Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 2155 | 76.47% | 9 | 47.37% |
Herbert Xu | 411 | 14.58% | 3 | 15.79% |
Eric Biggers | 190 | 6.74% | 1 | 5.26% |
Stephan Mueller | 23 | 0.82% | 2 | 10.53% |
Jussi Kivilinna | 18 | 0.64% | 1 | 5.26% |
Rik Snel | 14 | 0.50% | 1 | 5.26% |
Jeff Johnson | 5 | 0.18% | 1 | 5.26% |
Thomas Gleixner | 2 | 0.07% | 1 | 5.26% |
Total | 2818 | 19 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509
// SPDX-License-Identifier: GPL-2.0-only /* * Bit sliced AES using NEON instructions * * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org> */ #include <asm/neon.h> #include <asm/simd.h> #include <crypto/aes.h> #include <crypto/ctr.h> #include <crypto/internal/simd.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <crypto/xts.h> #include <linux/module.h> #include "aes-cipher.h" MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_DESCRIPTION("Bit sliced AES using NEON instructions"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_CRYPTO("ecb(aes)"); MODULE_ALIAS_CRYPTO("cbc(aes)"); MODULE_ALIAS_CRYPTO("ctr(aes)"); MODULE_ALIAS_CRYPTO("xts(aes)"); asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds); asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 ctr[]); asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[], int); asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[], int); struct aesbs_ctx { int rounds; u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32] __aligned(AES_BLOCK_SIZE); }; struct aesbs_cbc_ctx { struct aesbs_ctx key; struct crypto_aes_ctx fallback; }; struct aesbs_xts_ctx { struct aesbs_ctx key; struct crypto_aes_ctx fallback; struct crypto_aes_ctx tweak_key; }; struct aesbs_ctr_ctx { struct aesbs_ctx key; /* must be first member */ struct crypto_aes_ctx fallback; }; static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_aes_ctx rk; int err; err = aes_expandkey(&rk, in_key, key_len); if (err) return err; ctx->rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds); kernel_neon_end(); return 0; } static int __ecb_crypt(struct skcipher_request *req, void (*fn)(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks)) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); kernel_neon_begin(); fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk, ctx->rounds, blocks); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } return err; } static int ecb_encrypt(struct skcipher_request *req) { return __ecb_crypt(req, aesbs_ecb_encrypt); } static int ecb_decrypt(struct skcipher_request *req) { return __ecb_crypt(req, aesbs_ecb_decrypt); } static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); int err; err = aes_expandkey(&ctx->fallback, in_key, key_len); if (err) return err; ctx->key.rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds); kernel_neon_end(); return 0; } static int cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; u8 *prev = walk.iv; do { crypto_xor_cpy(dst, src, prev, AES_BLOCK_SIZE); __aes_arm_encrypt(ctx->fallback.key_enc, ctx->key.rounds, dst, dst); prev = dst; src += AES_BLOCK_SIZE; dst += AES_BLOCK_SIZE; nbytes -= AES_BLOCK_SIZE; } while (nbytes >= AES_BLOCK_SIZE); memcpy(walk.iv, prev, AES_BLOCK_SIZE); err = skcipher_walk_done(&walk, nbytes); } return err; } static int cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); kernel_neon_begin(); aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk, ctx->key.rounds, blocks, walk.iv); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } return err; } static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm); int err; err = aes_expandkey(&ctx->fallback, in_key, key_len); if (err) return err; ctx->key.rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds); kernel_neon_end(); return 0; } static int ctr_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; u8 buf[AES_BLOCK_SIZE]; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; int bytes = walk.nbytes; if (unlikely(bytes < AES_BLOCK_SIZE)) src = dst = memcpy(buf + sizeof(buf) - bytes, src, bytes); else if (walk.nbytes < walk.total) bytes &= ~(8 * AES_BLOCK_SIZE - 1); kernel_neon_begin(); aesbs_ctr_encrypt(dst, src, ctx->rk, ctx->rounds, bytes, walk.iv); kernel_neon_end(); if (unlikely(bytes < AES_BLOCK_SIZE)) memcpy(walk.dst.virt.addr, buf + sizeof(buf) - bytes, bytes); err = skcipher_walk_done(&walk, walk.nbytes - bytes); } return err; } static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst) { struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm); __aes_arm_encrypt(ctx->fallback.key_enc, ctx->key.rounds, src, dst); } static int ctr_encrypt_sync(struct skcipher_request *req) { if (!crypto_simd_usable()) return crypto_ctr_encrypt_walk(req, ctr_encrypt_one); return ctr_encrypt(req); } static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int err; err = xts_verify_key(tfm, in_key, key_len); if (err) return err; key_len /= 2; err = aes_expandkey(&ctx->fallback, in_key, key_len); if (err) return err; err = aes_expandkey(&ctx->tweak_key, in_key + key_len, key_len); if (err) return err; return aesbs_setkey(tfm, in_key, key_len); } static int __xts_crypt(struct skcipher_request *req, bool encrypt, void (*fn)(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[], int)) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); const int rounds = ctx->key.rounds; int tail = req->cryptlen % AES_BLOCK_SIZE; struct skcipher_request subreq; u8 buf[2 * AES_BLOCK_SIZE]; struct skcipher_walk walk; int err; if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; if (unlikely(tail)) { skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); skcipher_request_set_crypt(&subreq, req->src, req->dst, req->cryptlen - tail, req->iv); req = &subreq; } err = skcipher_walk_virt(&walk, req, true); if (err) return err; __aes_arm_encrypt(ctx->tweak_key.key_enc, rounds, walk.iv, walk.iv); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; int reorder_last_tweak = !encrypt && tail > 0; if (walk.nbytes < walk.total) { blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); reorder_last_tweak = 0; } kernel_neon_begin(); fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk, rounds, blocks, walk.iv, reorder_last_tweak); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } if (err || likely(!tail)) return err; /* handle ciphertext stealing */ scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE, 0); memcpy(buf + AES_BLOCK_SIZE, buf, tail); scatterwalk_map_and_copy(buf, req->src, req->cryptlen, tail, 0); crypto_xor(buf, req->iv, AES_BLOCK_SIZE); if (encrypt) __aes_arm_encrypt(ctx->fallback.key_enc, rounds, buf, buf); else __aes_arm_decrypt(ctx->fallback.key_dec, rounds, buf, buf); crypto_xor(buf, req->iv, AES_BLOCK_SIZE); scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE + tail, 1); return 0; } static int xts_encrypt(struct skcipher_request *req) { return __xts_crypt(req, true, aesbs_xts_encrypt); } static int xts_decrypt(struct skcipher_request *req) { return __xts_crypt(req, false, aesbs_xts_decrypt); } static struct skcipher_alg aes_algs[] = { { .base.cra_name = "__ecb(aes)", .base.cra_driver_name = "__ecb-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .setkey = aesbs_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base.cra_name = "__cbc(aes)", .base.cra_driver_name = "__cbc-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_cbc_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, { .base.cra_name = "__ctr(aes)", .base.cra_driver_name = "__ctr-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct aesbs_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .chunksize = AES_BLOCK_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_setkey, .encrypt = ctr_encrypt, .decrypt = ctr_encrypt, }, { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "ctr-aes-neonbs-sync", .base.cra_priority = 250 - 1, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct aesbs_ctr_ctx), .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .chunksize = AES_BLOCK_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_ctr_setkey_sync, .encrypt = ctr_encrypt_sync, .decrypt = ctr_encrypt_sync, }, { .base.cra_name = "__xts(aes)", .base.cra_driver_name = "__xts-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_xts_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, } }; static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)]; static void aes_exit(void) { int i; for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++) if (aes_simd_algs[i]) simd_skcipher_free(aes_simd_algs[i]); crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); } static int __init aes_init(void) { struct simd_skcipher_alg *simd; const char *basename; const char *algname; const char *drvname; int err; int i; if (!(elf_hwcap & HWCAP_NEON)) return -ENODEV; err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); if (err) return err; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL)) continue; algname = aes_algs[i].base.cra_name + 2; drvname = aes_algs[i].base.cra_driver_name + 2; basename = aes_algs[i].base.cra_driver_name; simd = simd_skcipher_create_compat(aes_algs + i, algname, drvname, basename); err = PTR_ERR(simd); if (IS_ERR(simd)) goto unregister_simds; aes_simd_algs[i] = simd; } return 0; unregister_simds: aes_exit(); return err; } late_initcall(aes_init); module_exit(aes_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1