Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jakub Kiciński | 6077 | 42.11% | 31 | 52.54% |
Dave Watson | 6028 | 41.77% | 3 | 5.08% |
Sabrina Dubroca | 1001 | 6.94% | 7 | 11.86% |
Pooja Trivedi | 397 | 2.75% | 1 | 1.69% |
Daniel Borkmann | 245 | 1.70% | 1 | 1.69% |
Vakul Garg | 199 | 1.38% | 5 | 8.47% |
Vadim Fedorenko | 194 | 1.34% | 5 | 8.47% |
Magali Lemes | 105 | 0.73% | 1 | 1.69% |
John Fastabend | 97 | 0.67% | 1 | 1.69% |
Hannes Reinecke | 49 | 0.34% | 1 | 1.69% |
Tianjia Zhang | 35 | 0.24% | 1 | 1.69% |
Kees Cook | 2 | 0.01% | 1 | 1.69% |
Valentin Vidic | 2 | 0.01% | 1 | 1.69% |
Total | 14431 | 59 |
// SPDX-License-Identifier: GPL-2.0 #define _GNU_SOURCE #include <arpa/inet.h> #include <errno.h> #include <error.h> #include <fcntl.h> #include <poll.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <linux/tls.h> #include <linux/tcp.h> #include <linux/socket.h> #include <sys/epoll.h> #include <sys/types.h> #include <sys/sendfile.h> #include <sys/socket.h> #include <sys/stat.h> #include "../kselftest_harness.h" #define TLS_PAYLOAD_MAX_LEN 16384 #define SOL_TLS 282 static int fips_enabled; struct tls_crypto_info_keys { union { struct tls_crypto_info crypto_info; struct tls12_crypto_info_aes_gcm_128 aes128; struct tls12_crypto_info_chacha20_poly1305 chacha20; struct tls12_crypto_info_sm4_gcm sm4gcm; struct tls12_crypto_info_sm4_ccm sm4ccm; struct tls12_crypto_info_aes_ccm_128 aesccm128; struct tls12_crypto_info_aes_gcm_256 aesgcm256; struct tls12_crypto_info_aria_gcm_128 ariagcm128; struct tls12_crypto_info_aria_gcm_256 ariagcm256; }; size_t len; }; static void tls_crypto_info_init(uint16_t tls_version, uint16_t cipher_type, struct tls_crypto_info_keys *tls12) { memset(tls12, 0, sizeof(*tls12)); switch (cipher_type) { case TLS_CIPHER_CHACHA20_POLY1305: tls12->len = sizeof(struct tls12_crypto_info_chacha20_poly1305); tls12->chacha20.info.version = tls_version; tls12->chacha20.info.cipher_type = cipher_type; break; case TLS_CIPHER_AES_GCM_128: tls12->len = sizeof(struct tls12_crypto_info_aes_gcm_128); tls12->aes128.info.version = tls_version; tls12->aes128.info.cipher_type = cipher_type; break; case TLS_CIPHER_SM4_GCM: tls12->len = sizeof(struct tls12_crypto_info_sm4_gcm); tls12->sm4gcm.info.version = tls_version; tls12->sm4gcm.info.cipher_type = cipher_type; break; case TLS_CIPHER_SM4_CCM: tls12->len = sizeof(struct tls12_crypto_info_sm4_ccm); tls12->sm4ccm.info.version = tls_version; tls12->sm4ccm.info.cipher_type = cipher_type; break; case TLS_CIPHER_AES_CCM_128: tls12->len = sizeof(struct tls12_crypto_info_aes_ccm_128); tls12->aesccm128.info.version = tls_version; tls12->aesccm128.info.cipher_type = cipher_type; break; case TLS_CIPHER_AES_GCM_256: tls12->len = sizeof(struct tls12_crypto_info_aes_gcm_256); tls12->aesgcm256.info.version = tls_version; tls12->aesgcm256.info.cipher_type = cipher_type; break; case TLS_CIPHER_ARIA_GCM_128: tls12->len = sizeof(struct tls12_crypto_info_aria_gcm_128); tls12->ariagcm128.info.version = tls_version; tls12->ariagcm128.info.cipher_type = cipher_type; break; case TLS_CIPHER_ARIA_GCM_256: tls12->len = sizeof(struct tls12_crypto_info_aria_gcm_256); tls12->ariagcm256.info.version = tls_version; tls12->ariagcm256.info.cipher_type = cipher_type; break; default: break; } } static void memrnd(void *s, size_t n) { int *dword = s; char *byte; for (; n >= 4; n -= 4) *dword++ = rand(); byte = (void *)dword; while (n--) *byte++ = rand(); } static void ulp_sock_pair(struct __test_metadata *_metadata, int *fd, int *cfd, bool *notls) { struct sockaddr_in addr; socklen_t len; int sfd, ret; *notls = false; len = sizeof(addr); addr.sin_family = AF_INET; addr.sin_addr.s_addr = htonl(INADDR_ANY); addr.sin_port = 0; *fd = socket(AF_INET, SOCK_STREAM, 0); sfd = socket(AF_INET, SOCK_STREAM, 0); ret = bind(sfd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); ret = listen(sfd, 10); ASSERT_EQ(ret, 0); ret = getsockname(sfd, &addr, &len); ASSERT_EQ(ret, 0); ret = connect(*fd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); *cfd = accept(sfd, &addr, &len); ASSERT_GE(*cfd, 0); close(sfd); ret = setsockopt(*fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); if (ret != 0) { ASSERT_EQ(errno, ENOENT); *notls = true; printf("Failure setting TCP_ULP, testing without tls\n"); return; } ret = setsockopt(*cfd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); ASSERT_EQ(ret, 0); } /* Produce a basic cmsg */ static int tls_send_cmsg(int fd, unsigned char record_type, void *data, size_t len, int flags) { char cbuf[CMSG_SPACE(sizeof(char))]; int cmsg_len = sizeof(char); struct cmsghdr *cmsg; struct msghdr msg; struct iovec vec; vec.iov_base = data; vec.iov_len = len; memset(&msg, 0, sizeof(struct msghdr)); msg.msg_iov = &vec; msg.msg_iovlen = 1; msg.msg_control = cbuf; msg.msg_controllen = sizeof(cbuf); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_level = SOL_TLS; /* test sending non-record types. */ cmsg->cmsg_type = TLS_SET_RECORD_TYPE; cmsg->cmsg_len = CMSG_LEN(cmsg_len); *CMSG_DATA(cmsg) = record_type; msg.msg_controllen = cmsg->cmsg_len; return sendmsg(fd, &msg, flags); } static int tls_recv_cmsg(struct __test_metadata *_metadata, int fd, unsigned char record_type, void *data, size_t len, int flags) { char cbuf[CMSG_SPACE(sizeof(char))]; struct cmsghdr *cmsg; unsigned char ctype; struct msghdr msg; struct iovec vec; int n; vec.iov_base = data; vec.iov_len = len; memset(&msg, 0, sizeof(struct msghdr)); msg.msg_iov = &vec; msg.msg_iovlen = 1; msg.msg_control = cbuf; msg.msg_controllen = sizeof(cbuf); n = recvmsg(fd, &msg, flags); cmsg = CMSG_FIRSTHDR(&msg); EXPECT_NE(cmsg, NULL); EXPECT_EQ(cmsg->cmsg_level, SOL_TLS); EXPECT_EQ(cmsg->cmsg_type, TLS_GET_RECORD_TYPE); ctype = *((unsigned char *)CMSG_DATA(cmsg)); EXPECT_EQ(ctype, record_type); return n; } FIXTURE(tls_basic) { int fd, cfd; bool notls; }; FIXTURE_SETUP(tls_basic) { ulp_sock_pair(_metadata, &self->fd, &self->cfd, &self->notls); } FIXTURE_TEARDOWN(tls_basic) { close(self->fd); close(self->cfd); } /* Send some data through with ULP but no keys */ TEST_F(tls_basic, base_base) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; ASSERT_EQ(strlen(test_str) + 1, send_len); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); }; TEST_F(tls_basic, bad_cipher) { struct tls_crypto_info_keys tls12; tls12.crypto_info.version = 200; tls12.crypto_info.cipher_type = TLS_CIPHER_AES_GCM_128; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); tls12.crypto_info.version = TLS_1_2_VERSION; tls12.crypto_info.cipher_type = 50; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); tls12.crypto_info.version = TLS_1_2_VERSION; tls12.crypto_info.cipher_type = 59; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); tls12.crypto_info.version = TLS_1_2_VERSION; tls12.crypto_info.cipher_type = 10; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); tls12.crypto_info.version = TLS_1_2_VERSION; tls12.crypto_info.cipher_type = 70; EXPECT_EQ(setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, sizeof(struct tls12_crypto_info_aes_gcm_128)), -1); } FIXTURE(tls) { int fd, cfd; bool notls; }; FIXTURE_VARIANT(tls) { uint16_t tls_version; uint16_t cipher_type; bool nopad, fips_non_compliant; }; FIXTURE_VARIANT_ADD(tls, 12_aes_gcm) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_128, }; FIXTURE_VARIANT_ADD(tls, 13_aes_gcm) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_128, }; FIXTURE_VARIANT_ADD(tls, 12_chacha) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_CHACHA20_POLY1305, .fips_non_compliant = true, }; FIXTURE_VARIANT_ADD(tls, 13_chacha) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_CHACHA20_POLY1305, .fips_non_compliant = true, }; FIXTURE_VARIANT_ADD(tls, 13_sm4_gcm) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_SM4_GCM, .fips_non_compliant = true, }; FIXTURE_VARIANT_ADD(tls, 13_sm4_ccm) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_SM4_CCM, .fips_non_compliant = true, }; FIXTURE_VARIANT_ADD(tls, 12_aes_ccm) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_AES_CCM_128, }; FIXTURE_VARIANT_ADD(tls, 13_aes_ccm) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_AES_CCM_128, }; FIXTURE_VARIANT_ADD(tls, 12_aes_gcm_256) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_256, }; FIXTURE_VARIANT_ADD(tls, 13_aes_gcm_256) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_256, }; FIXTURE_VARIANT_ADD(tls, 13_nopad) { .tls_version = TLS_1_3_VERSION, .cipher_type = TLS_CIPHER_AES_GCM_128, .nopad = true, }; FIXTURE_VARIANT_ADD(tls, 12_aria_gcm) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_ARIA_GCM_128, }; FIXTURE_VARIANT_ADD(tls, 12_aria_gcm_256) { .tls_version = TLS_1_2_VERSION, .cipher_type = TLS_CIPHER_ARIA_GCM_256, }; FIXTURE_SETUP(tls) { struct tls_crypto_info_keys tls12; int one = 1; int ret; if (fips_enabled && variant->fips_non_compliant) SKIP(return, "Unsupported cipher in FIPS mode"); tls_crypto_info_init(variant->tls_version, variant->cipher_type, &tls12); ulp_sock_pair(_metadata, &self->fd, &self->cfd, &self->notls); if (self->notls) return; ret = setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, tls12.len); ASSERT_EQ(ret, 0); ret = setsockopt(self->cfd, SOL_TLS, TLS_RX, &tls12, tls12.len); ASSERT_EQ(ret, 0); if (variant->nopad) { ret = setsockopt(self->cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&one, sizeof(one)); ASSERT_EQ(ret, 0); } } FIXTURE_TEARDOWN(tls) { close(self->fd); close(self->cfd); } TEST_F(tls, sendfile) { int filefd = open("/proc/self/exe", O_RDONLY); struct stat st; EXPECT_GE(filefd, 0); fstat(filefd, &st); EXPECT_GE(sendfile(self->fd, filefd, 0, st.st_size), 0); } TEST_F(tls, send_then_sendfile) { int filefd = open("/proc/self/exe", O_RDONLY); char const *test_str = "test_send"; int to_send = strlen(test_str) + 1; char recv_buf[10]; struct stat st; char *buf; EXPECT_GE(filefd, 0); fstat(filefd, &st); buf = (char *)malloc(st.st_size); EXPECT_EQ(send(self->fd, test_str, to_send, 0), to_send); EXPECT_EQ(recv(self->cfd, recv_buf, to_send, MSG_WAITALL), to_send); EXPECT_EQ(memcmp(test_str, recv_buf, to_send), 0); EXPECT_GE(sendfile(self->fd, filefd, 0, st.st_size), 0); EXPECT_EQ(recv(self->cfd, buf, st.st_size, MSG_WAITALL), st.st_size); } static void chunked_sendfile(struct __test_metadata *_metadata, struct _test_data_tls *self, uint16_t chunk_size, uint16_t extra_payload_size) { char buf[TLS_PAYLOAD_MAX_LEN]; uint16_t test_payload_size; int size = 0; int ret; char filename[] = "/tmp/mytemp.XXXXXX"; int fd = mkstemp(filename); off_t offset = 0; unlink(filename); ASSERT_GE(fd, 0); EXPECT_GE(chunk_size, 1); test_payload_size = chunk_size + extra_payload_size; ASSERT_GE(TLS_PAYLOAD_MAX_LEN, test_payload_size); memset(buf, 1, test_payload_size); size = write(fd, buf, test_payload_size); EXPECT_EQ(size, test_payload_size); fsync(fd); while (size > 0) { ret = sendfile(self->fd, fd, &offset, chunk_size); EXPECT_GE(ret, 0); size -= ret; } EXPECT_EQ(recv(self->cfd, buf, test_payload_size, MSG_WAITALL), test_payload_size); close(fd); } TEST_F(tls, multi_chunk_sendfile) { chunked_sendfile(_metadata, self, 4096, 4096); chunked_sendfile(_metadata, self, 4096, 0); chunked_sendfile(_metadata, self, 4096, 1); chunked_sendfile(_metadata, self, 4096, 2048); chunked_sendfile(_metadata, self, 8192, 2048); chunked_sendfile(_metadata, self, 4096, 8192); chunked_sendfile(_metadata, self, 8192, 4096); chunked_sendfile(_metadata, self, 12288, 1024); chunked_sendfile(_metadata, self, 12288, 2000); chunked_sendfile(_metadata, self, 15360, 100); chunked_sendfile(_metadata, self, 15360, 300); chunked_sendfile(_metadata, self, 1, 4096); chunked_sendfile(_metadata, self, 2048, 4096); chunked_sendfile(_metadata, self, 2048, 8192); chunked_sendfile(_metadata, self, 4096, 8192); chunked_sendfile(_metadata, self, 1024, 12288); chunked_sendfile(_metadata, self, 2000, 12288); chunked_sendfile(_metadata, self, 100, 15360); chunked_sendfile(_metadata, self, 300, 15360); } TEST_F(tls, recv_max) { unsigned int send_len = TLS_PAYLOAD_MAX_LEN; char recv_mem[TLS_PAYLOAD_MAX_LEN]; char buf[TLS_PAYLOAD_MAX_LEN]; memrnd(buf, sizeof(buf)); EXPECT_GE(send(self->fd, buf, send_len, 0), 0); EXPECT_NE(recv(self->cfd, recv_mem, send_len, 0), -1); EXPECT_EQ(memcmp(buf, recv_mem, send_len), 0); } TEST_F(tls, recv_small) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; send_len = strlen(test_str) + 1; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } TEST_F(tls, msg_more) { char const *test_str = "test_read"; int send_len = 10; char buf[10 * 2]; EXPECT_EQ(send(self->fd, test_str, send_len, MSG_MORE), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_DONTWAIT), -1); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len * 2, MSG_WAITALL), send_len * 2); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } TEST_F(tls, msg_more_unsent) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; EXPECT_EQ(send(self->fd, test_str, send_len, MSG_MORE), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_DONTWAIT), -1); } TEST_F(tls, msg_eor) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; EXPECT_EQ(send(self->fd, test_str, send_len, MSG_EOR), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } TEST_F(tls, sendmsg_single) { struct msghdr msg; char const *test_str = "test_sendmsg"; size_t send_len = 13; struct iovec vec; char buf[13]; vec.iov_base = (char *)test_str; vec.iov_len = send_len; memset(&msg, 0, sizeof(struct msghdr)); msg.msg_iov = &vec; msg.msg_iovlen = 1; EXPECT_EQ(sendmsg(self->fd, &msg, 0), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } #define MAX_FRAGS 64 #define SEND_LEN 13 TEST_F(tls, sendmsg_fragmented) { char const *test_str = "test_sendmsg"; char buf[SEND_LEN * MAX_FRAGS]; struct iovec vec[MAX_FRAGS]; struct msghdr msg; int i, frags; for (frags = 1; frags <= MAX_FRAGS; frags++) { for (i = 0; i < frags; i++) { vec[i].iov_base = (char *)test_str; vec[i].iov_len = SEND_LEN; } memset(&msg, 0, sizeof(struct msghdr)); msg.msg_iov = vec; msg.msg_iovlen = frags; EXPECT_EQ(sendmsg(self->fd, &msg, 0), SEND_LEN * frags); EXPECT_EQ(recv(self->cfd, buf, SEND_LEN * frags, MSG_WAITALL), SEND_LEN * frags); for (i = 0; i < frags; i++) EXPECT_EQ(memcmp(buf + SEND_LEN * i, test_str, SEND_LEN), 0); } } #undef MAX_FRAGS #undef SEND_LEN TEST_F(tls, sendmsg_large) { void *mem = malloc(16384); size_t send_len = 16384; size_t sends = 128; struct msghdr msg; size_t recvs = 0; size_t sent = 0; memset(&msg, 0, sizeof(struct msghdr)); while (sent++ < sends) { struct iovec vec = { (void *)mem, send_len }; msg.msg_iov = &vec; msg.msg_iovlen = 1; EXPECT_EQ(sendmsg(self->fd, &msg, 0), send_len); } while (recvs++ < sends) { EXPECT_NE(recv(self->cfd, mem, send_len, 0), -1); } free(mem); } TEST_F(tls, sendmsg_multiple) { char const *test_str = "test_sendmsg_multiple"; struct iovec vec[5]; char *test_strs[5]; struct msghdr msg; int total_len = 0; int len_cmp = 0; int iov_len = 5; char *buf; int i; memset(&msg, 0, sizeof(struct msghdr)); for (i = 0; i < iov_len; i++) { test_strs[i] = (char *)malloc(strlen(test_str) + 1); snprintf(test_strs[i], strlen(test_str) + 1, "%s", test_str); vec[i].iov_base = (void *)test_strs[i]; vec[i].iov_len = strlen(test_strs[i]) + 1; total_len += vec[i].iov_len; } msg.msg_iov = vec; msg.msg_iovlen = iov_len; EXPECT_EQ(sendmsg(self->fd, &msg, 0), total_len); buf = malloc(total_len); EXPECT_NE(recv(self->cfd, buf, total_len, 0), -1); for (i = 0; i < iov_len; i++) { EXPECT_EQ(memcmp(test_strs[i], buf + len_cmp, strlen(test_strs[i])), 0); len_cmp += strlen(buf + len_cmp) + 1; } for (i = 0; i < iov_len; i++) free(test_strs[i]); free(buf); } TEST_F(tls, sendmsg_multiple_stress) { char const *test_str = "abcdefghijklmno"; struct iovec vec[1024]; char *test_strs[1024]; int iov_len = 1024; int total_len = 0; char buf[1 << 14]; struct msghdr msg; int len_cmp = 0; int i; memset(&msg, 0, sizeof(struct msghdr)); for (i = 0; i < iov_len; i++) { test_strs[i] = (char *)malloc(strlen(test_str) + 1); snprintf(test_strs[i], strlen(test_str) + 1, "%s", test_str); vec[i].iov_base = (void *)test_strs[i]; vec[i].iov_len = strlen(test_strs[i]) + 1; total_len += vec[i].iov_len; } msg.msg_iov = vec; msg.msg_iovlen = iov_len; EXPECT_EQ(sendmsg(self->fd, &msg, 0), total_len); EXPECT_NE(recv(self->cfd, buf, total_len, 0), -1); for (i = 0; i < iov_len; i++) len_cmp += strlen(buf + len_cmp) + 1; for (i = 0; i < iov_len; i++) free(test_strs[i]); } TEST_F(tls, splice_from_pipe) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; int p[2]; ASSERT_GE(pipe(p), 0); EXPECT_GE(write(p[1], mem_send, send_len), 0); EXPECT_GE(splice(p[0], NULL, self->fd, NULL, send_len, 0), 0); EXPECT_EQ(recv(self->cfd, mem_recv, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, splice_more) { unsigned int f = SPLICE_F_NONBLOCK | SPLICE_F_MORE | SPLICE_F_GIFT; int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; int i, send_pipe = 1; int p[2]; ASSERT_GE(pipe(p), 0); EXPECT_GE(write(p[1], mem_send, send_len), 0); for (i = 0; i < 32; i++) EXPECT_EQ(splice(p[0], NULL, self->fd, NULL, send_pipe, f), 1); } TEST_F(tls, splice_from_pipe2) { int send_len = 16000; char mem_send[16000]; char mem_recv[16000]; int p2[2]; int p[2]; memrnd(mem_send, sizeof(mem_send)); ASSERT_GE(pipe(p), 0); ASSERT_GE(pipe(p2), 0); EXPECT_EQ(write(p[1], mem_send, 8000), 8000); EXPECT_EQ(splice(p[0], NULL, self->fd, NULL, 8000, 0), 8000); EXPECT_EQ(write(p2[1], mem_send + 8000, 8000), 8000); EXPECT_EQ(splice(p2[0], NULL, self->fd, NULL, 8000, 0), 8000); EXPECT_EQ(recv(self->cfd, mem_recv, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, send_and_splice) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; char const *test_str = "test_read"; int send_len2 = 10; char buf[10]; int p[2]; ASSERT_GE(pipe(p), 0); EXPECT_EQ(send(self->fd, test_str, send_len2, 0), send_len2); EXPECT_EQ(recv(self->cfd, buf, send_len2, MSG_WAITALL), send_len2); EXPECT_EQ(memcmp(test_str, buf, send_len2), 0); EXPECT_GE(write(p[1], mem_send, send_len), send_len); EXPECT_GE(splice(p[0], NULL, self->fd, NULL, send_len, 0), send_len); EXPECT_EQ(recv(self->cfd, mem_recv, send_len, MSG_WAITALL), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, splice_to_pipe) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; int p[2]; memrnd(mem_send, sizeof(mem_send)); ASSERT_GE(pipe(p), 0); EXPECT_EQ(send(self->fd, mem_send, send_len, 0), send_len); EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, send_len, 0), send_len); EXPECT_EQ(read(p[0], mem_recv, send_len), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, splice_cmsg_to_pipe) { char *test_str = "test_read"; char record_type = 100; int send_len = 10; char buf[10]; int p[2]; if (self->notls) SKIP(return, "no TLS support"); ASSERT_GE(pipe(p), 0); EXPECT_EQ(tls_send_cmsg(self->fd, 100, test_str, send_len, 0), 10); EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, send_len, 0), -1); EXPECT_EQ(errno, EINVAL); EXPECT_EQ(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(errno, EIO); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type, buf, sizeof(buf), MSG_WAITALL), send_len); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, splice_dec_cmsg_to_pipe) { char *test_str = "test_read"; char record_type = 100; int send_len = 10; char buf[10]; int p[2]; if (self->notls) SKIP(return, "no TLS support"); ASSERT_GE(pipe(p), 0); EXPECT_EQ(tls_send_cmsg(self->fd, 100, test_str, send_len, 0), 10); EXPECT_EQ(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(errno, EIO); EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, send_len, 0), -1); EXPECT_EQ(errno, EINVAL); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type, buf, sizeof(buf), MSG_WAITALL), send_len); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, recv_and_splice) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; int half = send_len / 2; int p[2]; ASSERT_GE(pipe(p), 0); EXPECT_EQ(send(self->fd, mem_send, send_len, 0), send_len); /* Recv hald of the record, splice the other half */ EXPECT_EQ(recv(self->cfd, mem_recv, half, MSG_WAITALL), half); EXPECT_EQ(splice(self->cfd, NULL, p[1], NULL, half, SPLICE_F_NONBLOCK), half); EXPECT_EQ(read(p[0], &mem_recv[half], half), half); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, peek_and_splice) { int send_len = TLS_PAYLOAD_MAX_LEN; char mem_send[TLS_PAYLOAD_MAX_LEN]; char mem_recv[TLS_PAYLOAD_MAX_LEN]; int chunk = TLS_PAYLOAD_MAX_LEN / 4; int n, i, p[2]; memrnd(mem_send, sizeof(mem_send)); ASSERT_GE(pipe(p), 0); for (i = 0; i < 4; i++) EXPECT_EQ(send(self->fd, &mem_send[chunk * i], chunk, 0), chunk); EXPECT_EQ(recv(self->cfd, mem_recv, chunk * 5 / 2, MSG_WAITALL | MSG_PEEK), chunk * 5 / 2); EXPECT_EQ(memcmp(mem_send, mem_recv, chunk * 5 / 2), 0); n = 0; while (n < send_len) { i = splice(self->cfd, NULL, p[1], NULL, send_len - n, 0); EXPECT_GT(i, 0); n += i; } EXPECT_EQ(n, send_len); EXPECT_EQ(read(p[0], mem_recv, send_len), send_len); EXPECT_EQ(memcmp(mem_send, mem_recv, send_len), 0); } TEST_F(tls, recvmsg_single) { char const *test_str = "test_recvmsg_single"; int send_len = strlen(test_str) + 1; char buf[20]; struct msghdr hdr; struct iovec vec; memset(&hdr, 0, sizeof(hdr)); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); vec.iov_base = (char *)buf; vec.iov_len = send_len; hdr.msg_iovlen = 1; hdr.msg_iov = &vec; EXPECT_NE(recvmsg(self->cfd, &hdr, 0), -1); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, recvmsg_single_max) { int send_len = TLS_PAYLOAD_MAX_LEN; char send_mem[TLS_PAYLOAD_MAX_LEN]; char recv_mem[TLS_PAYLOAD_MAX_LEN]; struct iovec vec; struct msghdr hdr; memrnd(send_mem, sizeof(send_mem)); EXPECT_EQ(send(self->fd, send_mem, send_len, 0), send_len); vec.iov_base = (char *)recv_mem; vec.iov_len = TLS_PAYLOAD_MAX_LEN; hdr.msg_iovlen = 1; hdr.msg_iov = &vec; EXPECT_NE(recvmsg(self->cfd, &hdr, 0), -1); EXPECT_EQ(memcmp(send_mem, recv_mem, send_len), 0); } TEST_F(tls, recvmsg_multiple) { unsigned int msg_iovlen = 1024; struct iovec vec[1024]; char *iov_base[1024]; unsigned int iov_len = 16; int send_len = 1 << 14; char buf[1 << 14]; struct msghdr hdr; int i; memrnd(buf, sizeof(buf)); EXPECT_EQ(send(self->fd, buf, send_len, 0), send_len); for (i = 0; i < msg_iovlen; i++) { iov_base[i] = (char *)malloc(iov_len); vec[i].iov_base = iov_base[i]; vec[i].iov_len = iov_len; } hdr.msg_iovlen = msg_iovlen; hdr.msg_iov = vec; EXPECT_NE(recvmsg(self->cfd, &hdr, 0), -1); for (i = 0; i < msg_iovlen; i++) free(iov_base[i]); } TEST_F(tls, single_send_multiple_recv) { unsigned int total_len = TLS_PAYLOAD_MAX_LEN * 2; unsigned int send_len = TLS_PAYLOAD_MAX_LEN; char send_mem[TLS_PAYLOAD_MAX_LEN * 2]; char recv_mem[TLS_PAYLOAD_MAX_LEN * 2]; memrnd(send_mem, sizeof(send_mem)); EXPECT_GE(send(self->fd, send_mem, total_len, 0), 0); memset(recv_mem, 0, total_len); EXPECT_NE(recv(self->cfd, recv_mem, send_len, 0), -1); EXPECT_NE(recv(self->cfd, recv_mem + send_len, send_len, 0), -1); EXPECT_EQ(memcmp(send_mem, recv_mem, total_len), 0); } TEST_F(tls, multiple_send_single_recv) { unsigned int total_len = 2 * 10; unsigned int send_len = 10; char recv_mem[2 * 10]; char send_mem[10]; memrnd(send_mem, sizeof(send_mem)); EXPECT_GE(send(self->fd, send_mem, send_len, 0), 0); EXPECT_GE(send(self->fd, send_mem, send_len, 0), 0); memset(recv_mem, 0, total_len); EXPECT_EQ(recv(self->cfd, recv_mem, total_len, MSG_WAITALL), total_len); EXPECT_EQ(memcmp(send_mem, recv_mem, send_len), 0); EXPECT_EQ(memcmp(send_mem, recv_mem + send_len, send_len), 0); } TEST_F(tls, single_send_multiple_recv_non_align) { const unsigned int total_len = 15; const unsigned int recv_len = 10; char recv_mem[recv_len * 2]; char send_mem[total_len]; memrnd(send_mem, sizeof(send_mem)); EXPECT_GE(send(self->fd, send_mem, total_len, 0), 0); memset(recv_mem, 0, total_len); EXPECT_EQ(recv(self->cfd, recv_mem, recv_len, 0), recv_len); EXPECT_EQ(recv(self->cfd, recv_mem + recv_len, recv_len, 0), 5); EXPECT_EQ(memcmp(send_mem, recv_mem, total_len), 0); } TEST_F(tls, recv_partial) { char const *test_str = "test_read_partial"; char const *test_str_first = "test_read"; char const *test_str_second = "_partial"; int send_len = strlen(test_str) + 1; char recv_mem[18]; memset(recv_mem, 0, sizeof(recv_mem)); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_EQ(recv(self->cfd, recv_mem, strlen(test_str_first), MSG_WAITALL), strlen(test_str_first)); EXPECT_EQ(memcmp(test_str_first, recv_mem, strlen(test_str_first)), 0); memset(recv_mem, 0, sizeof(recv_mem)); EXPECT_EQ(recv(self->cfd, recv_mem, strlen(test_str_second), MSG_WAITALL), strlen(test_str_second)); EXPECT_EQ(memcmp(test_str_second, recv_mem, strlen(test_str_second)), 0); } TEST_F(tls, recv_nonblock) { char buf[4096]; bool err; EXPECT_EQ(recv(self->cfd, buf, sizeof(buf), MSG_DONTWAIT), -1); err = (errno == EAGAIN || errno == EWOULDBLOCK); EXPECT_EQ(err, true); } TEST_F(tls, recv_peek) { char const *test_str = "test_read_peek"; int send_len = strlen(test_str) + 1; char buf[15]; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_PEEK), send_len); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); memset(buf, 0, sizeof(buf)); EXPECT_EQ(recv(self->cfd, buf, send_len, 0), send_len); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, recv_peek_multiple) { char const *test_str = "test_read_peek"; int send_len = strlen(test_str) + 1; unsigned int num_peeks = 100; char buf[15]; int i; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); for (i = 0; i < num_peeks; i++) { EXPECT_NE(recv(self->cfd, buf, send_len, MSG_PEEK), -1); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); memset(buf, 0, sizeof(buf)); } EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(test_str, buf, send_len), 0); } TEST_F(tls, recv_peek_multiple_records) { char const *test_str = "test_read_peek_mult_recs"; char const *test_str_first = "test_read_peek"; char const *test_str_second = "_mult_recs"; int len; char buf[64]; len = strlen(test_str_first); EXPECT_EQ(send(self->fd, test_str_first, len, 0), len); len = strlen(test_str_second) + 1; EXPECT_EQ(send(self->fd, test_str_second, len, 0), len); len = strlen(test_str_first); memset(buf, 0, len); EXPECT_EQ(recv(self->cfd, buf, len, MSG_PEEK | MSG_WAITALL), len); /* MSG_PEEK can only peek into the current record. */ len = strlen(test_str_first); EXPECT_EQ(memcmp(test_str_first, buf, len), 0); len = strlen(test_str) + 1; memset(buf, 0, len); EXPECT_EQ(recv(self->cfd, buf, len, MSG_WAITALL), len); /* Non-MSG_PEEK will advance strparser (and therefore record) * however. */ len = strlen(test_str) + 1; EXPECT_EQ(memcmp(test_str, buf, len), 0); /* MSG_MORE will hold current record open, so later MSG_PEEK * will see everything. */ len = strlen(test_str_first); EXPECT_EQ(send(self->fd, test_str_first, len, MSG_MORE), len); len = strlen(test_str_second) + 1; EXPECT_EQ(send(self->fd, test_str_second, len, 0), len); len = strlen(test_str) + 1; memset(buf, 0, len); EXPECT_EQ(recv(self->cfd, buf, len, MSG_PEEK | MSG_WAITALL), len); len = strlen(test_str) + 1; EXPECT_EQ(memcmp(test_str, buf, len), 0); } TEST_F(tls, recv_peek_large_buf_mult_recs) { char const *test_str = "test_read_peek_mult_recs"; char const *test_str_first = "test_read_peek"; char const *test_str_second = "_mult_recs"; int len; char buf[64]; len = strlen(test_str_first); EXPECT_EQ(send(self->fd, test_str_first, len, 0), len); len = strlen(test_str_second) + 1; EXPECT_EQ(send(self->fd, test_str_second, len, 0), len); len = strlen(test_str) + 1; memset(buf, 0, len); EXPECT_NE((len = recv(self->cfd, buf, len, MSG_PEEK | MSG_WAITALL)), -1); len = strlen(test_str) + 1; EXPECT_EQ(memcmp(test_str, buf, len), 0); } TEST_F(tls, recv_lowat) { char send_mem[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; char recv_mem[20]; int lowat = 8; EXPECT_EQ(send(self->fd, send_mem, 10, 0), 10); EXPECT_EQ(send(self->fd, send_mem, 5, 0), 5); memset(recv_mem, 0, 20); EXPECT_EQ(setsockopt(self->cfd, SOL_SOCKET, SO_RCVLOWAT, &lowat, sizeof(lowat)), 0); EXPECT_EQ(recv(self->cfd, recv_mem, 1, MSG_WAITALL), 1); EXPECT_EQ(recv(self->cfd, recv_mem + 1, 6, MSG_WAITALL), 6); EXPECT_EQ(recv(self->cfd, recv_mem + 7, 10, 0), 8); EXPECT_EQ(memcmp(send_mem, recv_mem, 10), 0); EXPECT_EQ(memcmp(send_mem, recv_mem + 10, 5), 0); } TEST_F(tls, bidir) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; int ret; if (!self->notls) { struct tls_crypto_info_keys tls12; tls_crypto_info_init(variant->tls_version, variant->cipher_type, &tls12); ret = setsockopt(self->fd, SOL_TLS, TLS_RX, &tls12, tls12.len); ASSERT_EQ(ret, 0); ret = setsockopt(self->cfd, SOL_TLS, TLS_TX, &tls12, tls12.len); ASSERT_EQ(ret, 0); } ASSERT_EQ(strlen(test_str) + 1, send_len); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); memset(buf, 0, sizeof(buf)); EXPECT_EQ(send(self->cfd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->fd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); }; TEST_F(tls, pollin) { char const *test_str = "test_poll"; struct pollfd fd = { 0, 0, 0 }; char buf[10]; int send_len = 10; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); fd.fd = self->cfd; fd.events = POLLIN; EXPECT_EQ(poll(&fd, 1, 20), 1); EXPECT_EQ(fd.revents & POLLIN, 1); EXPECT_EQ(recv(self->cfd, buf, send_len, MSG_WAITALL), send_len); /* Test timing out */ EXPECT_EQ(poll(&fd, 1, 20), 0); } TEST_F(tls, poll_wait) { char const *test_str = "test_poll_wait"; int send_len = strlen(test_str) + 1; struct pollfd fd = { 0, 0, 0 }; char recv_mem[15]; fd.fd = self->cfd; fd.events = POLLIN; EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); /* Set timeout to inf. secs */ EXPECT_EQ(poll(&fd, 1, -1), 1); EXPECT_EQ(fd.revents & POLLIN, 1); EXPECT_EQ(recv(self->cfd, recv_mem, send_len, MSG_WAITALL), send_len); } TEST_F(tls, poll_wait_split) { struct pollfd fd = { 0, 0, 0 }; char send_mem[20] = {}; char recv_mem[15]; fd.fd = self->cfd; fd.events = POLLIN; /* Send 20 bytes */ EXPECT_EQ(send(self->fd, send_mem, sizeof(send_mem), 0), sizeof(send_mem)); /* Poll with inf. timeout */ EXPECT_EQ(poll(&fd, 1, -1), 1); EXPECT_EQ(fd.revents & POLLIN, 1); EXPECT_EQ(recv(self->cfd, recv_mem, sizeof(recv_mem), MSG_WAITALL), sizeof(recv_mem)); /* Now the remaining 5 bytes of record data are in TLS ULP */ fd.fd = self->cfd; fd.events = POLLIN; EXPECT_EQ(poll(&fd, 1, -1), 1); EXPECT_EQ(fd.revents & POLLIN, 1); EXPECT_EQ(recv(self->cfd, recv_mem, sizeof(recv_mem), 0), sizeof(send_mem) - sizeof(recv_mem)); } TEST_F(tls, blocking) { size_t data = 100000; int res = fork(); EXPECT_NE(res, -1); if (res) { /* parent */ size_t left = data; char buf[16384]; int status; int pid2; while (left) { int res = send(self->fd, buf, left > 16384 ? 16384 : left, 0); EXPECT_GE(res, 0); left -= res; } pid2 = wait(&status); EXPECT_EQ(status, 0); EXPECT_EQ(res, pid2); } else { /* child */ size_t left = data; char buf[16384]; while (left) { int res = recv(self->cfd, buf, left > 16384 ? 16384 : left, 0); EXPECT_GE(res, 0); left -= res; } } } TEST_F(tls, nonblocking) { size_t data = 100000; int sendbuf = 100; int flags; int res; flags = fcntl(self->fd, F_GETFL, 0); fcntl(self->fd, F_SETFL, flags | O_NONBLOCK); fcntl(self->cfd, F_SETFL, flags | O_NONBLOCK); /* Ensure nonblocking behavior by imposing a small send * buffer. */ EXPECT_EQ(setsockopt(self->fd, SOL_SOCKET, SO_SNDBUF, &sendbuf, sizeof(sendbuf)), 0); res = fork(); EXPECT_NE(res, -1); if (res) { /* parent */ bool eagain = false; size_t left = data; char buf[16384]; int status; int pid2; while (left) { int res = send(self->fd, buf, left > 16384 ? 16384 : left, 0); if (res == -1 && errno == EAGAIN) { eagain = true; usleep(10000); continue; } EXPECT_GE(res, 0); left -= res; } EXPECT_TRUE(eagain); pid2 = wait(&status); EXPECT_EQ(status, 0); EXPECT_EQ(res, pid2); } else { /* child */ bool eagain = false; size_t left = data; char buf[16384]; while (left) { int res = recv(self->cfd, buf, left > 16384 ? 16384 : left, 0); if (res == -1 && errno == EAGAIN) { eagain = true; usleep(10000); continue; } EXPECT_GE(res, 0); left -= res; } EXPECT_TRUE(eagain); } } static void test_mutliproc(struct __test_metadata *_metadata, struct _test_data_tls *self, bool sendpg, unsigned int n_readers, unsigned int n_writers) { const unsigned int n_children = n_readers + n_writers; const size_t data = 6 * 1000 * 1000; const size_t file_sz = data / 100; size_t read_bias, write_bias; int i, fd, child_id; char buf[file_sz]; pid_t pid; /* Only allow multiples for simplicity */ ASSERT_EQ(!(n_readers % n_writers) || !(n_writers % n_readers), true); read_bias = n_writers / n_readers ?: 1; write_bias = n_readers / n_writers ?: 1; /* prep a file to send */ fd = open("/tmp/", O_TMPFILE | O_RDWR, 0600); ASSERT_GE(fd, 0); memset(buf, 0xac, file_sz); ASSERT_EQ(write(fd, buf, file_sz), file_sz); /* spawn children */ for (child_id = 0; child_id < n_children; child_id++) { pid = fork(); ASSERT_NE(pid, -1); if (!pid) break; } /* parent waits for all children */ if (pid) { for (i = 0; i < n_children; i++) { int status; wait(&status); EXPECT_EQ(status, 0); } return; } /* Split threads for reading and writing */ if (child_id < n_readers) { size_t left = data * read_bias; char rb[8001]; while (left) { int res; res = recv(self->cfd, rb, left > sizeof(rb) ? sizeof(rb) : left, 0); EXPECT_GE(res, 0); left -= res; } } else { size_t left = data * write_bias; while (left) { int res; ASSERT_EQ(lseek(fd, 0, SEEK_SET), 0); if (sendpg) res = sendfile(self->fd, fd, NULL, left > file_sz ? file_sz : left); else res = send(self->fd, buf, left > file_sz ? file_sz : left, 0); EXPECT_GE(res, 0); left -= res; } } } TEST_F(tls, mutliproc_even) { test_mutliproc(_metadata, self, false, 6, 6); } TEST_F(tls, mutliproc_readers) { test_mutliproc(_metadata, self, false, 4, 12); } TEST_F(tls, mutliproc_writers) { test_mutliproc(_metadata, self, false, 10, 2); } TEST_F(tls, mutliproc_sendpage_even) { test_mutliproc(_metadata, self, true, 6, 6); } TEST_F(tls, mutliproc_sendpage_readers) { test_mutliproc(_metadata, self, true, 4, 12); } TEST_F(tls, mutliproc_sendpage_writers) { test_mutliproc(_metadata, self, true, 10, 2); } TEST_F(tls, control_msg) { char *test_str = "test_read"; char record_type = 100; int send_len = 10; char buf[10]; if (self->notls) SKIP(return, "no TLS support"); EXPECT_EQ(tls_send_cmsg(self->fd, record_type, test_str, send_len, 0), send_len); /* Should fail because we didn't provide a control message */ EXPECT_EQ(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type, buf, sizeof(buf), MSG_WAITALL | MSG_PEEK), send_len); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); /* Recv the message again without MSG_PEEK */ memset(buf, 0, sizeof(buf)); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, record_type, buf, sizeof(buf), MSG_WAITALL), send_len); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); } TEST_F(tls, control_msg_nomerge) { char *rec1 = "1111"; char *rec2 = "2222"; int send_len = 5; char buf[15]; if (self->notls) SKIP(return, "no TLS support"); EXPECT_EQ(tls_send_cmsg(self->fd, 100, rec1, send_len, 0), send_len); EXPECT_EQ(tls_send_cmsg(self->fd, 100, rec2, send_len, 0), send_len); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, 100, buf, sizeof(buf), MSG_PEEK), send_len); EXPECT_EQ(memcmp(buf, rec1, send_len), 0); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, 100, buf, sizeof(buf), MSG_PEEK), send_len); EXPECT_EQ(memcmp(buf, rec1, send_len), 0); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, 100, buf, sizeof(buf), 0), send_len); EXPECT_EQ(memcmp(buf, rec1, send_len), 0); EXPECT_EQ(tls_recv_cmsg(_metadata, self->cfd, 100, buf, sizeof(buf), 0), send_len); EXPECT_EQ(memcmp(buf, rec2, send_len), 0); } TEST_F(tls, data_control_data) { char *rec1 = "1111"; char *rec2 = "2222"; char *rec3 = "3333"; int send_len = 5; char buf[15]; if (self->notls) SKIP(return, "no TLS support"); EXPECT_EQ(send(self->fd, rec1, send_len, 0), send_len); EXPECT_EQ(tls_send_cmsg(self->fd, 100, rec2, send_len, 0), send_len); EXPECT_EQ(send(self->fd, rec3, send_len, 0), send_len); EXPECT_EQ(recv(self->cfd, buf, sizeof(buf), MSG_PEEK), send_len); EXPECT_EQ(recv(self->cfd, buf, sizeof(buf), MSG_PEEK), send_len); } TEST_F(tls, shutdown) { char const *test_str = "test_read"; int send_len = 10; char buf[10]; ASSERT_EQ(strlen(test_str) + 1, send_len); EXPECT_EQ(send(self->fd, test_str, send_len, 0), send_len); EXPECT_NE(recv(self->cfd, buf, send_len, 0), -1); EXPECT_EQ(memcmp(buf, test_str, send_len), 0); shutdown(self->fd, SHUT_RDWR); shutdown(self->cfd, SHUT_RDWR); } TEST_F(tls, shutdown_unsent) { char const *test_str = "test_read"; int send_len = 10; EXPECT_EQ(send(self->fd, test_str, send_len, MSG_MORE), send_len); shutdown(self->fd, SHUT_RDWR); shutdown(self->cfd, SHUT_RDWR); } TEST_F(tls, shutdown_reuse) { struct sockaddr_in addr; int ret; shutdown(self->fd, SHUT_RDWR); shutdown(self->cfd, SHUT_RDWR); close(self->cfd); addr.sin_family = AF_INET; addr.sin_addr.s_addr = htonl(INADDR_ANY); addr.sin_port = 0; ret = bind(self->fd, &addr, sizeof(addr)); EXPECT_EQ(ret, 0); ret = listen(self->fd, 10); EXPECT_EQ(ret, -1); EXPECT_EQ(errno, EINVAL); ret = connect(self->fd, &addr, sizeof(addr)); EXPECT_EQ(ret, -1); EXPECT_EQ(errno, EISCONN); } TEST_F(tls, getsockopt) { struct tls_crypto_info_keys expect, get; socklen_t len; /* get only the version/cipher */ len = sizeof(struct tls_crypto_info); memrnd(&get, sizeof(get)); EXPECT_EQ(getsockopt(self->fd, SOL_TLS, TLS_TX, &get, &len), 0); EXPECT_EQ(len, sizeof(struct tls_crypto_info)); EXPECT_EQ(get.crypto_info.version, variant->tls_version); EXPECT_EQ(get.crypto_info.cipher_type, variant->cipher_type); /* get the full crypto_info */ tls_crypto_info_init(variant->tls_version, variant->cipher_type, &expect); len = expect.len; memrnd(&get, sizeof(get)); EXPECT_EQ(getsockopt(self->fd, SOL_TLS, TLS_TX, &get, &len), 0); EXPECT_EQ(len, expect.len); EXPECT_EQ(get.crypto_info.version, variant->tls_version); EXPECT_EQ(get.crypto_info.cipher_type, variant->cipher_type); EXPECT_EQ(memcmp(&get, &expect, expect.len), 0); /* short get should fail */ len = sizeof(struct tls_crypto_info) - 1; EXPECT_EQ(getsockopt(self->fd, SOL_TLS, TLS_TX, &get, &len), -1); EXPECT_EQ(errno, EINVAL); /* partial get of the cipher data should fail */ len = expect.len - 1; EXPECT_EQ(getsockopt(self->fd, SOL_TLS, TLS_TX, &get, &len), -1); EXPECT_EQ(errno, EINVAL); } TEST_F(tls, recv_efault) { char *rec1 = "1111111111"; char *rec2 = "2222222222"; struct msghdr hdr = {}; struct iovec iov[2]; char recv_mem[12]; int ret; if (self->notls) SKIP(return, "no TLS support"); EXPECT_EQ(send(self->fd, rec1, 10, 0), 10); EXPECT_EQ(send(self->fd, rec2, 10, 0), 10); iov[0].iov_base = recv_mem; iov[0].iov_len = sizeof(recv_mem); iov[1].iov_base = NULL; /* broken iov to make process_rx_list fail */ iov[1].iov_len = 1; hdr.msg_iovlen = 2; hdr.msg_iov = iov; EXPECT_EQ(recv(self->cfd, recv_mem, 1, 0), 1); EXPECT_EQ(recv_mem[0], rec1[0]); ret = recvmsg(self->cfd, &hdr, 0); EXPECT_LE(ret, sizeof(recv_mem)); EXPECT_GE(ret, 9); EXPECT_EQ(memcmp(rec1, recv_mem, 9), 0); if (ret > 9) EXPECT_EQ(memcmp(rec2, recv_mem + 9, ret - 9), 0); } FIXTURE(tls_err) { int fd, cfd; int fd2, cfd2; bool notls; }; FIXTURE_VARIANT(tls_err) { uint16_t tls_version; }; FIXTURE_VARIANT_ADD(tls_err, 12_aes_gcm) { .tls_version = TLS_1_2_VERSION, }; FIXTURE_VARIANT_ADD(tls_err, 13_aes_gcm) { .tls_version = TLS_1_3_VERSION, }; FIXTURE_SETUP(tls_err) { struct tls_crypto_info_keys tls12; int ret; tls_crypto_info_init(variant->tls_version, TLS_CIPHER_AES_GCM_128, &tls12); ulp_sock_pair(_metadata, &self->fd, &self->cfd, &self->notls); ulp_sock_pair(_metadata, &self->fd2, &self->cfd2, &self->notls); if (self->notls) return; ret = setsockopt(self->fd, SOL_TLS, TLS_TX, &tls12, tls12.len); ASSERT_EQ(ret, 0); ret = setsockopt(self->cfd2, SOL_TLS, TLS_RX, &tls12, tls12.len); ASSERT_EQ(ret, 0); } FIXTURE_TEARDOWN(tls_err) { close(self->fd); close(self->cfd); close(self->fd2); close(self->cfd2); } TEST_F(tls_err, bad_rec) { char buf[64]; if (self->notls) SKIP(return, "no TLS support"); memset(buf, 0x55, sizeof(buf)); EXPECT_EQ(send(self->fd2, buf, sizeof(buf), 0), sizeof(buf)); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EMSGSIZE); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), MSG_DONTWAIT), -1); EXPECT_EQ(errno, EAGAIN); } TEST_F(tls_err, bad_auth) { char buf[128]; int n; if (self->notls) SKIP(return, "no TLS support"); memrnd(buf, sizeof(buf) / 2); EXPECT_EQ(send(self->fd, buf, sizeof(buf) / 2, 0), sizeof(buf) / 2); n = recv(self->cfd, buf, sizeof(buf), 0); EXPECT_GT(n, sizeof(buf) / 2); buf[n - 1]++; EXPECT_EQ(send(self->fd2, buf, n, 0), n); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); } TEST_F(tls_err, bad_in_large_read) { char txt[3][64]; char cip[3][128]; char buf[3 * 128]; int i, n; if (self->notls) SKIP(return, "no TLS support"); /* Put 3 records in the sockets */ for (i = 0; i < 3; i++) { memrnd(txt[i], sizeof(txt[i])); EXPECT_EQ(send(self->fd, txt[i], sizeof(txt[i]), 0), sizeof(txt[i])); n = recv(self->cfd, cip[i], sizeof(cip[i]), 0); EXPECT_GT(n, sizeof(txt[i])); /* Break the third message */ if (i == 2) cip[2][n - 1]++; EXPECT_EQ(send(self->fd2, cip[i], n, 0), n); } /* We should be able to receive the first two messages */ EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), sizeof(txt[0]) * 2); EXPECT_EQ(memcmp(buf, txt[0], sizeof(txt[0])), 0); EXPECT_EQ(memcmp(buf + sizeof(txt[0]), txt[1], sizeof(txt[1])), 0); /* Third mesasge is bad */ EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); } TEST_F(tls_err, bad_cmsg) { char *test_str = "test_read"; int send_len = 10; char cip[128]; char buf[128]; char txt[64]; int n; if (self->notls) SKIP(return, "no TLS support"); /* Queue up one data record */ memrnd(txt, sizeof(txt)); EXPECT_EQ(send(self->fd, txt, sizeof(txt), 0), sizeof(txt)); n = recv(self->cfd, cip, sizeof(cip), 0); EXPECT_GT(n, sizeof(txt)); EXPECT_EQ(send(self->fd2, cip, n, 0), n); EXPECT_EQ(tls_send_cmsg(self->fd, 100, test_str, send_len, 0), 10); n = recv(self->cfd, cip, sizeof(cip), 0); cip[n - 1]++; /* Break it */ EXPECT_GT(n, send_len); EXPECT_EQ(send(self->fd2, cip, n, 0), n); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), sizeof(txt)); EXPECT_EQ(memcmp(buf, txt, sizeof(txt)), 0); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EBADMSG); } TEST_F(tls_err, timeo) { struct timeval tv = { .tv_usec = 10000, }; char buf[128]; int ret; if (self->notls) SKIP(return, "no TLS support"); ret = setsockopt(self->cfd2, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)); ASSERT_EQ(ret, 0); ret = fork(); ASSERT_GE(ret, 0); if (ret) { usleep(1000); /* Give child a head start */ EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EAGAIN); EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EAGAIN); wait(&ret); } else { EXPECT_EQ(recv(self->cfd2, buf, sizeof(buf), 0), -1); EXPECT_EQ(errno, EAGAIN); exit(0); } } TEST_F(tls_err, poll_partial_rec) { struct pollfd pfd = { }; ssize_t rec_len; char rec[256]; char buf[128]; if (self->notls) SKIP(return, "no TLS support"); pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 1), 0); memrnd(buf, sizeof(buf)); EXPECT_EQ(send(self->fd, buf, sizeof(buf), 0), sizeof(buf)); rec_len = recv(self->cfd, rec, sizeof(rec), 0); EXPECT_GT(rec_len, sizeof(buf)); /* Write 100B, not the full record ... */ EXPECT_EQ(send(self->fd2, rec, 100, 0), 100); /* ... no full record should mean no POLLIN */ pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 1), 0); /* Now write the rest, and it should all pop out of the other end. */ EXPECT_EQ(send(self->fd2, rec + 100, rec_len - 100, 0), rec_len - 100); pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 1), 1); EXPECT_EQ(recv(self->cfd2, rec, sizeof(rec), 0), sizeof(buf)); EXPECT_EQ(memcmp(buf, rec, sizeof(buf)), 0); } TEST_F(tls_err, epoll_partial_rec) { struct epoll_event ev, events[10]; ssize_t rec_len; char rec[256]; char buf[128]; int epollfd; if (self->notls) SKIP(return, "no TLS support"); epollfd = epoll_create1(0); ASSERT_GE(epollfd, 0); memset(&ev, 0, sizeof(ev)); ev.events = EPOLLIN; ev.data.fd = self->cfd2; ASSERT_GE(epoll_ctl(epollfd, EPOLL_CTL_ADD, self->cfd2, &ev), 0); EXPECT_EQ(epoll_wait(epollfd, events, 10, 0), 0); memrnd(buf, sizeof(buf)); EXPECT_EQ(send(self->fd, buf, sizeof(buf), 0), sizeof(buf)); rec_len = recv(self->cfd, rec, sizeof(rec), 0); EXPECT_GT(rec_len, sizeof(buf)); /* Write 100B, not the full record ... */ EXPECT_EQ(send(self->fd2, rec, 100, 0), 100); /* ... no full record should mean no POLLIN */ EXPECT_EQ(epoll_wait(epollfd, events, 10, 0), 0); /* Now write the rest, and it should all pop out of the other end. */ EXPECT_EQ(send(self->fd2, rec + 100, rec_len - 100, 0), rec_len - 100); EXPECT_EQ(epoll_wait(epollfd, events, 10, 0), 1); EXPECT_EQ(recv(self->cfd2, rec, sizeof(rec), 0), sizeof(buf)); EXPECT_EQ(memcmp(buf, rec, sizeof(buf)), 0); close(epollfd); } TEST_F(tls_err, poll_partial_rec_async) { struct pollfd pfd = { }; ssize_t rec_len; char rec[256]; char buf[128]; char token; int p[2]; int ret; if (self->notls) SKIP(return, "no TLS support"); ASSERT_GE(pipe(p), 0); memrnd(buf, sizeof(buf)); EXPECT_EQ(send(self->fd, buf, sizeof(buf), 0), sizeof(buf)); rec_len = recv(self->cfd, rec, sizeof(rec), 0); EXPECT_GT(rec_len, sizeof(buf)); ret = fork(); ASSERT_GE(ret, 0); if (ret) { int status, pid2; close(p[1]); usleep(1000); /* Give child a head start */ EXPECT_EQ(send(self->fd2, rec, 100, 0), 100); EXPECT_EQ(read(p[0], &token, 1), 1); /* Barrier #1 */ EXPECT_EQ(send(self->fd2, rec + 100, rec_len - 100, 0), rec_len - 100); pid2 = wait(&status); EXPECT_EQ(pid2, ret); EXPECT_EQ(status, 0); } else { close(p[0]); /* Child should sleep in poll(), never get a wake */ pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 20), 0); EXPECT_EQ(write(p[1], &token, 1), 1); /* Barrier #1 */ pfd.fd = self->cfd2; pfd.events = POLLIN; EXPECT_EQ(poll(&pfd, 1, 20), 1); exit(!__test_passed(_metadata)); } } TEST(non_established) { struct tls12_crypto_info_aes_gcm_256 tls12; struct sockaddr_in addr; int sfd, ret, fd; socklen_t len; len = sizeof(addr); memset(&tls12, 0, sizeof(tls12)); tls12.info.version = TLS_1_2_VERSION; tls12.info.cipher_type = TLS_CIPHER_AES_GCM_256; addr.sin_family = AF_INET; addr.sin_addr.s_addr = htonl(INADDR_ANY); addr.sin_port = 0; fd = socket(AF_INET, SOCK_STREAM, 0); sfd = socket(AF_INET, SOCK_STREAM, 0); ret = bind(sfd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); ret = listen(sfd, 10); ASSERT_EQ(ret, 0); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); EXPECT_EQ(ret, -1); /* TLS ULP not supported */ if (errno == ENOENT) return; EXPECT_EQ(errno, ENOTCONN); ret = setsockopt(sfd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); EXPECT_EQ(ret, -1); EXPECT_EQ(errno, ENOTCONN); ret = getsockname(sfd, &addr, &len); ASSERT_EQ(ret, 0); ret = connect(fd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); ASSERT_EQ(ret, 0); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); EXPECT_EQ(ret, -1); EXPECT_EQ(errno, EEXIST); close(fd); close(sfd); } TEST(keysizes) { struct tls12_crypto_info_aes_gcm_256 tls12; int ret, fd, cfd; bool notls; memset(&tls12, 0, sizeof(tls12)); tls12.info.version = TLS_1_2_VERSION; tls12.info.cipher_type = TLS_CIPHER_AES_GCM_256; ulp_sock_pair(_metadata, &fd, &cfd, ¬ls); if (!notls) { ret = setsockopt(fd, SOL_TLS, TLS_TX, &tls12, sizeof(tls12)); EXPECT_EQ(ret, 0); ret = setsockopt(cfd, SOL_TLS, TLS_RX, &tls12, sizeof(tls12)); EXPECT_EQ(ret, 0); } close(fd); close(cfd); } TEST(no_pad) { struct tls12_crypto_info_aes_gcm_256 tls12; int ret, fd, cfd, val; socklen_t len; bool notls; memset(&tls12, 0, sizeof(tls12)); tls12.info.version = TLS_1_3_VERSION; tls12.info.cipher_type = TLS_CIPHER_AES_GCM_256; ulp_sock_pair(_metadata, &fd, &cfd, ¬ls); if (notls) exit(KSFT_SKIP); ret = setsockopt(fd, SOL_TLS, TLS_TX, &tls12, sizeof(tls12)); EXPECT_EQ(ret, 0); ret = setsockopt(cfd, SOL_TLS, TLS_RX, &tls12, sizeof(tls12)); EXPECT_EQ(ret, 0); val = 1; ret = setsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&val, sizeof(val)); EXPECT_EQ(ret, 0); len = sizeof(val); val = 2; ret = getsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&val, &len); EXPECT_EQ(ret, 0); EXPECT_EQ(val, 1); EXPECT_EQ(len, 4); val = 0; ret = setsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&val, sizeof(val)); EXPECT_EQ(ret, 0); len = sizeof(val); val = 2; ret = getsockopt(cfd, SOL_TLS, TLS_RX_EXPECT_NO_PAD, (void *)&val, &len); EXPECT_EQ(ret, 0); EXPECT_EQ(val, 0); EXPECT_EQ(len, 4); close(fd); close(cfd); } TEST(tls_v6ops) { struct tls_crypto_info_keys tls12; struct sockaddr_in6 addr, addr2; int sfd, ret, fd; socklen_t len, len2; tls_crypto_info_init(TLS_1_2_VERSION, TLS_CIPHER_AES_GCM_128, &tls12); addr.sin6_family = AF_INET6; addr.sin6_addr = in6addr_any; addr.sin6_port = 0; fd = socket(AF_INET6, SOCK_STREAM, 0); sfd = socket(AF_INET6, SOCK_STREAM, 0); ret = bind(sfd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); ret = listen(sfd, 10); ASSERT_EQ(ret, 0); len = sizeof(addr); ret = getsockname(sfd, &addr, &len); ASSERT_EQ(ret, 0); ret = connect(fd, &addr, sizeof(addr)); ASSERT_EQ(ret, 0); len = sizeof(addr); ret = getsockname(fd, &addr, &len); ASSERT_EQ(ret, 0); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); if (ret) { ASSERT_EQ(errno, ENOENT); SKIP(return, "no TLS support"); } ASSERT_EQ(ret, 0); ret = setsockopt(fd, SOL_TLS, TLS_TX, &tls12, tls12.len); ASSERT_EQ(ret, 0); ret = setsockopt(fd, SOL_TLS, TLS_RX, &tls12, tls12.len); ASSERT_EQ(ret, 0); len2 = sizeof(addr2); ret = getsockname(fd, &addr2, &len2); ASSERT_EQ(ret, 0); EXPECT_EQ(len2, len); EXPECT_EQ(memcmp(&addr, &addr2, len), 0); close(fd); close(sfd); } TEST(prequeue) { struct tls_crypto_info_keys tls12; char buf[20000], buf2[20000]; struct sockaddr_in addr; int sfd, cfd, ret, fd; socklen_t len; len = sizeof(addr); memrnd(buf, sizeof(buf)); tls_crypto_info_init(TLS_1_2_VERSION, TLS_CIPHER_AES_GCM_256, &tls12); addr.sin_family = AF_INET; addr.sin_addr.s_addr = htonl(INADDR_ANY); addr.sin_port = 0; fd = socket(AF_INET, SOCK_STREAM, 0); sfd = socket(AF_INET, SOCK_STREAM, 0); ASSERT_EQ(bind(sfd, &addr, sizeof(addr)), 0); ASSERT_EQ(listen(sfd, 10), 0); ASSERT_EQ(getsockname(sfd, &addr, &len), 0); ASSERT_EQ(connect(fd, &addr, sizeof(addr)), 0); ASSERT_GE(cfd = accept(sfd, &addr, &len), 0); close(sfd); ret = setsockopt(fd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")); if (ret) { ASSERT_EQ(errno, ENOENT); SKIP(return, "no TLS support"); } ASSERT_EQ(setsockopt(fd, SOL_TLS, TLS_TX, &tls12, tls12.len), 0); EXPECT_EQ(send(fd, buf, sizeof(buf), MSG_DONTWAIT), sizeof(buf)); ASSERT_EQ(setsockopt(cfd, IPPROTO_TCP, TCP_ULP, "tls", sizeof("tls")), 0); ASSERT_EQ(setsockopt(cfd, SOL_TLS, TLS_RX, &tls12, tls12.len), 0); EXPECT_EQ(recv(cfd, buf2, sizeof(buf2), MSG_WAITALL), sizeof(buf2)); EXPECT_EQ(memcmp(buf, buf2, sizeof(buf)), 0); close(fd); close(cfd); } static void __attribute__((constructor)) fips_check(void) { int res; FILE *f; f = fopen("/proc/sys/crypto/fips_enabled", "r"); if (f) { res = fscanf(f, "%d", &fips_enabled); if (res != 1) ksft_print_msg("ERROR: Couldn't read /proc/sys/crypto/fips_enabled\n"); fclose(f); } } TEST_HARNESS_MAIN
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1