Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrea Arcangeli | 986 | 52.78% | 5 | 10.00% |
Peter Xu | 488 | 26.12% | 18 | 36.00% |
Mike Rapoport | 138 | 7.39% | 3 | 6.00% |
Axel Rasmussen | 80 | 4.28% | 5 | 10.00% |
Audra Mitchell | 42 | 2.25% | 2 | 4.00% |
Mike Kravetz | 40 | 2.14% | 2 | 4.00% |
Nico Pache | 17 | 0.91% | 1 | 2.00% |
Zach O'Keefe | 12 | 0.64% | 1 | 2.00% |
Prakash Sangappa | 12 | 0.64% | 1 | 2.00% |
Muhammad Usama Anjum | 10 | 0.54% | 1 | 2.00% |
Suren Baghdasaryan | 8 | 0.43% | 1 | 2.00% |
Guo Zhengkui | 8 | 0.43% | 1 | 2.00% |
Rong Tao | 6 | 0.32% | 1 | 2.00% |
Shuah Khan | 6 | 0.32% | 2 | 4.00% |
Michael Ellerman | 5 | 0.27% | 1 | 2.00% |
Joe Perches | 4 | 0.21% | 1 | 2.00% |
Thomas Gleixner | 2 | 0.11% | 1 | 2.00% |
Alakesh Haloi | 2 | 0.11% | 1 | 2.00% |
Xiang wangx | 1 | 0.05% | 1 | 2.00% |
John Hubbard | 1 | 0.05% | 1 | 2.00% |
Total | 1868 | 50 |
// SPDX-License-Identifier: GPL-2.0-only /* * Stress userfaultfd syscall. * * Copyright (C) 2015 Red Hat, Inc. * * This test allocates two virtual areas and bounces the physical * memory across the two virtual areas (from area_src to area_dst) * using userfaultfd. * * There are three threads running per CPU: * * 1) one per-CPU thread takes a per-page pthread_mutex in a random * page of the area_dst (while the physical page may still be in * area_src), and increments a per-page counter in the same page, * and checks its value against a verification region. * * 2) another per-CPU thread handles the userfaults generated by * thread 1 above. userfaultfd blocking reads or poll() modes are * exercised interleaved. * * 3) one last per-CPU thread transfers the memory in the background * at maximum bandwidth (if not already transferred by thread * 2). Each cpu thread takes cares of transferring a portion of the * area. * * When all threads of type 3 completed the transfer, one bounce is * complete. area_src and area_dst are then swapped. All threads are * respawned and so the bounce is immediately restarted in the * opposite direction. * * per-CPU threads 1 by triggering userfaults inside * pthread_mutex_lock will also verify the atomicity of the memory * transfer (UFFDIO_COPY). */ #include <asm-generic/unistd.h> #include "uffd-common.h" uint64_t features; #define BOUNCE_RANDOM (1<<0) #define BOUNCE_RACINGFAULTS (1<<1) #define BOUNCE_VERIFY (1<<2) #define BOUNCE_POLL (1<<3) static int bounces; /* exercise the test_uffdio_*_eexist every ALARM_INTERVAL_SECS */ #define ALARM_INTERVAL_SECS 10 static char *zeropage; pthread_attr_t attr; #define swap(a, b) \ do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) const char *examples = "# Run anonymous memory test on 100MiB region with 99999 bounces:\n" "./uffd-stress anon 100 99999\n\n" "# Run share memory test on 1GiB region with 99 bounces:\n" "./uffd-stress shmem 1000 99\n\n" "# Run hugetlb memory test on 256MiB region with 50 bounces:\n" "./uffd-stress hugetlb 256 50\n\n" "# Run the same hugetlb test but using private file:\n" "./uffd-stress hugetlb-private 256 50\n\n" "# 10MiB-~6GiB 999 bounces anonymous test, " "continue forever unless an error triggers\n" "while ./uffd-stress anon $[RANDOM % 6000 + 10] 999; do true; done\n\n"; static void usage(void) { fprintf(stderr, "\nUsage: ./uffd-stress <test type> <MiB> <bounces>\n\n"); fprintf(stderr, "Supported <test type>: anon, hugetlb, " "hugetlb-private, shmem, shmem-private\n\n"); fprintf(stderr, "Examples:\n\n"); fprintf(stderr, "%s", examples); exit(1); } static void uffd_stats_reset(struct uffd_args *args, unsigned long n_cpus) { int i; for (i = 0; i < n_cpus; i++) { args[i].cpu = i; args[i].apply_wp = test_uffdio_wp; args[i].missing_faults = 0; args[i].wp_faults = 0; args[i].minor_faults = 0; } } static void *locking_thread(void *arg) { unsigned long cpu = (unsigned long) arg; unsigned long page_nr; unsigned long long count; if (!(bounces & BOUNCE_RANDOM)) { page_nr = -bounces; if (!(bounces & BOUNCE_RACINGFAULTS)) page_nr += cpu * nr_pages_per_cpu; } while (!finished) { if (bounces & BOUNCE_RANDOM) { if (getrandom(&page_nr, sizeof(page_nr), 0) != sizeof(page_nr)) err("getrandom failed"); } else page_nr += 1; page_nr %= nr_pages; pthread_mutex_lock(area_mutex(area_dst, page_nr)); count = *area_count(area_dst, page_nr); if (count != count_verify[page_nr]) err("page_nr %lu memory corruption %llu %llu", page_nr, count, count_verify[page_nr]); count++; *area_count(area_dst, page_nr) = count_verify[page_nr] = count; pthread_mutex_unlock(area_mutex(area_dst, page_nr)); } return NULL; } static int copy_page_retry(int ufd, unsigned long offset) { return __copy_page(ufd, offset, true, test_uffdio_wp); } pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER; static void *uffd_read_thread(void *arg) { struct uffd_args *args = (struct uffd_args *)arg; struct uffd_msg msg; pthread_mutex_unlock(&uffd_read_mutex); /* from here cancellation is ok */ for (;;) { if (uffd_read_msg(uffd, &msg)) continue; uffd_handle_page_fault(&msg, args); } return NULL; } static void *background_thread(void *arg) { unsigned long cpu = (unsigned long) arg; unsigned long page_nr, start_nr, mid_nr, end_nr; start_nr = cpu * nr_pages_per_cpu; end_nr = (cpu+1) * nr_pages_per_cpu; mid_nr = (start_nr + end_nr) / 2; /* Copy the first half of the pages */ for (page_nr = start_nr; page_nr < mid_nr; page_nr++) copy_page_retry(uffd, page_nr * page_size); /* * If we need to test uffd-wp, set it up now. Then we'll have * at least the first half of the pages mapped already which * can be write-protected for testing */ if (test_uffdio_wp) wp_range(uffd, (unsigned long)area_dst + start_nr * page_size, nr_pages_per_cpu * page_size, true); /* * Continue the 2nd half of the page copying, handling write * protection faults if any */ for (page_nr = mid_nr; page_nr < end_nr; page_nr++) copy_page_retry(uffd, page_nr * page_size); return NULL; } static int stress(struct uffd_args *args) { unsigned long cpu; pthread_t locking_threads[nr_cpus]; pthread_t uffd_threads[nr_cpus]; pthread_t background_threads[nr_cpus]; finished = 0; for (cpu = 0; cpu < nr_cpus; cpu++) { if (pthread_create(&locking_threads[cpu], &attr, locking_thread, (void *)cpu)) return 1; if (bounces & BOUNCE_POLL) { if (pthread_create(&uffd_threads[cpu], &attr, uffd_poll_thread, &args[cpu])) err("uffd_poll_thread create"); } else { if (pthread_create(&uffd_threads[cpu], &attr, uffd_read_thread, (void *)&args[cpu])) return 1; pthread_mutex_lock(&uffd_read_mutex); } if (pthread_create(&background_threads[cpu], &attr, background_thread, (void *)cpu)) return 1; } for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(background_threads[cpu], NULL)) return 1; /* * Be strict and immediately zap area_src, the whole area has * been transferred already by the background treads. The * area_src could then be faulted in a racy way by still * running uffdio_threads reading zeropages after we zapped * area_src (but they're guaranteed to get -EEXIST from * UFFDIO_COPY without writing zero pages into area_dst * because the background threads already completed). */ uffd_test_ops->release_pages(area_src); finished = 1; for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(locking_threads[cpu], NULL)) return 1; for (cpu = 0; cpu < nr_cpus; cpu++) { char c; if (bounces & BOUNCE_POLL) { if (write(pipefd[cpu*2+1], &c, 1) != 1) err("pipefd write error"); if (pthread_join(uffd_threads[cpu], (void *)&args[cpu])) return 1; } else { if (pthread_cancel(uffd_threads[cpu])) return 1; if (pthread_join(uffd_threads[cpu], NULL)) return 1; } } return 0; } static int userfaultfd_stress(void) { void *area; unsigned long nr; struct uffd_args args[nr_cpus]; uint64_t mem_size = nr_pages * page_size; int flags = 0; memset(args, 0, sizeof(struct uffd_args) * nr_cpus); if (features & UFFD_FEATURE_WP_UNPOPULATED && test_type == TEST_ANON) flags = UFFD_FEATURE_WP_UNPOPULATED; if (uffd_test_ctx_init(flags, NULL)) err("context init failed"); if (posix_memalign(&area, page_size, page_size)) err("out of memory"); zeropage = area; bzero(zeropage, page_size); pthread_mutex_lock(&uffd_read_mutex); pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 16*1024*1024); while (bounces--) { printf("bounces: %d, mode:", bounces); if (bounces & BOUNCE_RANDOM) printf(" rnd"); if (bounces & BOUNCE_RACINGFAULTS) printf(" racing"); if (bounces & BOUNCE_VERIFY) printf(" ver"); if (bounces & BOUNCE_POLL) printf(" poll"); else printf(" read"); printf(", "); fflush(stdout); if (bounces & BOUNCE_POLL) fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); else fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK); /* register */ if (uffd_register(uffd, area_dst, mem_size, true, test_uffdio_wp, false)) err("register failure"); if (area_dst_alias) { if (uffd_register(uffd, area_dst_alias, mem_size, true, test_uffdio_wp, false)) err("register failure alias"); } /* * The madvise done previously isn't enough: some * uffd_thread could have read userfaults (one of * those already resolved by the background thread) * and it may be in the process of calling * UFFDIO_COPY. UFFDIO_COPY will read the zapped * area_src and it would map a zero page in it (of * course such a UFFDIO_COPY is perfectly safe as it'd * return -EEXIST). The problem comes at the next * bounce though: that racing UFFDIO_COPY would * generate zeropages in the area_src, so invalidating * the previous MADV_DONTNEED. Without this additional * MADV_DONTNEED those zeropages leftovers in the * area_src would lead to -EEXIST failure during the * next bounce, effectively leaving a zeropage in the * area_dst. * * Try to comment this out madvise to see the memory * corruption being caught pretty quick. * * khugepaged is also inhibited to collapse THP after * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's * required to MADV_DONTNEED here. */ uffd_test_ops->release_pages(area_dst); uffd_stats_reset(args, nr_cpus); /* bounce pass */ if (stress(args)) { uffd_test_ctx_clear(); return 1; } /* Clear all the write protections if there is any */ if (test_uffdio_wp) wp_range(uffd, (unsigned long)area_dst, nr_pages * page_size, false); /* unregister */ if (uffd_unregister(uffd, area_dst, mem_size)) err("unregister failure"); if (area_dst_alias) { if (uffd_unregister(uffd, area_dst_alias, mem_size)) err("unregister failure alias"); } /* verification */ if (bounces & BOUNCE_VERIFY) for (nr = 0; nr < nr_pages; nr++) if (*area_count(area_dst, nr) != count_verify[nr]) err("error area_count %llu %llu %lu\n", *area_count(area_src, nr), count_verify[nr], nr); /* prepare next bounce */ swap(area_src, area_dst); swap(area_src_alias, area_dst_alias); uffd_stats_report(args, nr_cpus); } uffd_test_ctx_clear(); return 0; } static void set_test_type(const char *type) { if (!strcmp(type, "anon")) { test_type = TEST_ANON; uffd_test_ops = &anon_uffd_test_ops; } else if (!strcmp(type, "hugetlb")) { test_type = TEST_HUGETLB; uffd_test_ops = &hugetlb_uffd_test_ops; map_shared = true; } else if (!strcmp(type, "hugetlb-private")) { test_type = TEST_HUGETLB; uffd_test_ops = &hugetlb_uffd_test_ops; } else if (!strcmp(type, "shmem")) { map_shared = true; test_type = TEST_SHMEM; uffd_test_ops = &shmem_uffd_test_ops; } else if (!strcmp(type, "shmem-private")) { test_type = TEST_SHMEM; uffd_test_ops = &shmem_uffd_test_ops; } } static void parse_test_type_arg(const char *raw_type) { set_test_type(raw_type); if (!test_type) err("failed to parse test type argument: '%s'", raw_type); if (test_type == TEST_HUGETLB) page_size = default_huge_page_size(); else page_size = sysconf(_SC_PAGE_SIZE); if (!page_size) err("Unable to determine page size"); if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2 > page_size) err("Impossible to run this test"); /* * Whether we can test certain features depends not just on test type, * but also on whether or not this particular kernel supports the * feature. */ if (uffd_get_features(&features)) err("failed to get available features"); test_uffdio_wp = test_uffdio_wp && (features & UFFD_FEATURE_PAGEFAULT_FLAG_WP); if (test_type != TEST_ANON && !(features & UFFD_FEATURE_WP_HUGETLBFS_SHMEM)) test_uffdio_wp = false; close(uffd); uffd = -1; } static void sigalrm(int sig) { if (sig != SIGALRM) abort(); test_uffdio_copy_eexist = true; alarm(ALARM_INTERVAL_SECS); } int main(int argc, char **argv) { size_t bytes; if (argc < 4) usage(); if (signal(SIGALRM, sigalrm) == SIG_ERR) err("failed to arm SIGALRM"); alarm(ALARM_INTERVAL_SECS); parse_test_type_arg(argv[1]); bytes = atol(argv[2]) * 1024 * 1024; if (test_type == TEST_HUGETLB && get_free_hugepages() < bytes / page_size) { printf("skip: Skipping userfaultfd... not enough hugepages\n"); return KSFT_SKIP; } nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); nr_pages_per_cpu = bytes / page_size / nr_cpus; if (!nr_pages_per_cpu) { _err("invalid MiB"); usage(); } bounces = atoi(argv[3]); if (bounces <= 0) { _err("invalid bounces"); usage(); } nr_pages = nr_pages_per_cpu * nr_cpus; printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n", nr_pages, nr_pages_per_cpu); return userfaultfd_stress(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1