Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sai Praneeth | 2399 | 71.34% | 3 | 8.33% |
Ilpo Järvinen | 591 | 17.57% | 22 | 61.11% |
Maciej Wieczor-Retman | 208 | 6.18% | 2 | 5.56% |
Fenghua Yu | 109 | 3.24% | 6 | 16.67% |
Shaopeng Tan | 56 | 1.67% | 3 | 8.33% |
Total | 3363 | 36 |
// SPDX-License-Identifier: GPL-2.0 /* * Memory bandwidth monitoring and allocation library * * Copyright (C) 2018 Intel Corporation * * Authors: * Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>, * Fenghua Yu <fenghua.yu@intel.com> */ #include "resctrl.h" #define UNCORE_IMC "uncore_imc" #define READ_FILE_NAME "events/cas_count_read" #define WRITE_FILE_NAME "events/cas_count_write" #define DYN_PMU_PATH "/sys/bus/event_source/devices" #define SCALE 0.00006103515625 #define MAX_IMCS 20 #define MAX_TOKENS 5 #define READ 0 #define WRITE 1 #define CON_MBM_LOCAL_BYTES_PATH \ "%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes" struct membw_read_format { __u64 value; /* The value of the event */ __u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */ __u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */ __u64 id; /* if PERF_FORMAT_ID */ }; struct imc_counter_config { __u32 type; __u64 event; __u64 umask; struct perf_event_attr pe; struct membw_read_format return_value; int fd; }; static char mbm_total_path[1024]; static int imcs; static struct imc_counter_config imc_counters_config[MAX_IMCS][2]; static const struct resctrl_test *current_test; void membw_initialize_perf_event_attr(int i, int j) { memset(&imc_counters_config[i][j].pe, 0, sizeof(struct perf_event_attr)); imc_counters_config[i][j].pe.type = imc_counters_config[i][j].type; imc_counters_config[i][j].pe.size = sizeof(struct perf_event_attr); imc_counters_config[i][j].pe.disabled = 1; imc_counters_config[i][j].pe.inherit = 1; imc_counters_config[i][j].pe.exclude_guest = 0; imc_counters_config[i][j].pe.config = imc_counters_config[i][j].umask << 8 | imc_counters_config[i][j].event; imc_counters_config[i][j].pe.sample_type = PERF_SAMPLE_IDENTIFIER; imc_counters_config[i][j].pe.read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING; } void membw_ioctl_perf_event_ioc_reset_enable(int i, int j) { ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_RESET, 0); ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_ENABLE, 0); } void membw_ioctl_perf_event_ioc_disable(int i, int j) { ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_DISABLE, 0); } /* * get_event_and_umask: Parse config into event and umask * @cas_count_cfg: Config * @count: iMC number * @op: Operation (read/write) */ void get_event_and_umask(char *cas_count_cfg, int count, bool op) { char *token[MAX_TOKENS]; int i = 0; strcat(cas_count_cfg, ","); token[0] = strtok(cas_count_cfg, "=,"); for (i = 1; i < MAX_TOKENS; i++) token[i] = strtok(NULL, "=,"); for (i = 0; i < MAX_TOKENS; i++) { if (!token[i]) break; if (strcmp(token[i], "event") == 0) { if (op == READ) imc_counters_config[count][READ].event = strtol(token[i + 1], NULL, 16); else imc_counters_config[count][WRITE].event = strtol(token[i + 1], NULL, 16); } if (strcmp(token[i], "umask") == 0) { if (op == READ) imc_counters_config[count][READ].umask = strtol(token[i + 1], NULL, 16); else imc_counters_config[count][WRITE].umask = strtol(token[i + 1], NULL, 16); } } } static int open_perf_event(int i, int cpu_no, int j) { imc_counters_config[i][j].fd = perf_event_open(&imc_counters_config[i][j].pe, -1, cpu_no, -1, PERF_FLAG_FD_CLOEXEC); if (imc_counters_config[i][j].fd == -1) { fprintf(stderr, "Error opening leader %llx\n", imc_counters_config[i][j].pe.config); return -1; } return 0; } /* Get type and config (read and write) of an iMC counter */ static int read_from_imc_dir(char *imc_dir, int count) { char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024]; FILE *fp; /* Get type of iMC counter */ sprintf(imc_counter_type, "%s%s", imc_dir, "type"); fp = fopen(imc_counter_type, "r"); if (!fp) { ksft_perror("Failed to open iMC counter type file"); return -1; } if (fscanf(fp, "%u", &imc_counters_config[count][READ].type) <= 0) { ksft_perror("Could not get iMC type"); fclose(fp); return -1; } fclose(fp); imc_counters_config[count][WRITE].type = imc_counters_config[count][READ].type; /* Get read config */ sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME); fp = fopen(imc_counter_cfg, "r"); if (!fp) { ksft_perror("Failed to open iMC config file"); return -1; } if (fscanf(fp, "%s", cas_count_cfg) <= 0) { ksft_perror("Could not get iMC cas count read"); fclose(fp); return -1; } fclose(fp); get_event_and_umask(cas_count_cfg, count, READ); /* Get write config */ sprintf(imc_counter_cfg, "%s%s", imc_dir, WRITE_FILE_NAME); fp = fopen(imc_counter_cfg, "r"); if (!fp) { ksft_perror("Failed to open iMC config file"); return -1; } if (fscanf(fp, "%s", cas_count_cfg) <= 0) { ksft_perror("Could not get iMC cas count write"); fclose(fp); return -1; } fclose(fp); get_event_and_umask(cas_count_cfg, count, WRITE); return 0; } /* * A system can have 'n' number of iMC (Integrated Memory Controller) * counters, get that 'n'. For each iMC counter get it's type and config. * Also, each counter has two configs, one for read and the other for write. * A config again has two parts, event and umask. * Enumerate all these details into an array of structures. * * Return: >= 0 on success. < 0 on failure. */ static int num_of_imcs(void) { char imc_dir[512], *temp; unsigned int count = 0; struct dirent *ep; int ret; DIR *dp; dp = opendir(DYN_PMU_PATH); if (dp) { while ((ep = readdir(dp))) { temp = strstr(ep->d_name, UNCORE_IMC); if (!temp) continue; /* * imc counters are named as "uncore_imc_<n>", hence * increment the pointer to point to <n>. Note that * sizeof(UNCORE_IMC) would count for null character as * well and hence the last underscore character in * uncore_imc'_' need not be counted. */ temp = temp + sizeof(UNCORE_IMC); /* * Some directories under "DYN_PMU_PATH" could have * names like "uncore_imc_free_running", hence, check if * first character is a numerical digit or not. */ if (temp[0] >= '0' && temp[0] <= '9') { sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH, ep->d_name); ret = read_from_imc_dir(imc_dir, count); if (ret) { closedir(dp); return ret; } count++; } } closedir(dp); if (count == 0) { ksft_print_msg("Unable to find iMC counters\n"); return -1; } } else { ksft_perror("Unable to open PMU directory"); return -1; } return count; } int initialize_mem_bw_imc(void) { int imc, j; imcs = num_of_imcs(); if (imcs <= 0) return imcs; /* Initialize perf_event_attr structures for all iMC's */ for (imc = 0; imc < imcs; imc++) { for (j = 0; j < 2; j++) membw_initialize_perf_event_attr(imc, j); } return 0; } static void perf_close_imc_mem_bw(void) { int mc; for (mc = 0; mc < imcs; mc++) { if (imc_counters_config[mc][READ].fd != -1) close(imc_counters_config[mc][READ].fd); if (imc_counters_config[mc][WRITE].fd != -1) close(imc_counters_config[mc][WRITE].fd); } } /* * perf_open_imc_mem_bw - Open perf fds for IMCs * @cpu_no: CPU number that the benchmark PID is bound to * * Return: = 0 on success. < 0 on failure. */ static int perf_open_imc_mem_bw(int cpu_no) { int imc, ret; for (imc = 0; imc < imcs; imc++) { imc_counters_config[imc][READ].fd = -1; imc_counters_config[imc][WRITE].fd = -1; } for (imc = 0; imc < imcs; imc++) { ret = open_perf_event(imc, cpu_no, READ); if (ret) goto close_fds; ret = open_perf_event(imc, cpu_no, WRITE); if (ret) goto close_fds; } return 0; close_fds: perf_close_imc_mem_bw(); return -1; } /* * do_mem_bw_test - Perform memory bandwidth test * * Runs memory bandwidth test over one second period. Also, handles starting * and stopping of the IMC perf counters around the test. */ static void do_imc_mem_bw_test(void) { int imc; for (imc = 0; imc < imcs; imc++) { membw_ioctl_perf_event_ioc_reset_enable(imc, READ); membw_ioctl_perf_event_ioc_reset_enable(imc, WRITE); } sleep(1); /* Stop counters after a second to get results (both read and write) */ for (imc = 0; imc < imcs; imc++) { membw_ioctl_perf_event_ioc_disable(imc, READ); membw_ioctl_perf_event_ioc_disable(imc, WRITE); } } /* * get_mem_bw_imc - Memory bandwidth as reported by iMC counters * @bw_report: Bandwidth report type (reads, writes) * * Memory bandwidth utilized by a process on a socket can be calculated * using iMC counters. Perf events are used to read these counters. * * Return: = 0 on success. < 0 on failure. */ static int get_mem_bw_imc(const char *bw_report, float *bw_imc) { float reads, writes, of_mul_read, of_mul_write; int imc; /* Start all iMC counters to log values (both read and write) */ reads = 0, writes = 0, of_mul_read = 1, of_mul_write = 1; /* * Get results which are stored in struct type imc_counter_config * Take overflow into consideration before calculating total bandwidth. */ for (imc = 0; imc < imcs; imc++) { struct imc_counter_config *r = &imc_counters_config[imc][READ]; struct imc_counter_config *w = &imc_counters_config[imc][WRITE]; if (read(r->fd, &r->return_value, sizeof(struct membw_read_format)) == -1) { ksft_perror("Couldn't get read bandwidth through iMC"); return -1; } if (read(w->fd, &w->return_value, sizeof(struct membw_read_format)) == -1) { ksft_perror("Couldn't get write bandwidth through iMC"); return -1; } __u64 r_time_enabled = r->return_value.time_enabled; __u64 r_time_running = r->return_value.time_running; if (r_time_enabled != r_time_running) of_mul_read = (float)r_time_enabled / (float)r_time_running; __u64 w_time_enabled = w->return_value.time_enabled; __u64 w_time_running = w->return_value.time_running; if (w_time_enabled != w_time_running) of_mul_write = (float)w_time_enabled / (float)w_time_running; reads += r->return_value.value * of_mul_read * SCALE; writes += w->return_value.value * of_mul_write * SCALE; } if (strcmp(bw_report, "reads") == 0) { *bw_imc = reads; return 0; } if (strcmp(bw_report, "writes") == 0) { *bw_imc = writes; return 0; } *bw_imc = reads + writes; return 0; } /* * initialize_mem_bw_resctrl: Appropriately populate "mbm_total_path" * @param: Parameters passed to resctrl_val() * @domain_id: Domain ID (cache ID; for MB, L3 cache ID) */ void initialize_mem_bw_resctrl(const struct resctrl_val_param *param, int domain_id) { sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH, param->ctrlgrp, domain_id); } /* * Open file to read MBM local bytes from resctrl FS */ static FILE *open_mem_bw_resctrl(const char *mbm_bw_file) { FILE *fp; fp = fopen(mbm_bw_file, "r"); if (!fp) ksft_perror("Failed to open total memory bandwidth file"); return fp; } /* * Get MBM Local bytes as reported by resctrl FS */ static int get_mem_bw_resctrl(FILE *fp, unsigned long *mbm_total) { if (fscanf(fp, "%lu\n", mbm_total) <= 0) { ksft_perror("Could not get MBM local bytes"); return -1; } return 0; } static pid_t bm_pid, ppid; void ctrlc_handler(int signum, siginfo_t *info, void *ptr) { /* Only kill child after bm_pid is set after fork() */ if (bm_pid) kill(bm_pid, SIGKILL); umount_resctrlfs(); if (current_test && current_test->cleanup) current_test->cleanup(); ksft_print_msg("Ending\n\n"); exit(EXIT_SUCCESS); } /* * Register CTRL-C handler for parent, as it has to kill * child process before exiting. */ int signal_handler_register(const struct resctrl_test *test) { struct sigaction sigact = {}; int ret = 0; bm_pid = 0; current_test = test; sigact.sa_sigaction = ctrlc_handler; sigemptyset(&sigact.sa_mask); sigact.sa_flags = SA_SIGINFO; if (sigaction(SIGINT, &sigact, NULL) || sigaction(SIGTERM, &sigact, NULL) || sigaction(SIGHUP, &sigact, NULL)) { ksft_perror("sigaction"); ret = -1; } return ret; } /* * Reset signal handler to SIG_DFL. * Non-Value return because the caller should keep * the error code of other path even if sigaction fails. */ void signal_handler_unregister(void) { struct sigaction sigact = {}; current_test = NULL; sigact.sa_handler = SIG_DFL; sigemptyset(&sigact.sa_mask); if (sigaction(SIGINT, &sigact, NULL) || sigaction(SIGTERM, &sigact, NULL) || sigaction(SIGHUP, &sigact, NULL)) { ksft_perror("sigaction"); } } static void parent_exit(pid_t ppid) { kill(ppid, SIGKILL); umount_resctrlfs(); exit(EXIT_FAILURE); } /* * print_results_bw: the memory bandwidth results are stored in a file * @filename: file that stores the results * @bm_pid: child pid that runs benchmark * @bw_imc: perf imc counter value * @bw_resc: memory bandwidth value * * Return: 0 on success, < 0 on error. */ static int print_results_bw(char *filename, pid_t bm_pid, float bw_imc, unsigned long bw_resc) { unsigned long diff = fabs(bw_imc - bw_resc); FILE *fp; if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) { printf("Pid: %d \t Mem_BW_iMC: %f \t ", (int)bm_pid, bw_imc); printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff); } else { fp = fopen(filename, "a"); if (!fp) { ksft_perror("Cannot open results file"); return -1; } if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n", (int)bm_pid, bw_imc, bw_resc, diff) <= 0) { ksft_print_msg("Could not log results\n"); fclose(fp); return -1; } fclose(fp); } return 0; } /* * measure_mem_bw - Measures memory bandwidth numbers while benchmark runs * @uparams: User supplied parameters * @param: Parameters passed to resctrl_val() * @bm_pid: PID that runs the benchmark * @bw_report: Bandwidth report type (reads, writes) * * Measure memory bandwidth from resctrl and from another source which is * perf imc value or could be something else if perf imc event is not * available. Compare the two values to validate resctrl value. It takes * 1 sec to measure the data. */ int measure_mem_bw(const struct user_params *uparams, struct resctrl_val_param *param, pid_t bm_pid, const char *bw_report) { unsigned long bw_resc, bw_resc_start, bw_resc_end; FILE *mem_bw_fp; float bw_imc; int ret; bw_report = get_bw_report_type(bw_report); if (!bw_report) return -1; mem_bw_fp = open_mem_bw_resctrl(mbm_total_path); if (!mem_bw_fp) return -1; ret = perf_open_imc_mem_bw(uparams->cpu); if (ret < 0) goto close_fp; ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_start); if (ret < 0) goto close_imc; rewind(mem_bw_fp); do_imc_mem_bw_test(); ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_end); if (ret < 0) goto close_imc; ret = get_mem_bw_imc(bw_report, &bw_imc); if (ret < 0) goto close_imc; perf_close_imc_mem_bw(); fclose(mem_bw_fp); bw_resc = (bw_resc_end - bw_resc_start) / MB; return print_results_bw(param->filename, bm_pid, bw_imc, bw_resc); close_imc: perf_close_imc_mem_bw(); close_fp: fclose(mem_bw_fp); return ret; } /* * run_benchmark - Run a specified benchmark or fill_buf (default benchmark) * in specified signal. Direct benchmark stdio to /dev/null. * @signum: signal number * @info: signal info * @ucontext: user context in signal handling */ static void run_benchmark(int signum, siginfo_t *info, void *ucontext) { int operation, ret, memflush; char **benchmark_cmd; size_t span; bool once; FILE *fp; benchmark_cmd = info->si_ptr; /* * Direct stdio of child to /dev/null, so that only parent writes to * stdio (console) */ fp = freopen("/dev/null", "w", stdout); if (!fp) { ksft_perror("Unable to direct benchmark status to /dev/null"); parent_exit(ppid); } if (strcmp(benchmark_cmd[0], "fill_buf") == 0) { /* Execute default fill_buf benchmark */ span = strtoul(benchmark_cmd[1], NULL, 10); memflush = atoi(benchmark_cmd[2]); operation = atoi(benchmark_cmd[3]); if (!strcmp(benchmark_cmd[4], "true")) { once = true; } else if (!strcmp(benchmark_cmd[4], "false")) { once = false; } else { ksft_print_msg("Invalid once parameter\n"); parent_exit(ppid); } if (run_fill_buf(span, memflush, operation, once)) fprintf(stderr, "Error in running fill buffer\n"); } else { /* Execute specified benchmark */ ret = execvp(benchmark_cmd[0], benchmark_cmd); if (ret) ksft_perror("execvp"); } fclose(stdout); ksft_print_msg("Unable to run specified benchmark\n"); parent_exit(ppid); } /* * resctrl_val: execute benchmark and measure memory bandwidth on * the benchmark * @test: test information structure * @uparams: user supplied parameters * @benchmark_cmd: benchmark command and its arguments * @param: parameters passed to resctrl_val() * * Return: 0 when the test was run, < 0 on error. */ int resctrl_val(const struct resctrl_test *test, const struct user_params *uparams, const char * const *benchmark_cmd, struct resctrl_val_param *param) { struct sigaction sigact; int ret = 0, pipefd[2]; char pipe_message = 0; union sigval value; int domain_id; if (strcmp(param->filename, "") == 0) sprintf(param->filename, "stdio"); ret = get_domain_id(test->resource, uparams->cpu, &domain_id); if (ret < 0) { ksft_print_msg("Could not get domain ID\n"); return ret; } /* * If benchmark wasn't successfully started by child, then child should * kill parent, so save parent's pid */ ppid = getpid(); if (pipe(pipefd)) { ksft_perror("Unable to create pipe"); return -1; } /* * Fork to start benchmark, save child's pid so that it can be killed * when needed */ fflush(stdout); bm_pid = fork(); if (bm_pid == -1) { ksft_perror("Unable to fork"); return -1; } if (bm_pid == 0) { /* * Mask all signals except SIGUSR1, parent uses SIGUSR1 to * start benchmark */ sigfillset(&sigact.sa_mask); sigdelset(&sigact.sa_mask, SIGUSR1); sigact.sa_sigaction = run_benchmark; sigact.sa_flags = SA_SIGINFO; /* Register for "SIGUSR1" signal from parent */ if (sigaction(SIGUSR1, &sigact, NULL)) { ksft_perror("Can't register child for signal"); parent_exit(ppid); } /* Tell parent that child is ready */ close(pipefd[0]); pipe_message = 1; if (write(pipefd[1], &pipe_message, sizeof(pipe_message)) < sizeof(pipe_message)) { ksft_perror("Failed signaling parent process"); close(pipefd[1]); return -1; } close(pipefd[1]); /* Suspend child until delivery of "SIGUSR1" from parent */ sigsuspend(&sigact.sa_mask); ksft_perror("Child is done"); parent_exit(ppid); } ksft_print_msg("Benchmark PID: %d\n", (int)bm_pid); /* * The cast removes constness but nothing mutates benchmark_cmd within * the context of this process. At the receiving process, it becomes * argv, which is mutable, on exec() but that's after fork() so it * doesn't matter for the process running the tests. */ value.sival_ptr = (void *)benchmark_cmd; /* Taskset benchmark to specified cpu */ ret = taskset_benchmark(bm_pid, uparams->cpu, NULL); if (ret) goto out; /* Write benchmark to specified control&monitoring grp in resctrl FS */ ret = write_bm_pid_to_resctrl(bm_pid, param->ctrlgrp, param->mongrp); if (ret) goto out; if (param->init) { ret = param->init(param, domain_id); if (ret) goto out; } /* Parent waits for child to be ready. */ close(pipefd[1]); while (pipe_message != 1) { if (read(pipefd[0], &pipe_message, sizeof(pipe_message)) < sizeof(pipe_message)) { ksft_perror("Failed reading message from child process"); close(pipefd[0]); goto out; } } close(pipefd[0]); /* Signal child to start benchmark */ if (sigqueue(bm_pid, SIGUSR1, value) == -1) { ksft_perror("sigqueue SIGUSR1 to child"); ret = -1; goto out; } /* Give benchmark enough time to fully run */ sleep(1); /* Test runs until the callback setup() tells the test to stop. */ while (1) { ret = param->setup(test, uparams, param); if (ret == END_OF_TESTS) { ret = 0; break; } if (ret < 0) break; ret = param->measure(uparams, param, bm_pid); if (ret) break; } out: kill(bm_pid, SIGKILL); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1