = s } enum ucall_syncs { SYNC_SHARED, SYNC_PRIVATE, }; static void guest_sync_shared(uint64_t gpa, uint64_t size, uint8_t current_pattern, uint8_t new_pattern) { GUEST_SYNC5(SYNC_SHARED, gpa, size, current_pattern, new_pattern); } static void guest_sync_private(uint64_t gpa, uint64_t size, uint8_t pattern) { GUEST_SYNC4(SYNC_PRIVATE, gpa, size, pattern); } /* Arbitrary values, KVM doesn't care about the attribute flags. */ #define MAP_GPA_SET_ATTRIBUTES BIT(0) #define MAP_GPA_SHARED BIT(1) #define MAP_GPA_DO_FALLOCATE BIT(2) static void guest_map_mem(uint64_t gpa, uint64_t size, bool map_shared, bool do_fallocate) { uint64_t flags = MAP_GPA_SET_ATTRIBUTES; if (map_shared) flags |= MAP_GPA_SHARED; if (do_fallocate) flags |= MAP_GPA_DO_FALLOCATE; kvm_hypercall_map_gpa_range(gpa, size, flags); } static void guest_map_shared(uint64_t gpa, uint64_t size, bool do_fallocate) { guest_map_mem(gpa, size, true, do_fallocate); } static void guest_map_private(uint64_t gpa, uint64_t size, bool do_fallocate) { guest_map_mem(gpa, size, false, do_fallocate); } struct { uint64_t offset; uint64_t size; } static const test_ranges[] = { GUEST_STAGE(0, PAGE_SIZE), GUEST_STAGE(0, SZ_2M), GUEST_STAGE(PAGE_SIZE, PAGE_SIZE), GUEST_STAGE(PAGE_SIZE, SZ_2M), GUEST_STAGE(SZ_2M, PAGE_SIZE), }; static void guest_test_explicit_conversion(uint64_t base_gpa, bool do_fallocate) { const uint8_t def_p = 0xaa; const uint8_t init_p = 0xcc; uint64_t j; int i; /* Memory should be shared by default. */ memset((void *)base_gpa, def_p, PER_CPU_DATA_SIZE); memcmp_g(base_gpa, def_p, PER_CPU_DATA_SIZE); guest_sync_shared(base_gpa, PER_CPU_DATA_SIZE, def_p, init_p); memcmp_g(base_gpa, init_p, PER_CPU_DATA_SIZE); for (i = 0; i < ARRAY_SIZE(test_ranges); i++) { uint64_t gpa = base_gpa + test_ranges[i].offset; uint64_t size = test_ranges[i].size; uint8_t p1 = 0x11; uint8_t p2 = 0x22; uint8_t p3 = 0x33; uint8_t p4 = 0x44; /* * Set the test region to pattern one to differentiate it from * the data range as a whole (contains the initial pattern). */ memset((void *)gpa, p1, size); /* * Convert to private, set and verify the private data, and * then verify that the rest of the data (map shared) still * holds the initial pattern, and that the host always sees the * shared memory (initial pattern). Unlike shared memory, * punching a hole in private memory is destructive, i.e. * previous values aren't guaranteed to be preserved. */ guest_map_private(gpa, size, do_fallocate); if (size > PAGE_SIZE) { memset((void *)gpa, p2, PAGE_SIZE); goto skip; } memset((void *)gpa, p2, size); guest_sync_private(gpa, size, p1); /* * Verify that the private memory was set to pattern two, and * that shared memory still holds the initial pattern. */ memcmp_g(gpa, p2, size); if (gpa > base_gpa) memcmp_g(base_gpa, init_p, gpa - base_gpa); if (gpa + size < base_gpa + PER_CPU_DATA_SIZE) memcmp_g(gpa + size, init_p, (base_gpa + PER_CPU_DATA_SIZE) - (gpa + size)); /* * Convert odd-number page frames back to shared to verify KVM * also correctly handles holes in private ranges. */ for (j = 0; j < size; j += PAGE_SIZE) { if ((j >> PAGE_SHIFT) & 1) { guest_map_shared(gpa + j, PAGE_SIZE, do_fallocate); guest_sync_shared(gpa + j, PAGE_SIZE, p1, p3); memcmp_g(gpa + j, p3, PAGE_SIZE); } else { guest_sync_private(gpa + j, PAGE_SIZE, p1); } } skip: /* * Convert the entire region back to shared, explicitly write * pattern three to fill in the even-number frames before * asking the host to verify (and write pattern four). */ guest_map_shared(gpa, size, do_fallocate); memset((void *)gpa, p3, size); guest_sync_shared(gpa, size, p3, p4); memcmp_g(gpa, p4, size); /* Reset the shared memory back to the initial pattern. */ memset((void *)gpa, init_p, size); /* * Free (via PUNCH_HOLE) *all* private memory so that the next * iteration starts from a clean slate, e.g. with respect to * whether or not there are pages/folios in guest_mem. */ guest_map_shared(base_gpa, PER_CPU_DATA_SIZE, true); } } static void guest_punch_hole(uint64_t gpa, uint64_t size) { /* "Mapping" memory shared via fallocate() is done via PUNCH_HOLE. */ uint64_t flags = MAP_GPA_SHARED | MAP_GPA_DO_FALLOCATE; kvm_hypercall_map_gpa_range(gpa, size, flags); } /* * Test that PUNCH_HOLE actually frees memory by punching holes without doing a * proper conversion. Freeing (PUNCH_HOLE) should zap SPTEs, and reallocating * (subsequent fault) should zero memory. */ static void guest_test_punch_hole(uint64_t base_gpa, bool precise) { const uint8_t init_p = 0xcc; int i; /* * Convert the entire range to private, this testcase is all about * punching holes in guest_memfd, i.e. shared mappings aren't needed. */ guest_map_private(base_gpa, PER_CPU_DATA_SIZE, false); for (i = 0; i < ARRAY_SIZE(test_ranges); i++) { uint64_t gpa = base_gpa + test_ranges[i].offset; uint64_t size = test_ranges[i].size; /* * Free all memory before each iteration, even for the !precise * case where the memory will be faulted back in. Freeing and * reallocating should obviously work, and freeing all memory * minimizes the probability of cross-testcase influence. */ guest_punch_hole(base_gpa, PER_CPU_DATA_SIZE); /* Fault-in and initialize memory, and verify the pattern. */ if (precise) { memset((void *)gpa, init_p, size); memcmp_g(gpa, init_p, size); } else { memset((void *)base_gpa, init_p, PER_CPU_DATA_SIZE); memcmp_g(base_gpa, init_p, PER_CPU_DATA_SIZE); } /* * Punch a hole at the target range and verify that reads from * the guest succeed and return zeroes. */ guest_punch_hole(gpa, size); memcmp_g(gpa, 0, size); } } static void guest_code(uint64_t base_gpa) { /* * Run the conversion test twice, with and without doing fallocate() on * the guest_memfd backing when converting between shared and private. */ guest_test_explicit_conversion(base_gpa, false); guest_test_explicit_conversion(base_gpa, true); /* * Run the PUNCH_HOLE test twice too, once with the entire guest_memfd * faulted in, once with only the target range faulted in. */ guest_test_punch_hole(base_gpa, false); guest_test_punch_hole(base_gpa, true); GUEST_DONE(); } static void handle_exit_hypercall(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; uint64_t gpa = run->hypercall.args[0]; uint64_t size = run->hypercall.args[1] * PAGE_SIZE; bool set_attributes = run->hypercall.args[2] & MAP_GPA_SET_ATTRIBUTES; bool map_shared = run->hypercall.args[2] & MAP_GPA_SHARED; bool do_fallocate = run->hypercall.args[2] & MAP_GPA_DO_FALLOCATE; struct kvm_vm *vm = vcpu->vm; TEST_ASSERT(run->hypercall.nr == KVM_HC_MAP_GPA_RANGE, "Wanted MAP_GPA_RANGE (%u), got '%llu'", KVM_HC_MAP_GPA_RANGE, run->hypercall.nr); if (do_fallocate) vm_guest_mem_fallocate(vm, gpa, size, map_shared); if (set_attributes) vm_set_memory_attributes(vm, gpa, size, map_shared ? 0 : KVM_MEMORY_ATTRIBUTE_PRIVATE); run->hypercall.ret = 0; } static bool run_vcpus; static void *__test_mem_conversions(void *__vcpu) { struct kvm_vcpu *vcpu = __vcpu; struct kvm_run *run = vcpu->run; struct kvm_vm *vm = vcpu->vm; struct ucall uc; while (!READ_ONCE(run_vcpus)) ; for ( ;; ) { vcpu_run(vcpu); if (run->exit_reason == KVM_EXIT_HYPERCALL) { handle_exit_hypercall(vcpu); continue; } TEST_ASSERT(run->exit_reason == KVM_EXIT_IO, "Wanted KVM_EXIT_IO, got exit reason: %u (%s)", run->exit_reason, exit_reason_str(run->exit_reason)); switch (get_ucall(vcpu, &uc)) { case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); case UCALL_SYNC: { uint64_t gpa = uc.args[1]; size_t size = uc.args[2]; size_t i; TEST_ASSERT(uc.args[0] == SYNC_SHARED || uc.args[0] == SYNC_PRIVATE, "Unknown sync command '%ld'", uc.args[0]); for (i = 0; i < size; i += vm->page_size) { size_t nr_bytes = min_t(size_t, vm->page_size, size - i); uint8_t *hva = addr_gpa2hva(vm, gpa + i); /* In all cases, the host should observe the shared data. */ memcmp_h(hva, gpa + i, uc.args[3], nr_bytes); /* For shared, write the new pattern to guest memory. */ if (uc.args[0] == SYNC_SHARED) memset(hva, uc.args[4], nr_bytes); } break; } case UCALL_DONE: return NULL; default: TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd); } } } static void test_mem_conversions(enum vm_mem_backing_src_type src_type, uint32_t nr_vcpus, uint32_t nr_memslots) { /* * Allocate enough memory so that each vCPU's chunk of memory can be * naturally aligned with respect to the size of the backing store. */ const size_t alignment = max_t(size_t, SZ_2M, get_backing_src_pagesz(src_type)); const size_t per_cpu_size = align_up(PER_CPU_DATA_SIZE, alignment); const size_t memfd_size = per_cpu_size * nr_vcpus; const size_t slot_size = memfd_size / nr_memslots; struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; pthread_t threads[KVM_MAX_VCPUS]; struct kvm_vm *vm; int memfd, i, r; const struct vm_shape shape = { .mode = VM_MODE_DEFAULT, .type = KVM_X86_SW_PROTECTED_VM, }; TEST_ASSERT(slot_size * nr_memslots == memfd_size, "The memfd size (0x%lx) needs to be cleanly divisible by the number of memslots (%u)", memfd_size, nr_memslots); vm = __vm_create_with_vcpus(shape, nr_vcpus, 0, guest_code, vcpus); vm_enable_cap(vm, KVM_CAP_EXIT_HYPERCALL, (1 << KVM_HC_MAP_GPA_RANGE)); memfd = vm_create_guest_memfd(vm, memfd_size, 0); for (i = 0; i < nr_memslots; i++) vm_mem_add(vm, src_type, BASE_DATA_GPA + slot_size * i, BASE_DATA_SLOT + i, slot_size / vm->page_size, KVM_MEM_GUEST_MEMFD, memfd, slot_size * i); for (i = 0; i < nr_vcpus; i++) { uint64_t gpa = BASE_DATA_GPA + i * per_cpu_size; vcpu_args_set(vcpus[i], 1, gpa); /* * Map only what is needed so that an out-of-bounds access * results #PF => SHUTDOWN instead of data corruption. */ virt_map(vm, gpa, gpa, PER_CPU_DATA_SIZE / vm->page_size); pthread_create(&threads[i], NULL, __test_mem_conversions, vcpus[i]); } WRITE_ONCE(run_vcpus, true); for (i = 0; i < nr_vcpus; i++) pthread_join(threads[i], NULL); kvm_vm_free(vm); /* * Allocate and free memory from the guest_memfd after closing the VM * fd. The guest_memfd is gifted a reference to its owning VM, i.e. * should prevent the VM from being fully destroyed until the last * reference to the guest_memfd is also put. */ r = fallocate(memfd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, 0, memfd_size); TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); r = fallocate(memfd, FALLOC_FL_KEEP_SIZE, 0, memfd_size); TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r)); close(memfd); } static void usage(const char *cmd) { puts(""); printf("usage: %s [-h] [-m nr_memslots] [-s mem_type] [-n nr_vcpus]\n", cmd); puts(""); backing_src_help("-s"); puts(""); puts(" -n: specify the number of vcpus (default: 1)"); puts(""); puts(" -m: specify the number of memslots (default: 1)"); puts(""); } int main(int argc, char *argv[]) { enum vm_mem_backing_src_type src_type = DEFAULT_VM_MEM_SRC; uint32_t nr_memslots = 1; uint32_t nr_vcpus = 1; int opt; TEST_REQUIRE(kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(KVM_X86_SW_PROTECTED_VM)); while ((opt = getopt(argc, argv, "hm:s:n:")) != -1) { switch (opt) { case 's': src_type = parse_backing_src_type(optarg); break; case 'n': nr_vcpus = atoi_positive("nr_vcpus", optarg); break; case 'm': nr_memslots = atoi_positive("nr_memslots", optarg); break; case 'h': default: usage(argv[0]); exit(0); } } test_mem_conversions(src_type, nr_vcpus, nr_memslots); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1