Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Woodhouse | 793 | 47.86% | 3 | 6.82% |
Sean Christopherson | 422 | 25.47% | 11 | 25.00% |
Paul Durrant | 299 | 18.04% | 5 | 11.36% |
Michal Luczaj | 57 | 3.44% | 5 | 11.36% |
Avi Kivity | 24 | 1.45% | 4 | 9.09% |
Andrea Arcangeli | 11 | 0.66% | 4 | 9.09% |
Gregory Haskins | 10 | 0.60% | 1 | 2.27% |
Pei Li | 10 | 0.60% | 1 | 2.27% |
Paolo Bonzini | 8 | 0.48% | 2 | 4.55% |
Andres Lagar-Cavilla | 5 | 0.30% | 1 | 2.27% |
Xiantao Zhang | 4 | 0.24% | 1 | 2.27% |
Chao Peng | 4 | 0.24% | 1 | 2.27% |
Andrew Morton | 4 | 0.24% | 1 | 2.27% |
Hollis Blanchard | 2 | 0.12% | 1 | 2.27% |
Peter Xu | 2 | 0.12% | 1 | 2.27% |
Sebastian Ott | 1 | 0.06% | 1 | 2.27% |
Thomas Gleixner | 1 | 0.06% | 1 | 2.27% |
Total | 1657 | 44 |
// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * This module enables kernel and guest-mode vCPU access to guest physical * memory with suitable invalidation mechanisms. * * Copyright © 2021 Amazon.com, Inc. or its affiliates. * * Authors: * David Woodhouse <dwmw2@infradead.org> */ #include <linux/kvm_host.h> #include <linux/kvm.h> #include <linux/highmem.h> #include <linux/module.h> #include <linux/errno.h> #include "kvm_mm.h" /* * MMU notifier 'invalidate_range_start' hook. */ void gfn_to_pfn_cache_invalidate_start(struct kvm *kvm, unsigned long start, unsigned long end) { struct gfn_to_pfn_cache *gpc; spin_lock(&kvm->gpc_lock); list_for_each_entry(gpc, &kvm->gpc_list, list) { read_lock_irq(&gpc->lock); /* Only a single page so no need to care about length */ if (gpc->valid && !is_error_noslot_pfn(gpc->pfn) && gpc->uhva >= start && gpc->uhva < end) { read_unlock_irq(&gpc->lock); /* * There is a small window here where the cache could * be modified, and invalidation would no longer be * necessary. Hence check again whether invalidation * is still necessary once the write lock has been * acquired. */ write_lock_irq(&gpc->lock); if (gpc->valid && !is_error_noslot_pfn(gpc->pfn) && gpc->uhva >= start && gpc->uhva < end) gpc->valid = false; write_unlock_irq(&gpc->lock); continue; } read_unlock_irq(&gpc->lock); } spin_unlock(&kvm->gpc_lock); } static bool kvm_gpc_is_valid_len(gpa_t gpa, unsigned long uhva, unsigned long len) { unsigned long offset = kvm_is_error_gpa(gpa) ? offset_in_page(uhva) : offset_in_page(gpa); /* * The cached access must fit within a single page. The 'len' argument * to activate() and refresh() exists only to enforce that. */ return offset + len <= PAGE_SIZE; } bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len) { struct kvm_memslots *slots = kvm_memslots(gpc->kvm); if (!gpc->active) return false; /* * If the page was cached from a memslot, make sure the memslots have * not been re-configured. */ if (!kvm_is_error_gpa(gpc->gpa) && gpc->generation != slots->generation) return false; if (kvm_is_error_hva(gpc->uhva)) return false; if (!kvm_gpc_is_valid_len(gpc->gpa, gpc->uhva, len)) return false; if (!gpc->valid) return false; return true; } static void *gpc_map(kvm_pfn_t pfn) { if (pfn_valid(pfn)) return kmap(pfn_to_page(pfn)); #ifdef CONFIG_HAS_IOMEM return memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); #else return NULL; #endif } static void gpc_unmap(kvm_pfn_t pfn, void *khva) { /* Unmap the old pfn/page if it was mapped before. */ if (is_error_noslot_pfn(pfn) || !khva) return; if (pfn_valid(pfn)) { kunmap(pfn_to_page(pfn)); return; } #ifdef CONFIG_HAS_IOMEM memunmap(khva); #endif } static inline bool mmu_notifier_retry_cache(struct kvm *kvm, unsigned long mmu_seq) { /* * mn_active_invalidate_count acts for all intents and purposes * like mmu_invalidate_in_progress here; but the latter cannot * be used here because the invalidation of caches in the * mmu_notifier event occurs _before_ mmu_invalidate_in_progress * is elevated. * * Note, it does not matter that mn_active_invalidate_count * is not protected by gpc->lock. It is guaranteed to * be elevated before the mmu_notifier acquires gpc->lock, and * isn't dropped until after mmu_invalidate_seq is updated. */ if (kvm->mn_active_invalidate_count) return true; /* * Ensure mn_active_invalidate_count is read before * mmu_invalidate_seq. This pairs with the smp_wmb() in * mmu_notifier_invalidate_range_end() to guarantee either the * old (non-zero) value of mn_active_invalidate_count or the * new (incremented) value of mmu_invalidate_seq is observed. */ smp_rmb(); return kvm->mmu_invalidate_seq != mmu_seq; } static kvm_pfn_t hva_to_pfn_retry(struct gfn_to_pfn_cache *gpc) { /* Note, the new page offset may be different than the old! */ void *old_khva = (void *)PAGE_ALIGN_DOWN((uintptr_t)gpc->khva); kvm_pfn_t new_pfn = KVM_PFN_ERR_FAULT; void *new_khva = NULL; unsigned long mmu_seq; lockdep_assert_held(&gpc->refresh_lock); lockdep_assert_held_write(&gpc->lock); /* * Invalidate the cache prior to dropping gpc->lock, the gpa=>uhva * assets have already been updated and so a concurrent check() from a * different task may not fail the gpa/uhva/generation checks. */ gpc->valid = false; do { mmu_seq = gpc->kvm->mmu_invalidate_seq; smp_rmb(); write_unlock_irq(&gpc->lock); /* * If the previous iteration "failed" due to an mmu_notifier * event, release the pfn and unmap the kernel virtual address * from the previous attempt. Unmapping might sleep, so this * needs to be done after dropping the lock. Opportunistically * check for resched while the lock isn't held. */ if (new_pfn != KVM_PFN_ERR_FAULT) { /* * Keep the mapping if the previous iteration reused * the existing mapping and didn't create a new one. */ if (new_khva != old_khva) gpc_unmap(new_pfn, new_khva); kvm_release_pfn_clean(new_pfn); cond_resched(); } /* We always request a writeable mapping */ new_pfn = hva_to_pfn(gpc->uhva, false, false, NULL, true, NULL); if (is_error_noslot_pfn(new_pfn)) goto out_error; /* * Obtain a new kernel mapping if KVM itself will access the * pfn. Note, kmap() and memremap() can both sleep, so this * too must be done outside of gpc->lock! */ if (new_pfn == gpc->pfn) new_khva = old_khva; else new_khva = gpc_map(new_pfn); if (!new_khva) { kvm_release_pfn_clean(new_pfn); goto out_error; } write_lock_irq(&gpc->lock); /* * Other tasks must wait for _this_ refresh to complete before * attempting to refresh. */ WARN_ON_ONCE(gpc->valid); } while (mmu_notifier_retry_cache(gpc->kvm, mmu_seq)); gpc->valid = true; gpc->pfn = new_pfn; gpc->khva = new_khva + offset_in_page(gpc->uhva); /* * Put the reference to the _new_ pfn. The pfn is now tracked by the * cache and can be safely migrated, swapped, etc... as the cache will * invalidate any mappings in response to relevant mmu_notifier events. */ kvm_release_pfn_clean(new_pfn); return 0; out_error: write_lock_irq(&gpc->lock); return -EFAULT; } static int __kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long uhva) { unsigned long page_offset; bool unmap_old = false; unsigned long old_uhva; kvm_pfn_t old_pfn; bool hva_change = false; void *old_khva; int ret; /* Either gpa or uhva must be valid, but not both */ if (WARN_ON_ONCE(kvm_is_error_gpa(gpa) == kvm_is_error_hva(uhva))) return -EINVAL; lockdep_assert_held(&gpc->refresh_lock); write_lock_irq(&gpc->lock); if (!gpc->active) { ret = -EINVAL; goto out_unlock; } old_pfn = gpc->pfn; old_khva = (void *)PAGE_ALIGN_DOWN((uintptr_t)gpc->khva); old_uhva = PAGE_ALIGN_DOWN(gpc->uhva); if (kvm_is_error_gpa(gpa)) { page_offset = offset_in_page(uhva); gpc->gpa = INVALID_GPA; gpc->memslot = NULL; gpc->uhva = PAGE_ALIGN_DOWN(uhva); if (gpc->uhva != old_uhva) hva_change = true; } else { struct kvm_memslots *slots = kvm_memslots(gpc->kvm); page_offset = offset_in_page(gpa); if (gpc->gpa != gpa || gpc->generation != slots->generation || kvm_is_error_hva(gpc->uhva)) { gfn_t gfn = gpa_to_gfn(gpa); gpc->gpa = gpa; gpc->generation = slots->generation; gpc->memslot = __gfn_to_memslot(slots, gfn); gpc->uhva = gfn_to_hva_memslot(gpc->memslot, gfn); if (kvm_is_error_hva(gpc->uhva)) { ret = -EFAULT; goto out; } /* * Even if the GPA and/or the memslot generation changed, the * HVA may still be the same. */ if (gpc->uhva != old_uhva) hva_change = true; } else { gpc->uhva = old_uhva; } } /* Note: the offset must be correct before calling hva_to_pfn_retry() */ gpc->uhva += page_offset; /* * If the userspace HVA changed or the PFN was already invalid, * drop the lock and do the HVA to PFN lookup again. */ if (!gpc->valid || hva_change) { ret = hva_to_pfn_retry(gpc); } else { /* * If the HVA→PFN mapping was already valid, don't unmap it. * But do update gpc->khva because the offset within the page * may have changed. */ gpc->khva = old_khva + page_offset; ret = 0; goto out_unlock; } out: /* * Invalidate the cache and purge the pfn/khva if the refresh failed. * Some/all of the uhva, gpa, and memslot generation info may still be * valid, leave it as is. */ if (ret) { gpc->valid = false; gpc->pfn = KVM_PFN_ERR_FAULT; gpc->khva = NULL; } /* Detect a pfn change before dropping the lock! */ unmap_old = (old_pfn != gpc->pfn); out_unlock: write_unlock_irq(&gpc->lock); if (unmap_old) gpc_unmap(old_pfn, old_khva); return ret; } int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len) { unsigned long uhva; guard(mutex)(&gpc->refresh_lock); if (!kvm_gpc_is_valid_len(gpc->gpa, gpc->uhva, len)) return -EINVAL; /* * If the GPA is valid then ignore the HVA, as a cache can be GPA-based * or HVA-based, not both. For GPA-based caches, the HVA will be * recomputed during refresh if necessary. */ uhva = kvm_is_error_gpa(gpc->gpa) ? gpc->uhva : KVM_HVA_ERR_BAD; return __kvm_gpc_refresh(gpc, gpc->gpa, uhva); } void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm) { rwlock_init(&gpc->lock); mutex_init(&gpc->refresh_lock); gpc->kvm = kvm; gpc->pfn = KVM_PFN_ERR_FAULT; gpc->gpa = INVALID_GPA; gpc->uhva = KVM_HVA_ERR_BAD; gpc->active = gpc->valid = false; } static int __kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long uhva, unsigned long len) { struct kvm *kvm = gpc->kvm; if (!kvm_gpc_is_valid_len(gpa, uhva, len)) return -EINVAL; guard(mutex)(&gpc->refresh_lock); if (!gpc->active) { if (KVM_BUG_ON(gpc->valid, kvm)) return -EIO; spin_lock(&kvm->gpc_lock); list_add(&gpc->list, &kvm->gpc_list); spin_unlock(&kvm->gpc_lock); /* * Activate the cache after adding it to the list, a concurrent * refresh must not establish a mapping until the cache is * reachable by mmu_notifier events. */ write_lock_irq(&gpc->lock); gpc->active = true; write_unlock_irq(&gpc->lock); } return __kvm_gpc_refresh(gpc, gpa, uhva); } int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len) { /* * Explicitly disallow INVALID_GPA so that the magic value can be used * by KVM to differentiate between GPA-based and HVA-based caches. */ if (WARN_ON_ONCE(kvm_is_error_gpa(gpa))) return -EINVAL; return __kvm_gpc_activate(gpc, gpa, KVM_HVA_ERR_BAD, len); } int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long uhva, unsigned long len) { if (!access_ok((void __user *)uhva, len)) return -EINVAL; return __kvm_gpc_activate(gpc, INVALID_GPA, uhva, len); } void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc) { struct kvm *kvm = gpc->kvm; kvm_pfn_t old_pfn; void *old_khva; guard(mutex)(&gpc->refresh_lock); if (gpc->active) { /* * Deactivate the cache before removing it from the list, KVM * must stall mmu_notifier events until all users go away, i.e. * until gpc->lock is dropped and refresh is guaranteed to fail. */ write_lock_irq(&gpc->lock); gpc->active = false; gpc->valid = false; /* * Leave the GPA => uHVA cache intact, it's protected by the * memslot generation. The PFN lookup needs to be redone every * time as mmu_notifier protection is lost when the cache is * removed from the VM's gpc_list. */ old_khva = gpc->khva - offset_in_page(gpc->khva); gpc->khva = NULL; old_pfn = gpc->pfn; gpc->pfn = KVM_PFN_ERR_FAULT; write_unlock_irq(&gpc->lock); spin_lock(&kvm->gpc_lock); list_del(&gpc->list); spin_unlock(&kvm->gpc_lock); gpc_unmap(old_pfn, old_khva); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1