Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Herbert Xu | 1594 | 86.12% | 24 | 51.06% |
Kees Cook | 185 | 9.99% | 1 | 2.13% |
Eric Biggers | 29 | 1.57% | 9 | 19.15% |
James Morris | 14 | 0.76% | 1 | 2.13% |
Suren Baghdasaryan | 9 | 0.49% | 1 | 2.13% |
Andy Shevchenko | 5 | 0.27% | 1 | 2.13% |
Jason A. Donenfeld | 4 | 0.22% | 1 | 2.13% |
Ard Biesheuvel | 3 | 0.16% | 2 | 4.26% |
Thomas Gleixner | 2 | 0.11% | 1 | 2.13% |
Stephan Mueller | 1 | 0.05% | 1 | 2.13% |
Mark D Rustad | 1 | 0.05% | 1 | 2.13% |
Arun Sharma | 1 | 0.05% | 1 | 2.13% |
Vegard Nossum | 1 | 0.05% | 1 | 2.13% |
Waiman Long | 1 | 0.05% | 1 | 2.13% |
Randy Dunlap | 1 | 0.05% | 1 | 2.13% |
Total | 1851 | 47 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Symmetric key ciphers. * * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> */ #ifndef _CRYPTO_SKCIPHER_H #define _CRYPTO_SKCIPHER_H #include <linux/atomic.h> #include <linux/container_of.h> #include <linux/crypto.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/types.h> /* Set this bit if the lskcipher operation is a continuation. */ #define CRYPTO_LSKCIPHER_FLAG_CONT 0x00000001 /* Set this bit if the lskcipher operation is final. */ #define CRYPTO_LSKCIPHER_FLAG_FINAL 0x00000002 /* The bit CRYPTO_TFM_REQ_MAY_SLEEP can also be set if needed. */ /* Set this bit if the skcipher operation is a continuation. */ #define CRYPTO_SKCIPHER_REQ_CONT 0x00000001 /* Set this bit if the skcipher operation is not final. */ #define CRYPTO_SKCIPHER_REQ_NOTFINAL 0x00000002 struct scatterlist; /** * struct skcipher_request - Symmetric key cipher request * @cryptlen: Number of bytes to encrypt or decrypt * @iv: Initialisation Vector * @src: Source SG list * @dst: Destination SG list * @base: Underlying async request * @__ctx: Start of private context data */ struct skcipher_request { unsigned int cryptlen; u8 *iv; struct scatterlist *src; struct scatterlist *dst; struct crypto_async_request base; void *__ctx[] CRYPTO_MINALIGN_ATTR; }; struct crypto_skcipher { unsigned int reqsize; struct crypto_tfm base; }; struct crypto_sync_skcipher { struct crypto_skcipher base; }; struct crypto_lskcipher { struct crypto_tfm base; }; /* * struct skcipher_alg_common - common properties of skcipher_alg * @min_keysize: Minimum key size supported by the transformation. This is the * smallest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MIN_KEY_SIZE" include/crypto/ * @max_keysize: Maximum key size supported by the transformation. This is the * largest key length supported by this transformation algorithm. * This must be set to one of the pre-defined values as this is * not hardware specific. Possible values for this field can be * found via git grep "_MAX_KEY_SIZE" include/crypto/ * @ivsize: IV size applicable for transformation. The consumer must provide an * IV of exactly that size to perform the encrypt or decrypt operation. * @chunksize: Equal to the block size except for stream ciphers such as * CTR where it is set to the underlying block size. * @statesize: Size of the internal state for the algorithm. * @base: Definition of a generic crypto algorithm. */ #define SKCIPHER_ALG_COMMON { \ unsigned int min_keysize; \ unsigned int max_keysize; \ unsigned int ivsize; \ unsigned int chunksize; \ unsigned int statesize; \ \ struct crypto_alg base; \ } struct skcipher_alg_common SKCIPHER_ALG_COMMON; /** * struct skcipher_alg - symmetric key cipher definition * @setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function can * be called multiple times during the existence of the transformation * object, so one must make sure the key is properly reprogrammed into * the hardware. This function is also responsible for checking the key * length for validity. In case a software fallback was put in place in * the @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt * the supplied scatterlist containing the blocks of data. The crypto * API consumer is responsible for aligning the entries of the * scatterlist properly and making sure the chunks are correctly * sized. In case a software fallback was put in place in the * @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. In case the * key was stored in transformation context, the key might need to be * re-programmed into the hardware in this function. This function * shall not modify the transformation context, as this function may * be called in parallel with the same transformation object. * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt * and the conditions are exactly the same. * @export: Export partial state of the transformation. This function dumps the * entire state of the ongoing transformation into a provided block of * data so it can be @import 'ed back later on. This is useful in case * you want to save partial result of the transformation after * processing certain amount of data and reload this partial result * multiple times later on for multiple re-use. No data processing * happens at this point. * @import: Import partial state of the transformation. This function loads the * entire state of the ongoing transformation from a provided block of * data so the transformation can continue from this point onward. No * data processing happens at this point. * @init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. In case the * cryptographic hardware has some special requirements which need to * be handled by software, this function shall check for the precise * requirement of the transformation and put any software fallbacks * in place. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * @walksize: Equal to the chunk size except in cases where the algorithm is * considerably more efficient if it can operate on multiple chunks * in parallel. Should be a multiple of chunksize. * @co: see struct skcipher_alg_common * * All fields except @ivsize are mandatory and must be filled. */ struct skcipher_alg { int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct skcipher_request *req); int (*decrypt)(struct skcipher_request *req); int (*export)(struct skcipher_request *req, void *out); int (*import)(struct skcipher_request *req, const void *in); int (*init)(struct crypto_skcipher *tfm); void (*exit)(struct crypto_skcipher *tfm); unsigned int walksize; union { struct SKCIPHER_ALG_COMMON; struct skcipher_alg_common co; }; }; /** * struct lskcipher_alg - linear symmetric key cipher definition * @setkey: Set key for the transformation. This function is used to either * program a supplied key into the hardware or store the key in the * transformation context for programming it later. Note that this * function does modify the transformation context. This function can * be called multiple times during the existence of the transformation * object, so one must make sure the key is properly reprogrammed into * the hardware. This function is also responsible for checking the key * length for validity. In case a software fallback was put in place in * the @cra_init call, this function might need to use the fallback if * the algorithm doesn't support all of the key sizes. * @encrypt: Encrypt a number of bytes. This function is used to encrypt * the supplied data. This function shall not modify * the transformation context, as this function may be called * in parallel with the same transformation object. Data * may be left over if length is not a multiple of blocks * and there is more to come (final == false). The number of * left-over bytes should be returned in case of success. * The siv field shall be as long as ivsize + statesize with * the IV placed at the front. The state will be used by the * algorithm internally. * @decrypt: Decrypt a number of bytes. This is a reverse counterpart to * @encrypt and the conditions are exactly the same. * @init: Initialize the cryptographic transformation object. This function * is used to initialize the cryptographic transformation object. * This function is called only once at the instantiation time, right * after the transformation context was allocated. * @exit: Deinitialize the cryptographic transformation object. This is a * counterpart to @init, used to remove various changes set in * @init. * @co: see struct skcipher_alg_common */ struct lskcipher_alg { int (*setkey)(struct crypto_lskcipher *tfm, const u8 *key, unsigned int keylen); int (*encrypt)(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *siv, u32 flags); int (*decrypt)(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *siv, u32 flags); int (*init)(struct crypto_lskcipher *tfm); void (*exit)(struct crypto_lskcipher *tfm); struct skcipher_alg_common co; }; #define MAX_SYNC_SKCIPHER_REQSIZE 384 /* * This performs a type-check against the "tfm" argument to make sure * all users have the correct skcipher tfm for doing on-stack requests. */ #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \ char __##name##_desc[sizeof(struct skcipher_request) + \ MAX_SYNC_SKCIPHER_REQSIZE + \ (!(sizeof((struct crypto_sync_skcipher *)1 == \ (typeof(tfm))1))) \ ] CRYPTO_MINALIGN_ATTR; \ struct skcipher_request *name = (void *)__##name##_desc /** * DOC: Symmetric Key Cipher API * * Symmetric key cipher API is used with the ciphers of type * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto). * * Asynchronous cipher operations imply that the function invocation for a * cipher request returns immediately before the completion of the operation. * The cipher request is scheduled as a separate kernel thread and therefore * load-balanced on the different CPUs via the process scheduler. To allow * the kernel crypto API to inform the caller about the completion of a cipher * request, the caller must provide a callback function. That function is * invoked with the cipher handle when the request completes. * * To support the asynchronous operation, additional information than just the * cipher handle must be supplied to the kernel crypto API. That additional * information is given by filling in the skcipher_request data structure. * * For the symmetric key cipher API, the state is maintained with the tfm * cipher handle. A single tfm can be used across multiple calls and in * parallel. For asynchronous block cipher calls, context data supplied and * only used by the caller can be referenced the request data structure in * addition to the IV used for the cipher request. The maintenance of such * state information would be important for a crypto driver implementer to * have, because when calling the callback function upon completion of the * cipher operation, that callback function may need some information about * which operation just finished if it invoked multiple in parallel. This * state information is unused by the kernel crypto API. */ static inline struct crypto_skcipher *__crypto_skcipher_cast( struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_skcipher, base); } /** * crypto_alloc_skcipher() - allocate symmetric key cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * skcipher cipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an skcipher. The returned struct * crypto_skcipher is the cipher handle that is required for any subsequent * API invocation for that skcipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, u32 type, u32 mask); struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name, u32 type, u32 mask); /** * crypto_alloc_lskcipher() - allocate linear symmetric key cipher handle * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * lskcipher * @type: specifies the type of the cipher * @mask: specifies the mask for the cipher * * Allocate a cipher handle for an lskcipher. The returned struct * crypto_lskcipher is the cipher handle that is required for any subsequent * API invocation for that lskcipher. * * Return: allocated cipher handle in case of success; IS_ERR() is true in case * of an error, PTR_ERR() returns the error code. */ struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name, u32 type, u32 mask); static inline struct crypto_tfm *crypto_skcipher_tfm( struct crypto_skcipher *tfm) { return &tfm->base; } static inline struct crypto_tfm *crypto_lskcipher_tfm( struct crypto_lskcipher *tfm) { return &tfm->base; } /** * crypto_free_skcipher() - zeroize and free cipher handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_skcipher(struct crypto_skcipher *tfm) { crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm)); } static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm) { crypto_free_skcipher(&tfm->base); } /** * crypto_free_lskcipher() - zeroize and free cipher handle * @tfm: cipher handle to be freed * * If @tfm is a NULL or error pointer, this function does nothing. */ static inline void crypto_free_lskcipher(struct crypto_lskcipher *tfm) { crypto_destroy_tfm(tfm, crypto_lskcipher_tfm(tfm)); } /** * crypto_has_skcipher() - Search for the availability of an skcipher. * @alg_name: is the cra_name / name or cra_driver_name / driver name of the * skcipher * @type: specifies the type of the skcipher * @mask: specifies the mask for the skcipher * * Return: true when the skcipher is known to the kernel crypto API; false * otherwise */ int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask); static inline const char *crypto_skcipher_driver_name( struct crypto_skcipher *tfm) { return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm)); } static inline const char *crypto_lskcipher_driver_name( struct crypto_lskcipher *tfm) { return crypto_tfm_alg_driver_name(crypto_lskcipher_tfm(tfm)); } static inline struct skcipher_alg_common *crypto_skcipher_alg_common( struct crypto_skcipher *tfm) { return container_of(crypto_skcipher_tfm(tfm)->__crt_alg, struct skcipher_alg_common, base); } static inline struct skcipher_alg *crypto_skcipher_alg( struct crypto_skcipher *tfm) { return container_of(crypto_skcipher_tfm(tfm)->__crt_alg, struct skcipher_alg, base); } static inline struct lskcipher_alg *crypto_lskcipher_alg( struct crypto_lskcipher *tfm) { return container_of(crypto_lskcipher_tfm(tfm)->__crt_alg, struct lskcipher_alg, co.base); } /** * crypto_skcipher_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the skcipher referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) { return crypto_skcipher_alg_common(tfm)->ivsize; } static inline unsigned int crypto_sync_skcipher_ivsize( struct crypto_sync_skcipher *tfm) { return crypto_skcipher_ivsize(&tfm->base); } /** * crypto_lskcipher_ivsize() - obtain IV size * @tfm: cipher handle * * The size of the IV for the lskcipher referenced by the cipher handle is * returned. This IV size may be zero if the cipher does not need an IV. * * Return: IV size in bytes */ static inline unsigned int crypto_lskcipher_ivsize( struct crypto_lskcipher *tfm) { return crypto_lskcipher_alg(tfm)->co.ivsize; } /** * crypto_skcipher_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the skcipher referenced with the cipher handle is * returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_skcipher_blocksize( struct crypto_skcipher *tfm) { return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm)); } /** * crypto_lskcipher_blocksize() - obtain block size of cipher * @tfm: cipher handle * * The block size for the lskcipher referenced with the cipher handle is * returned. The caller may use that information to allocate appropriate * memory for the data returned by the encryption or decryption operation * * Return: block size of cipher */ static inline unsigned int crypto_lskcipher_blocksize( struct crypto_lskcipher *tfm) { return crypto_tfm_alg_blocksize(crypto_lskcipher_tfm(tfm)); } /** * crypto_skcipher_chunksize() - obtain chunk size * @tfm: cipher handle * * The block size is set to one for ciphers such as CTR. However, * you still need to provide incremental updates in multiples of * the underlying block size as the IV does not have sub-block * granularity. This is known in this API as the chunk size. * * Return: chunk size in bytes */ static inline unsigned int crypto_skcipher_chunksize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg_common(tfm)->chunksize; } /** * crypto_lskcipher_chunksize() - obtain chunk size * @tfm: cipher handle * * The block size is set to one for ciphers such as CTR. However, * you still need to provide incremental updates in multiples of * the underlying block size as the IV does not have sub-block * granularity. This is known in this API as the chunk size. * * Return: chunk size in bytes */ static inline unsigned int crypto_lskcipher_chunksize( struct crypto_lskcipher *tfm) { return crypto_lskcipher_alg(tfm)->co.chunksize; } /** * crypto_skcipher_statesize() - obtain state size * @tfm: cipher handle * * Some algorithms cannot be chained with the IV alone. They carry * internal state which must be replicated if data is to be processed * incrementally. The size of that state can be obtained with this * function. * * Return: state size in bytes */ static inline unsigned int crypto_skcipher_statesize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg_common(tfm)->statesize; } /** * crypto_lskcipher_statesize() - obtain state size * @tfm: cipher handle * * Some algorithms cannot be chained with the IV alone. They carry * internal state which must be replicated if data is to be processed * incrementally. The size of that state can be obtained with this * function. * * Return: state size in bytes */ static inline unsigned int crypto_lskcipher_statesize( struct crypto_lskcipher *tfm) { return crypto_lskcipher_alg(tfm)->co.statesize; } static inline unsigned int crypto_sync_skcipher_blocksize( struct crypto_sync_skcipher *tfm) { return crypto_skcipher_blocksize(&tfm->base); } static inline unsigned int crypto_skcipher_alignmask( struct crypto_skcipher *tfm) { return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)); } static inline unsigned int crypto_lskcipher_alignmask( struct crypto_lskcipher *tfm) { return crypto_tfm_alg_alignmask(crypto_lskcipher_tfm(tfm)); } static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) { return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm)); } static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags); } static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags); } static inline u32 crypto_sync_skcipher_get_flags( struct crypto_sync_skcipher *tfm) { return crypto_skcipher_get_flags(&tfm->base); } static inline void crypto_sync_skcipher_set_flags( struct crypto_sync_skcipher *tfm, u32 flags) { crypto_skcipher_set_flags(&tfm->base, flags); } static inline void crypto_sync_skcipher_clear_flags( struct crypto_sync_skcipher *tfm, u32 flags) { crypto_skcipher_clear_flags(&tfm->base, flags); } static inline u32 crypto_lskcipher_get_flags(struct crypto_lskcipher *tfm) { return crypto_tfm_get_flags(crypto_lskcipher_tfm(tfm)); } static inline void crypto_lskcipher_set_flags(struct crypto_lskcipher *tfm, u32 flags) { crypto_tfm_set_flags(crypto_lskcipher_tfm(tfm), flags); } static inline void crypto_lskcipher_clear_flags(struct crypto_lskcipher *tfm, u32 flags) { crypto_tfm_clear_flags(crypto_lskcipher_tfm(tfm), flags); } /** * crypto_skcipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the skcipher referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen); static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm, const u8 *key, unsigned int keylen) { return crypto_skcipher_setkey(&tfm->base, key, keylen); } /** * crypto_lskcipher_setkey() - set key for cipher * @tfm: cipher handle * @key: buffer holding the key * @keylen: length of the key in bytes * * The caller provided key is set for the lskcipher referenced by the cipher * handle. * * Note, the key length determines the cipher type. Many block ciphers implement * different cipher modes depending on the key size, such as AES-128 vs AES-192 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 * is performed. * * Return: 0 if the setting of the key was successful; < 0 if an error occurred */ int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm, const u8 *key, unsigned int keylen); static inline unsigned int crypto_skcipher_min_keysize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg_common(tfm)->min_keysize; } static inline unsigned int crypto_skcipher_max_keysize( struct crypto_skcipher *tfm) { return crypto_skcipher_alg_common(tfm)->max_keysize; } static inline unsigned int crypto_lskcipher_min_keysize( struct crypto_lskcipher *tfm) { return crypto_lskcipher_alg(tfm)->co.min_keysize; } static inline unsigned int crypto_lskcipher_max_keysize( struct crypto_lskcipher *tfm) { return crypto_lskcipher_alg(tfm)->co.max_keysize; } /** * crypto_skcipher_reqtfm() - obtain cipher handle from request * @req: skcipher_request out of which the cipher handle is to be obtained * * Return the crypto_skcipher handle when furnishing an skcipher_request * data structure. * * Return: crypto_skcipher handle */ static inline struct crypto_skcipher *crypto_skcipher_reqtfm( struct skcipher_request *req) { return __crypto_skcipher_cast(req->base.tfm); } static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm( struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); return container_of(tfm, struct crypto_sync_skcipher, base); } /** * crypto_skcipher_encrypt() - encrypt plaintext * @req: reference to the skcipher_request handle that holds all information * needed to perform the cipher operation * * Encrypt plaintext data using the skcipher_request handle. That data * structure and how it is filled with data is discussed with the * skcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_skcipher_encrypt(struct skcipher_request *req); /** * crypto_skcipher_decrypt() - decrypt ciphertext * @req: reference to the skcipher_request handle that holds all information * needed to perform the cipher operation * * Decrypt ciphertext data using the skcipher_request handle. That data * structure and how it is filled with data is discussed with the * skcipher_request_* functions. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_skcipher_decrypt(struct skcipher_request *req); /** * crypto_skcipher_export() - export partial state * @req: reference to the skcipher_request handle that holds all information * needed to perform the operation * @out: output buffer of sufficient size that can hold the state * * Export partial state of the transformation. This function dumps the * entire state of the ongoing transformation into a provided block of * data so it can be @import 'ed back later on. This is useful in case * you want to save partial result of the transformation after * processing certain amount of data and reload this partial result * multiple times later on for multiple re-use. No data processing * happens at this point. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_skcipher_export(struct skcipher_request *req, void *out); /** * crypto_skcipher_import() - import partial state * @req: reference to the skcipher_request handle that holds all information * needed to perform the operation * @in: buffer holding the state * * Import partial state of the transformation. This function loads the * entire state of the ongoing transformation from a provided block of * data so the transformation can continue from this point onward. No * data processing happens at this point. * * Return: 0 if the cipher operation was successful; < 0 if an error occurred */ int crypto_skcipher_import(struct skcipher_request *req, const void *in); /** * crypto_lskcipher_encrypt() - encrypt plaintext * @tfm: lskcipher handle * @src: source buffer * @dst: destination buffer * @len: number of bytes to process * @siv: IV + state for the cipher operation. The length of the IV must * comply with the IV size defined by crypto_lskcipher_ivsize. The * IV is then followed with a buffer with the length as specified by * crypto_lskcipher_statesize. * Encrypt plaintext data using the lskcipher handle. * * Return: >=0 if the cipher operation was successful, if positive * then this many bytes have been left unprocessed; * < 0 if an error occurred */ int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *siv); /** * crypto_lskcipher_decrypt() - decrypt ciphertext * @tfm: lskcipher handle * @src: source buffer * @dst: destination buffer * @len: number of bytes to process * @siv: IV + state for the cipher operation. The length of the IV must * comply with the IV size defined by crypto_lskcipher_ivsize. The * IV is then followed with a buffer with the length as specified by * crypto_lskcipher_statesize. * * Decrypt ciphertext data using the lskcipher handle. * * Return: >=0 if the cipher operation was successful, if positive * then this many bytes have been left unprocessed; * < 0 if an error occurred */ int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *siv); /** * DOC: Symmetric Key Cipher Request Handle * * The skcipher_request data structure contains all pointers to data * required for the symmetric key cipher operation. This includes the cipher * handle (which can be used by multiple skcipher_request instances), pointer * to plaintext and ciphertext, asynchronous callback function, etc. It acts * as a handle to the skcipher_request_* API calls in a similar way as * skcipher handle to the crypto_skcipher_* API calls. */ /** * crypto_skcipher_reqsize() - obtain size of the request data structure * @tfm: cipher handle * * Return: number of bytes */ static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm) { return tfm->reqsize; } /** * skcipher_request_set_tfm() - update cipher handle reference in request * @req: request handle to be modified * @tfm: cipher handle that shall be added to the request handle * * Allow the caller to replace the existing skcipher handle in the request * data structure with a different one. */ static inline void skcipher_request_set_tfm(struct skcipher_request *req, struct crypto_skcipher *tfm) { req->base.tfm = crypto_skcipher_tfm(tfm); } static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req, struct crypto_sync_skcipher *tfm) { skcipher_request_set_tfm(req, &tfm->base); } static inline struct skcipher_request *skcipher_request_cast( struct crypto_async_request *req) { return container_of(req, struct skcipher_request, base); } /** * skcipher_request_alloc() - allocate request data structure * @tfm: cipher handle to be registered with the request * @gfp: memory allocation flag that is handed to kmalloc by the API call. * * Allocate the request data structure that must be used with the skcipher * encrypt and decrypt API calls. During the allocation, the provided skcipher * handle is registered in the request data structure. * * Return: allocated request handle in case of success, or NULL if out of memory */ static inline struct skcipher_request *skcipher_request_alloc_noprof( struct crypto_skcipher *tfm, gfp_t gfp) { struct skcipher_request *req; req = kmalloc_noprof(sizeof(struct skcipher_request) + crypto_skcipher_reqsize(tfm), gfp); if (likely(req)) skcipher_request_set_tfm(req, tfm); return req; } #define skcipher_request_alloc(...) alloc_hooks(skcipher_request_alloc_noprof(__VA_ARGS__)) /** * skcipher_request_free() - zeroize and free request data structure * @req: request data structure cipher handle to be freed */ static inline void skcipher_request_free(struct skcipher_request *req) { kfree_sensitive(req); } static inline void skcipher_request_zero(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm)); } /** * skcipher_request_set_callback() - set asynchronous callback function * @req: request handle * @flags: specify zero or an ORing of the flags * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and * increase the wait queue beyond the initial maximum size; * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep * @compl: callback function pointer to be registered with the request handle * @data: The data pointer refers to memory that is not used by the kernel * crypto API, but provided to the callback function for it to use. Here, * the caller can provide a reference to memory the callback function can * operate on. As the callback function is invoked asynchronously to the * related functionality, it may need to access data structures of the * related functionality which can be referenced using this pointer. The * callback function can access the memory via the "data" field in the * crypto_async_request data structure provided to the callback function. * * This function allows setting the callback function that is triggered once the * cipher operation completes. * * The callback function is registered with the skcipher_request handle and * must comply with the following template:: * * void callback_function(struct crypto_async_request *req, int error) */ static inline void skcipher_request_set_callback(struct skcipher_request *req, u32 flags, crypto_completion_t compl, void *data) { req->base.complete = compl; req->base.data = data; req->base.flags = flags; } /** * skcipher_request_set_crypt() - set data buffers * @req: request handle * @src: source scatter / gather list * @dst: destination scatter / gather list * @cryptlen: number of bytes to process from @src * @iv: IV for the cipher operation which must comply with the IV size defined * by crypto_skcipher_ivsize * * This function allows setting of the source data and destination data * scatter / gather lists. * * For encryption, the source is treated as the plaintext and the * destination is the ciphertext. For a decryption operation, the use is * reversed - the source is the ciphertext and the destination is the plaintext. */ static inline void skcipher_request_set_crypt( struct skcipher_request *req, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, void *iv) { req->src = src; req->dst = dst; req->cryptlen = cryptlen; req->iv = iv; } #endif /* _CRYPTO_SKCIPHER_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1