Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marc Zyngier | 699 | 31.35% | 26 | 41.27% |
Will Deacon | 411 | 18.43% | 4 | 6.35% |
Fuad Tabba | 393 | 17.62% | 8 | 12.70% |
Andrew Scull | 349 | 15.65% | 4 | 6.35% |
Quentin Perret | 200 | 8.97% | 3 | 4.76% |
David Brazdil | 95 | 4.26% | 6 | 9.52% |
Mark Brown | 24 | 1.08% | 4 | 6.35% |
Kalesh Singh | 20 | 0.90% | 1 | 1.59% |
Raghavendra Rao Ananta | 18 | 0.81% | 1 | 1.59% |
Jean-Philippe Brucker | 14 | 0.63% | 1 | 1.59% |
Christoffer Dall | 6 | 0.27% | 4 | 6.35% |
Thomas Gleixner | 1 | 0.04% | 1 | 1.59% |
Total | 2230 | 63 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 - Google Inc * Author: Andrew Scull <ascull@google.com> */ #include <hyp/adjust_pc.h> #include <asm/pgtable-types.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_host.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <nvhe/ffa.h> #include <nvhe/mem_protect.h> #include <nvhe/mm.h> #include <nvhe/pkvm.h> #include <nvhe/trap_handler.h> DEFINE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); void __kvm_hyp_host_forward_smc(struct kvm_cpu_context *host_ctxt); static void __hyp_sve_save_guest(struct kvm_vcpu *vcpu) { __vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR); /* * On saving/restoring guest sve state, always use the maximum VL for * the guest. The layout of the data when saving the sve state depends * on the VL, so use a consistent (i.e., the maximum) guest VL. */ sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); __sve_save_state(vcpu_sve_pffr(vcpu), &vcpu->arch.ctxt.fp_regs.fpsr, true); write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2); } static void __hyp_sve_restore_host(void) { struct cpu_sve_state *sve_state = *host_data_ptr(sve_state); /* * On saving/restoring host sve state, always use the maximum VL for * the host. The layout of the data when saving the sve state depends * on the VL, so use a consistent (i.e., the maximum) host VL. * * Note that this constrains the PE to the maximum shared VL * that was discovered, if we wish to use larger VLs this will * need to be revisited. */ write_sysreg_s(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2); __sve_restore_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl), &sve_state->fpsr, true); write_sysreg_el1(sve_state->zcr_el1, SYS_ZCR); } static void fpsimd_sve_flush(void) { *host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED; } static void fpsimd_sve_sync(struct kvm_vcpu *vcpu) { bool has_fpmr; if (!guest_owns_fp_regs()) return; cpacr_clear_set(0, CPACR_ELx_FPEN | CPACR_ELx_ZEN); isb(); if (vcpu_has_sve(vcpu)) __hyp_sve_save_guest(vcpu); else __fpsimd_save_state(&vcpu->arch.ctxt.fp_regs); has_fpmr = kvm_has_fpmr(kern_hyp_va(vcpu->kvm)); if (has_fpmr) __vcpu_sys_reg(vcpu, FPMR) = read_sysreg_s(SYS_FPMR); if (system_supports_sve()) __hyp_sve_restore_host(); else __fpsimd_restore_state(*host_data_ptr(fpsimd_state)); if (has_fpmr) write_sysreg_s(*host_data_ptr(fpmr), SYS_FPMR); *host_data_ptr(fp_owner) = FP_STATE_HOST_OWNED; } static void flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; fpsimd_sve_flush(); hyp_vcpu->vcpu.arch.ctxt = host_vcpu->arch.ctxt; hyp_vcpu->vcpu.arch.sve_state = kern_hyp_va(host_vcpu->arch.sve_state); /* Limit guest vector length to the maximum supported by the host. */ hyp_vcpu->vcpu.arch.sve_max_vl = min(host_vcpu->arch.sve_max_vl, kvm_host_sve_max_vl); hyp_vcpu->vcpu.arch.hw_mmu = host_vcpu->arch.hw_mmu; hyp_vcpu->vcpu.arch.hcr_el2 = host_vcpu->arch.hcr_el2; hyp_vcpu->vcpu.arch.mdcr_el2 = host_vcpu->arch.mdcr_el2; hyp_vcpu->vcpu.arch.iflags = host_vcpu->arch.iflags; hyp_vcpu->vcpu.arch.debug_ptr = kern_hyp_va(host_vcpu->arch.debug_ptr); hyp_vcpu->vcpu.arch.vsesr_el2 = host_vcpu->arch.vsesr_el2; hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3 = host_vcpu->arch.vgic_cpu.vgic_v3; } static void sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; struct vgic_v3_cpu_if *hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; struct vgic_v3_cpu_if *host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; unsigned int i; fpsimd_sve_sync(&hyp_vcpu->vcpu); host_vcpu->arch.ctxt = hyp_vcpu->vcpu.arch.ctxt; host_vcpu->arch.hcr_el2 = hyp_vcpu->vcpu.arch.hcr_el2; host_vcpu->arch.fault = hyp_vcpu->vcpu.arch.fault; host_vcpu->arch.iflags = hyp_vcpu->vcpu.arch.iflags; host_cpu_if->vgic_hcr = hyp_cpu_if->vgic_hcr; for (i = 0; i < hyp_cpu_if->used_lrs; ++i) host_cpu_if->vgic_lr[i] = hyp_cpu_if->vgic_lr[i]; } static void handle___kvm_vcpu_run(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 1); int ret; host_vcpu = kern_hyp_va(host_vcpu); if (unlikely(is_protected_kvm_enabled())) { struct pkvm_hyp_vcpu *hyp_vcpu; struct kvm *host_kvm; /* * KVM (and pKVM) doesn't support SME guests for now, and * ensures that SME features aren't enabled in pstate when * loading a vcpu. Therefore, if SME features enabled the host * is misbehaving. */ if (unlikely(system_supports_sme() && read_sysreg_s(SYS_SVCR))) { ret = -EINVAL; goto out; } host_kvm = kern_hyp_va(host_vcpu->kvm); hyp_vcpu = pkvm_load_hyp_vcpu(host_kvm->arch.pkvm.handle, host_vcpu->vcpu_idx); if (!hyp_vcpu) { ret = -EINVAL; goto out; } flush_hyp_vcpu(hyp_vcpu); ret = __kvm_vcpu_run(&hyp_vcpu->vcpu); sync_hyp_vcpu(hyp_vcpu); pkvm_put_hyp_vcpu(hyp_vcpu); } else { /* The host is fully trusted, run its vCPU directly. */ ret = __kvm_vcpu_run(host_vcpu); } out: cpu_reg(host_ctxt, 1) = ret; } static void handle___kvm_adjust_pc(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_vcpu *, vcpu, host_ctxt, 1); __kvm_adjust_pc(kern_hyp_va(vcpu)); } static void handle___kvm_flush_vm_context(struct kvm_cpu_context *host_ctxt) { __kvm_flush_vm_context(); } static void handle___kvm_tlb_flush_vmid_ipa(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2); DECLARE_REG(int, level, host_ctxt, 3); __kvm_tlb_flush_vmid_ipa(kern_hyp_va(mmu), ipa, level); } static void handle___kvm_tlb_flush_vmid_ipa_nsh(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2); DECLARE_REG(int, level, host_ctxt, 3); __kvm_tlb_flush_vmid_ipa_nsh(kern_hyp_va(mmu), ipa, level); } static void handle___kvm_tlb_flush_vmid_range(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); DECLARE_REG(phys_addr_t, start, host_ctxt, 2); DECLARE_REG(unsigned long, pages, host_ctxt, 3); __kvm_tlb_flush_vmid_range(kern_hyp_va(mmu), start, pages); } static void handle___kvm_tlb_flush_vmid(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); __kvm_tlb_flush_vmid(kern_hyp_va(mmu)); } static void handle___kvm_flush_cpu_context(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); __kvm_flush_cpu_context(kern_hyp_va(mmu)); } static void handle___kvm_timer_set_cntvoff(struct kvm_cpu_context *host_ctxt) { __kvm_timer_set_cntvoff(cpu_reg(host_ctxt, 1)); } static void handle___kvm_enable_ssbs(struct kvm_cpu_context *host_ctxt) { u64 tmp; tmp = read_sysreg_el2(SYS_SCTLR); tmp |= SCTLR_ELx_DSSBS; write_sysreg_el2(tmp, SYS_SCTLR); } static void handle___vgic_v3_get_gic_config(struct kvm_cpu_context *host_ctxt) { cpu_reg(host_ctxt, 1) = __vgic_v3_get_gic_config(); } static void handle___vgic_v3_init_lrs(struct kvm_cpu_context *host_ctxt) { __vgic_v3_init_lrs(); } static void handle___kvm_get_mdcr_el2(struct kvm_cpu_context *host_ctxt) { cpu_reg(host_ctxt, 1) = __kvm_get_mdcr_el2(); } static void handle___vgic_v3_save_vmcr_aprs(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1); __vgic_v3_save_vmcr_aprs(kern_hyp_va(cpu_if)); } static void handle___vgic_v3_restore_vmcr_aprs(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct vgic_v3_cpu_if *, cpu_if, host_ctxt, 1); __vgic_v3_restore_vmcr_aprs(kern_hyp_va(cpu_if)); } static void handle___pkvm_init(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(phys_addr_t, phys, host_ctxt, 1); DECLARE_REG(unsigned long, size, host_ctxt, 2); DECLARE_REG(unsigned long, nr_cpus, host_ctxt, 3); DECLARE_REG(unsigned long *, per_cpu_base, host_ctxt, 4); DECLARE_REG(u32, hyp_va_bits, host_ctxt, 5); /* * __pkvm_init() will return only if an error occurred, otherwise it * will tail-call in __pkvm_init_finalise() which will have to deal * with the host context directly. */ cpu_reg(host_ctxt, 1) = __pkvm_init(phys, size, nr_cpus, per_cpu_base, hyp_va_bits); } static void handle___pkvm_cpu_set_vector(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(enum arm64_hyp_spectre_vector, slot, host_ctxt, 1); cpu_reg(host_ctxt, 1) = pkvm_cpu_set_vector(slot); } static void handle___pkvm_host_share_hyp(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, pfn, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_host_share_hyp(pfn); } static void handle___pkvm_host_unshare_hyp(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, pfn, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_host_unshare_hyp(pfn); } static void handle___pkvm_create_private_mapping(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(phys_addr_t, phys, host_ctxt, 1); DECLARE_REG(size_t, size, host_ctxt, 2); DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3); /* * __pkvm_create_private_mapping() populates a pointer with the * hypervisor start address of the allocation. * * However, handle___pkvm_create_private_mapping() hypercall crosses the * EL1/EL2 boundary so the pointer would not be valid in this context. * * Instead pass the allocation address as the return value (or return * ERR_PTR() on failure). */ unsigned long haddr; int err = __pkvm_create_private_mapping(phys, size, prot, &haddr); if (err) haddr = (unsigned long)ERR_PTR(err); cpu_reg(host_ctxt, 1) = haddr; } static void handle___pkvm_prot_finalize(struct kvm_cpu_context *host_ctxt) { cpu_reg(host_ctxt, 1) = __pkvm_prot_finalize(); } static void handle___pkvm_vcpu_init_traps(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_vcpu *, vcpu, host_ctxt, 1); __pkvm_vcpu_init_traps(kern_hyp_va(vcpu)); } static void handle___pkvm_init_vm(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm *, host_kvm, host_ctxt, 1); DECLARE_REG(unsigned long, vm_hva, host_ctxt, 2); DECLARE_REG(unsigned long, pgd_hva, host_ctxt, 3); host_kvm = kern_hyp_va(host_kvm); cpu_reg(host_ctxt, 1) = __pkvm_init_vm(host_kvm, vm_hva, pgd_hva); } static void handle___pkvm_init_vcpu(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 2); DECLARE_REG(unsigned long, vcpu_hva, host_ctxt, 3); host_vcpu = kern_hyp_va(host_vcpu); cpu_reg(host_ctxt, 1) = __pkvm_init_vcpu(handle, host_vcpu, vcpu_hva); } static void handle___pkvm_teardown_vm(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_teardown_vm(handle); } typedef void (*hcall_t)(struct kvm_cpu_context *); #define HANDLE_FUNC(x) [__KVM_HOST_SMCCC_FUNC_##x] = (hcall_t)handle_##x static const hcall_t host_hcall[] = { /* ___kvm_hyp_init */ HANDLE_FUNC(__kvm_get_mdcr_el2), HANDLE_FUNC(__pkvm_init), HANDLE_FUNC(__pkvm_create_private_mapping), HANDLE_FUNC(__pkvm_cpu_set_vector), HANDLE_FUNC(__kvm_enable_ssbs), HANDLE_FUNC(__vgic_v3_init_lrs), HANDLE_FUNC(__vgic_v3_get_gic_config), HANDLE_FUNC(__pkvm_prot_finalize), HANDLE_FUNC(__pkvm_host_share_hyp), HANDLE_FUNC(__pkvm_host_unshare_hyp), HANDLE_FUNC(__kvm_adjust_pc), HANDLE_FUNC(__kvm_vcpu_run), HANDLE_FUNC(__kvm_flush_vm_context), HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa), HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa_nsh), HANDLE_FUNC(__kvm_tlb_flush_vmid), HANDLE_FUNC(__kvm_tlb_flush_vmid_range), HANDLE_FUNC(__kvm_flush_cpu_context), HANDLE_FUNC(__kvm_timer_set_cntvoff), HANDLE_FUNC(__vgic_v3_save_vmcr_aprs), HANDLE_FUNC(__vgic_v3_restore_vmcr_aprs), HANDLE_FUNC(__pkvm_vcpu_init_traps), HANDLE_FUNC(__pkvm_init_vm), HANDLE_FUNC(__pkvm_init_vcpu), HANDLE_FUNC(__pkvm_teardown_vm), }; static void handle_host_hcall(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(unsigned long, id, host_ctxt, 0); unsigned long hcall_min = 0; hcall_t hfn; /* * If pKVM has been initialised then reject any calls to the * early "privileged" hypercalls. Note that we cannot reject * calls to __pkvm_prot_finalize for two reasons: (1) The static * key used to determine initialisation must be toggled prior to * finalisation and (2) finalisation is performed on a per-CPU * basis. This is all fine, however, since __pkvm_prot_finalize * returns -EPERM after the first call for a given CPU. */ if (static_branch_unlikely(&kvm_protected_mode_initialized)) hcall_min = __KVM_HOST_SMCCC_FUNC___pkvm_prot_finalize; id &= ~ARM_SMCCC_CALL_HINTS; id -= KVM_HOST_SMCCC_ID(0); if (unlikely(id < hcall_min || id >= ARRAY_SIZE(host_hcall))) goto inval; hfn = host_hcall[id]; if (unlikely(!hfn)) goto inval; cpu_reg(host_ctxt, 0) = SMCCC_RET_SUCCESS; hfn(host_ctxt); return; inval: cpu_reg(host_ctxt, 0) = SMCCC_RET_NOT_SUPPORTED; } static void default_host_smc_handler(struct kvm_cpu_context *host_ctxt) { __kvm_hyp_host_forward_smc(host_ctxt); } static void handle_host_smc(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, func_id, host_ctxt, 0); bool handled; func_id &= ~ARM_SMCCC_CALL_HINTS; handled = kvm_host_psci_handler(host_ctxt, func_id); if (!handled) handled = kvm_host_ffa_handler(host_ctxt, func_id); if (!handled) default_host_smc_handler(host_ctxt); /* SMC was trapped, move ELR past the current PC. */ kvm_skip_host_instr(); } void handle_trap(struct kvm_cpu_context *host_ctxt) { u64 esr = read_sysreg_el2(SYS_ESR); switch (ESR_ELx_EC(esr)) { case ESR_ELx_EC_HVC64: handle_host_hcall(host_ctxt); break; case ESR_ELx_EC_SMC64: handle_host_smc(host_ctxt); break; case ESR_ELx_EC_SVE: cpacr_clear_set(0, CPACR_ELx_ZEN); isb(); sve_cond_update_zcr_vq(sve_vq_from_vl(kvm_host_sve_max_vl) - 1, SYS_ZCR_EL2); break; case ESR_ELx_EC_IABT_LOW: case ESR_ELx_EC_DABT_LOW: handle_host_mem_abort(host_ctxt); break; default: BUG(); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1