Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds | 1070 | 58.89% | 5 | 13.51% |
Linus Torvalds (pre-git) | 505 | 27.79% | 17 | 45.95% |
Brian Gerst | 108 | 5.94% | 1 | 2.70% |
Geert Uytterhoeven | 38 | 2.09% | 1 | 2.70% |
Al Viro | 22 | 1.21% | 2 | 5.41% |
Andrew Morton | 19 | 1.05% | 1 | 2.70% |
Fabian Frederick | 18 | 0.99% | 2 | 5.41% |
Akinobu Mita | 14 | 0.77% | 1 | 2.70% |
Matthias Kaehlcke | 9 | 0.50% | 1 | 2.70% |
Artem B. Bityutskiy | 6 | 0.33% | 1 | 2.70% |
David Howells | 3 | 0.17% | 1 | 2.70% |
Roman Zippel | 2 | 0.11% | 1 | 2.70% |
Yan Burman | 1 | 0.06% | 1 | 2.70% |
Daniel Mack | 1 | 0.06% | 1 | 2.70% |
Greg Kroah-Hartman | 1 | 0.06% | 1 | 2.70% |
Total | 1817 | 37 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
// SPDX-License-Identifier: GPL-2.0 /* * linux/fs/affs/bitmap.c * * (c) 1996 Hans-Joachim Widmaier * * bitmap.c contains the code that handles all bitmap related stuff - * block allocation, deallocation, calculation of free space. */ #include <linux/slab.h> #include "affs.h" u32 affs_count_free_blocks(struct super_block *sb) { struct affs_bm_info *bm; u32 free; int i; pr_debug("%s()\n", __func__); if (sb_rdonly(sb)) return 0; mutex_lock(&AFFS_SB(sb)->s_bmlock); bm = AFFS_SB(sb)->s_bitmap; free = 0; for (i = AFFS_SB(sb)->s_bmap_count; i > 0; bm++, i--) free += bm->bm_free; mutex_unlock(&AFFS_SB(sb)->s_bmlock); return free; } void affs_free_block(struct super_block *sb, u32 block) { struct affs_sb_info *sbi = AFFS_SB(sb); struct affs_bm_info *bm; struct buffer_head *bh; u32 blk, bmap, bit, mask, tmp; __be32 *data; pr_debug("%s(%u)\n", __func__, block); if (block > sbi->s_partition_size) goto err_range; blk = block - sbi->s_reserved; bmap = blk / sbi->s_bmap_bits; bit = blk % sbi->s_bmap_bits; bm = &sbi->s_bitmap[bmap]; mutex_lock(&sbi->s_bmlock); bh = sbi->s_bmap_bh; if (sbi->s_last_bmap != bmap) { affs_brelse(bh); bh = affs_bread(sb, bm->bm_key); if (!bh) goto err_bh_read; sbi->s_bmap_bh = bh; sbi->s_last_bmap = bmap; } mask = 1 << (bit & 31); data = (__be32 *)bh->b_data + bit / 32 + 1; /* mark block free */ tmp = be32_to_cpu(*data); if (tmp & mask) goto err_free; *data = cpu_to_be32(tmp | mask); /* fix checksum */ tmp = be32_to_cpu(*(__be32 *)bh->b_data); *(__be32 *)bh->b_data = cpu_to_be32(tmp - mask); mark_buffer_dirty(bh); affs_mark_sb_dirty(sb); bm->bm_free++; mutex_unlock(&sbi->s_bmlock); return; err_free: affs_warning(sb,"affs_free_block","Trying to free block %u which is already free", block); mutex_unlock(&sbi->s_bmlock); return; err_bh_read: affs_error(sb,"affs_free_block","Cannot read bitmap block %u", bm->bm_key); sbi->s_bmap_bh = NULL; sbi->s_last_bmap = ~0; mutex_unlock(&sbi->s_bmlock); return; err_range: affs_error(sb, "affs_free_block","Block %u outside partition", block); } /* * Allocate a block in the given allocation zone. * Since we have to byte-swap the bitmap on little-endian * machines, this is rather expensive. Therefore we will * preallocate up to 16 blocks from the same word, if * possible. We are not doing preallocations in the * header zone, though. */ u32 affs_alloc_block(struct inode *inode, u32 goal) { struct super_block *sb; struct affs_sb_info *sbi; struct affs_bm_info *bm; struct buffer_head *bh; __be32 *data, *enddata; u32 blk, bmap, bit, mask, mask2, tmp; int i; sb = inode->i_sb; sbi = AFFS_SB(sb); pr_debug("balloc(inode=%lu,goal=%u): ", inode->i_ino, goal); if (AFFS_I(inode)->i_pa_cnt) { pr_debug("%d\n", AFFS_I(inode)->i_lastalloc+1); AFFS_I(inode)->i_pa_cnt--; return ++AFFS_I(inode)->i_lastalloc; } if (!goal || goal > sbi->s_partition_size) { if (goal) affs_warning(sb, "affs_balloc", "invalid goal %d", goal); //if (!AFFS_I(inode)->i_last_block) // affs_warning(sb, "affs_balloc", "no last alloc block"); goal = sbi->s_reserved; } blk = goal - sbi->s_reserved; bmap = blk / sbi->s_bmap_bits; bm = &sbi->s_bitmap[bmap]; mutex_lock(&sbi->s_bmlock); if (bm->bm_free) goto find_bmap_bit; find_bmap: /* search for the next bmap buffer with free bits */ i = sbi->s_bmap_count; do { if (--i < 0) goto err_full; bmap++; bm++; if (bmap < sbi->s_bmap_count) continue; /* restart search at zero */ bmap = 0; bm = sbi->s_bitmap; } while (!bm->bm_free); blk = bmap * sbi->s_bmap_bits; find_bmap_bit: bh = sbi->s_bmap_bh; if (sbi->s_last_bmap != bmap) { affs_brelse(bh); bh = affs_bread(sb, bm->bm_key); if (!bh) goto err_bh_read; sbi->s_bmap_bh = bh; sbi->s_last_bmap = bmap; } /* find an unused block in this bitmap block */ bit = blk % sbi->s_bmap_bits; data = (__be32 *)bh->b_data + bit / 32 + 1; enddata = (__be32 *)((u8 *)bh->b_data + sb->s_blocksize); mask = ~0UL << (bit & 31); blk &= ~31UL; tmp = be32_to_cpu(*data); if (tmp & mask) goto find_bit; /* scan the rest of the buffer */ do { blk += 32; if (++data >= enddata) /* didn't find something, can only happen * if scan didn't start at 0, try next bmap */ goto find_bmap; } while (!*data); tmp = be32_to_cpu(*data); mask = ~0; find_bit: /* finally look for a free bit in the word */ bit = ffs(tmp & mask) - 1; blk += bit + sbi->s_reserved; mask2 = mask = 1 << (bit & 31); AFFS_I(inode)->i_lastalloc = blk; /* prealloc as much as possible within this word */ while ((mask2 <<= 1)) { if (!(tmp & mask2)) break; AFFS_I(inode)->i_pa_cnt++; mask |= mask2; } bm->bm_free -= AFFS_I(inode)->i_pa_cnt + 1; *data = cpu_to_be32(tmp & ~mask); /* fix checksum */ tmp = be32_to_cpu(*(__be32 *)bh->b_data); *(__be32 *)bh->b_data = cpu_to_be32(tmp + mask); mark_buffer_dirty(bh); affs_mark_sb_dirty(sb); mutex_unlock(&sbi->s_bmlock); pr_debug("%d\n", blk); return blk; err_bh_read: affs_error(sb,"affs_read_block","Cannot read bitmap block %u", bm->bm_key); sbi->s_bmap_bh = NULL; sbi->s_last_bmap = ~0; err_full: mutex_unlock(&sbi->s_bmlock); pr_debug("failed\n"); return 0; } int affs_init_bitmap(struct super_block *sb, int *flags) { struct affs_bm_info *bm; struct buffer_head *bmap_bh = NULL, *bh = NULL; __be32 *bmap_blk; u32 size, blk, end, offset, mask; int i, res = 0; struct affs_sb_info *sbi = AFFS_SB(sb); if (*flags & SB_RDONLY) return 0; if (!AFFS_ROOT_TAIL(sb, sbi->s_root_bh)->bm_flag) { pr_notice("Bitmap invalid - mounting %s read only\n", sb->s_id); *flags |= SB_RDONLY; return 0; } sbi->s_last_bmap = ~0; sbi->s_bmap_bh = NULL; sbi->s_bmap_bits = sb->s_blocksize * 8 - 32; sbi->s_bmap_count = (sbi->s_partition_size - sbi->s_reserved + sbi->s_bmap_bits - 1) / sbi->s_bmap_bits; size = sbi->s_bmap_count * sizeof(*bm); bm = sbi->s_bitmap = kzalloc(size, GFP_KERNEL); if (!sbi->s_bitmap) { pr_err("Bitmap allocation failed\n"); return -ENOMEM; } bmap_blk = (__be32 *)sbi->s_root_bh->b_data; blk = sb->s_blocksize / 4 - 49; end = blk + 25; for (i = sbi->s_bmap_count; i > 0; bm++, i--) { affs_brelse(bh); bm->bm_key = be32_to_cpu(bmap_blk[blk]); bh = affs_bread(sb, bm->bm_key); if (!bh) { pr_err("Cannot read bitmap\n"); res = -EIO; goto out; } if (affs_checksum_block(sb, bh)) { pr_warn("Bitmap %u invalid - mounting %s read only.\n", bm->bm_key, sb->s_id); *flags |= SB_RDONLY; goto out; } pr_debug("read bitmap block %d: %d\n", blk, bm->bm_key); bm->bm_free = memweight(bh->b_data + 4, sb->s_blocksize - 4); /* Don't try read the extension if this is the last block, * but we also need the right bm pointer below */ if (++blk < end || i == 1) continue; if (bmap_bh) affs_brelse(bmap_bh); bmap_bh = affs_bread(sb, be32_to_cpu(bmap_blk[blk])); if (!bmap_bh) { pr_err("Cannot read bitmap extension\n"); res = -EIO; goto out; } bmap_blk = (__be32 *)bmap_bh->b_data; blk = 0; end = sb->s_blocksize / 4 - 1; } offset = (sbi->s_partition_size - sbi->s_reserved) % sbi->s_bmap_bits; mask = ~(0xFFFFFFFFU << (offset & 31)); pr_debug("last word: %d %d %d\n", offset, offset / 32 + 1, mask); offset = offset / 32 + 1; if (mask) { u32 old, new; /* Mark unused bits in the last word as allocated */ old = be32_to_cpu(((__be32 *)bh->b_data)[offset]); new = old & mask; //if (old != new) { ((__be32 *)bh->b_data)[offset] = cpu_to_be32(new); /* fix checksum */ //new -= old; //old = be32_to_cpu(*(__be32 *)bh->b_data); //*(__be32 *)bh->b_data = cpu_to_be32(old - new); //mark_buffer_dirty(bh); //} /* correct offset for the bitmap count below */ //offset++; } while (++offset < sb->s_blocksize / 4) ((__be32 *)bh->b_data)[offset] = 0; ((__be32 *)bh->b_data)[0] = 0; ((__be32 *)bh->b_data)[0] = cpu_to_be32(-affs_checksum_block(sb, bh)); mark_buffer_dirty(bh); /* recalculate bitmap count for last block */ bm--; bm->bm_free = memweight(bh->b_data + 4, sb->s_blocksize - 4); out: affs_brelse(bh); affs_brelse(bmap_bh); return res; } void affs_free_bitmap(struct super_block *sb) { struct affs_sb_info *sbi = AFFS_SB(sb); if (!sbi->s_bitmap) return; affs_brelse(sbi->s_bmap_bh); sbi->s_bmap_bh = NULL; sbi->s_last_bmap = ~0; kfree(sbi->s_bitmap); sbi->s_bitmap = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1