Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Karolina Drobnik | 2233 | 77.13% | 4 | 40.00% |
Rebecca Mckeever | 662 | 22.87% | 6 | 60.00% |
Total | 2895 | 10 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
// SPDX-License-Identifier: GPL-2.0-or-later #include "alloc_api.h" static int alloc_test_flags = TEST_F_NONE; static inline const char * const get_memblock_alloc_name(int flags) { if (flags & TEST_F_RAW) return "memblock_alloc_raw"; return "memblock_alloc"; } static inline void *run_memblock_alloc(phys_addr_t size, phys_addr_t align) { if (alloc_test_flags & TEST_F_RAW) return memblock_alloc_raw(size, align); return memblock_alloc(size, align); } /* * A simple test that tries to allocate a small memory region. * Expect to allocate an aligned region near the end of the available memory. */ static int alloc_top_down_simple_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; phys_addr_t size = SZ_2; phys_addr_t expected_start; PREFIX_PUSH(); setup_memblock(); expected_start = memblock_end_of_DRAM() - SMP_CACHE_BYTES; allocated_ptr = run_memblock_alloc(size, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, size, alloc_test_flags); ASSERT_EQ(rgn->size, size); ASSERT_EQ(rgn->base, expected_start); ASSERT_EQ(memblock.reserved.cnt, 1); ASSERT_EQ(memblock.reserved.total_size, size); test_pass_pop(); return 0; } /* * A test that tries to allocate memory next to a reserved region that starts at * the misaligned address. Expect to create two separate entries, with the new * entry aligned to the provided alignment: * * + * | +--------+ +--------| * | | rgn2 | | rgn1 | * +------------+--------+---------+--------+ * ^ * | * Aligned address boundary * * The allocation direction is top-down and region arrays are sorted from lower * to higher addresses, so the new region will be the first entry in * memory.reserved array. The previously reserved region does not get modified. * Region counter and total size get updated. */ static int alloc_top_down_disjoint_check(void) { /* After allocation, this will point to the "old" region */ struct memblock_region *rgn1 = &memblock.reserved.regions[1]; struct memblock_region *rgn2 = &memblock.reserved.regions[0]; struct region r1; void *allocated_ptr = NULL; phys_addr_t r2_size = SZ_16; /* Use custom alignment */ phys_addr_t alignment = SMP_CACHE_BYTES * 2; phys_addr_t total_size; phys_addr_t expected_start; PREFIX_PUSH(); setup_memblock(); r1.base = memblock_end_of_DRAM() - SZ_2; r1.size = SZ_2; total_size = r1.size + r2_size; expected_start = memblock_end_of_DRAM() - alignment; memblock_reserve(r1.base, r1.size); allocated_ptr = run_memblock_alloc(r2_size, alignment); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); ASSERT_EQ(rgn1->size, r1.size); ASSERT_EQ(rgn1->base, r1.base); ASSERT_EQ(rgn2->size, r2_size); ASSERT_EQ(rgn2->base, expected_start); ASSERT_EQ(memblock.reserved.cnt, 2); ASSERT_EQ(memblock.reserved.total_size, total_size); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when there is enough space at the end * of the previously reserved block (i.e. first fit): * * | +--------+--------------| * | | r1 | r2 | * +--------------+--------+--------------+ * * Expect a merge of both regions. Only the region size gets updated. */ static int alloc_top_down_before_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; /* * The first region ends at the aligned address to test region merging */ phys_addr_t r1_size = SMP_CACHE_BYTES; phys_addr_t r2_size = SZ_512; phys_addr_t total_size = r1_size + r2_size; PREFIX_PUSH(); setup_memblock(); memblock_reserve(memblock_end_of_DRAM() - total_size, r1_size); allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); ASSERT_EQ(rgn->size, total_size); ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - total_size); ASSERT_EQ(memblock.reserved.cnt, 1); ASSERT_EQ(memblock.reserved.total_size, total_size); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when there is not enough space at the * end of the previously reserved block (i.e. second fit): * * | +-----------+------+ | * | | r2 | r1 | | * +------------+-----------+------+-----+ * * Expect a merge of both regions. Both the base address and size of the region * get updated. */ static int alloc_top_down_after_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; struct region r1; void *allocated_ptr = NULL; phys_addr_t r2_size = SZ_512; phys_addr_t total_size; PREFIX_PUSH(); setup_memblock(); /* * The first region starts at the aligned address to test region merging */ r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES; r1.size = SZ_8; total_size = r1.size + r2_size; memblock_reserve(r1.base, r1.size); allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); ASSERT_EQ(rgn->size, total_size); ASSERT_EQ(rgn->base, r1.base - r2_size); ASSERT_EQ(memblock.reserved.cnt, 1); ASSERT_EQ(memblock.reserved.total_size, total_size); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when there are two reserved regions with * a gap too small to fit the new region: * * | +--------+----------+ +------| * | | r3 | r2 | | r1 | * +-------+--------+----------+---+------+ * * Expect to allocate a region before the one that starts at the lower address, * and merge them into one. The region counter and total size fields get * updated. */ static int alloc_top_down_second_fit_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; struct region r1, r2; void *allocated_ptr = NULL; phys_addr_t r3_size = SZ_1K; phys_addr_t total_size; PREFIX_PUSH(); setup_memblock(); r1.base = memblock_end_of_DRAM() - SZ_512; r1.size = SZ_512; r2.base = r1.base - SZ_512; r2.size = SZ_256; total_size = r1.size + r2.size + r3_size; memblock_reserve(r1.base, r1.size); memblock_reserve(r2.base, r2.size); allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, r3_size, alloc_test_flags); ASSERT_EQ(rgn->size, r2.size + r3_size); ASSERT_EQ(rgn->base, r2.base - r3_size); ASSERT_EQ(memblock.reserved.cnt, 2); ASSERT_EQ(memblock.reserved.total_size, total_size); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when there are two reserved regions with * a gap big enough to accommodate the new region: * * | +--------+--------+--------+ | * | | r2 | r3 | r1 | | * +-----+--------+--------+--------+-----+ * * Expect to merge all of them, creating one big entry in memblock.reserved * array. The region counter and total size fields get updated. */ static int alloc_in_between_generic_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; struct region r1, r2; void *allocated_ptr = NULL; phys_addr_t gap_size = SMP_CACHE_BYTES; phys_addr_t r3_size = SZ_64; /* * Calculate regions size so there's just enough space for the new entry */ phys_addr_t rgn_size = (MEM_SIZE - (2 * gap_size + r3_size)) / 2; phys_addr_t total_size; PREFIX_PUSH(); setup_memblock(); r1.size = rgn_size; r1.base = memblock_end_of_DRAM() - (gap_size + rgn_size); r2.size = rgn_size; r2.base = memblock_start_of_DRAM() + gap_size; total_size = r1.size + r2.size + r3_size; memblock_reserve(r1.base, r1.size); memblock_reserve(r2.base, r2.size); allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, r3_size, alloc_test_flags); ASSERT_EQ(rgn->size, total_size); ASSERT_EQ(rgn->base, r1.base - r2.size - r3_size); ASSERT_EQ(memblock.reserved.cnt, 1); ASSERT_EQ(memblock.reserved.total_size, total_size); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when the memory is filled with reserved * regions with memory gaps too small to fit the new region: * * +-------+ * | new | * +--+----+ * | +-----+ +-----+ +-----+ | * | | res | | res | | res | | * +----+-----+----+-----+----+-----+----+ * * Expect no allocation to happen. */ static int alloc_small_gaps_generic_check(void) { void *allocated_ptr = NULL; phys_addr_t region_size = SZ_1K; phys_addr_t gap_size = SZ_256; phys_addr_t region_end; PREFIX_PUSH(); setup_memblock(); region_end = memblock_start_of_DRAM(); while (region_end < memblock_end_of_DRAM()) { memblock_reserve(region_end + gap_size, region_size); region_end += gap_size + region_size; } allocated_ptr = run_memblock_alloc(region_size, SMP_CACHE_BYTES); ASSERT_EQ(allocated_ptr, NULL); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when all memory is reserved. * Expect no allocation to happen. */ static int alloc_all_reserved_generic_check(void) { void *allocated_ptr = NULL; PREFIX_PUSH(); setup_memblock(); /* Simulate full memory */ memblock_reserve(memblock_start_of_DRAM(), MEM_SIZE); allocated_ptr = run_memblock_alloc(SZ_256, SMP_CACHE_BYTES); ASSERT_EQ(allocated_ptr, NULL); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when the memory is almost full, * with not enough space left for the new region: * * +-------+ * | new | * +-------+ * |-----------------------------+ | * | reserved | | * +-----------------------------+---+ * * Expect no allocation to happen. */ static int alloc_no_space_generic_check(void) { void *allocated_ptr = NULL; phys_addr_t available_size = SZ_256; phys_addr_t reserved_size = MEM_SIZE - available_size; PREFIX_PUSH(); setup_memblock(); /* Simulate almost-full memory */ memblock_reserve(memblock_start_of_DRAM(), reserved_size); allocated_ptr = run_memblock_alloc(SZ_1K, SMP_CACHE_BYTES); ASSERT_EQ(allocated_ptr, NULL); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when the memory is almost full, * but there is just enough space left: * * |---------------------------+---------| * | reserved | new | * +---------------------------+---------+ * * Expect to allocate memory and merge all the regions. The total size field * gets updated. */ static int alloc_limited_space_generic_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; phys_addr_t available_size = SZ_256; phys_addr_t reserved_size = MEM_SIZE - available_size; PREFIX_PUSH(); setup_memblock(); /* Simulate almost-full memory */ memblock_reserve(memblock_start_of_DRAM(), reserved_size); allocated_ptr = run_memblock_alloc(available_size, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, available_size, alloc_test_flags); ASSERT_EQ(rgn->size, MEM_SIZE); ASSERT_EQ(rgn->base, memblock_start_of_DRAM()); ASSERT_EQ(memblock.reserved.cnt, 1); ASSERT_EQ(memblock.reserved.total_size, MEM_SIZE); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when there is no available memory * registered (i.e. memblock.memory has only a dummy entry). * Expect no allocation to happen. */ static int alloc_no_memory_generic_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; PREFIX_PUSH(); reset_memblock_regions(); allocated_ptr = run_memblock_alloc(SZ_1K, SMP_CACHE_BYTES); ASSERT_EQ(allocated_ptr, NULL); ASSERT_EQ(rgn->size, 0); ASSERT_EQ(rgn->base, 0); ASSERT_EQ(memblock.reserved.total_size, 0); test_pass_pop(); return 0; } /* * A test that tries to allocate a region that is larger than the total size of * available memory (memblock.memory): * * +-----------------------------------+ * | new | * +-----------------------------------+ * | | * | | * +---------------------------------+ * * Expect no allocation to happen. */ static int alloc_too_large_generic_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; PREFIX_PUSH(); setup_memblock(); allocated_ptr = run_memblock_alloc(MEM_SIZE + SZ_2, SMP_CACHE_BYTES); ASSERT_EQ(allocated_ptr, NULL); ASSERT_EQ(rgn->size, 0); ASSERT_EQ(rgn->base, 0); ASSERT_EQ(memblock.reserved.total_size, 0); test_pass_pop(); return 0; } /* * A simple test that tries to allocate a small memory region. * Expect to allocate an aligned region at the beginning of the available * memory. */ static int alloc_bottom_up_simple_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; PREFIX_PUSH(); setup_memblock(); allocated_ptr = run_memblock_alloc(SZ_2, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, SZ_2, alloc_test_flags); ASSERT_EQ(rgn->size, SZ_2); ASSERT_EQ(rgn->base, memblock_start_of_DRAM()); ASSERT_EQ(memblock.reserved.cnt, 1); ASSERT_EQ(memblock.reserved.total_size, SZ_2); test_pass_pop(); return 0; } /* * A test that tries to allocate memory next to a reserved region that starts at * the misaligned address. Expect to create two separate entries, with the new * entry aligned to the provided alignment: * * + * | +----------+ +----------+ | * | | rgn1 | | rgn2 | | * +----+----------+---+----------+-----+ * ^ * | * Aligned address boundary * * The allocation direction is bottom-up, so the new region will be the second * entry in memory.reserved array. The previously reserved region does not get * modified. Region counter and total size get updated. */ static int alloc_bottom_up_disjoint_check(void) { struct memblock_region *rgn1 = &memblock.reserved.regions[0]; struct memblock_region *rgn2 = &memblock.reserved.regions[1]; struct region r1; void *allocated_ptr = NULL; phys_addr_t r2_size = SZ_16; /* Use custom alignment */ phys_addr_t alignment = SMP_CACHE_BYTES * 2; phys_addr_t total_size; phys_addr_t expected_start; PREFIX_PUSH(); setup_memblock(); r1.base = memblock_start_of_DRAM() + SZ_2; r1.size = SZ_2; total_size = r1.size + r2_size; expected_start = memblock_start_of_DRAM() + alignment; memblock_reserve(r1.base, r1.size); allocated_ptr = run_memblock_alloc(r2_size, alignment); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); ASSERT_EQ(rgn1->size, r1.size); ASSERT_EQ(rgn1->base, r1.base); ASSERT_EQ(rgn2->size, r2_size); ASSERT_EQ(rgn2->base, expected_start); ASSERT_EQ(memblock.reserved.cnt, 2); ASSERT_EQ(memblock.reserved.total_size, total_size); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when there is enough space at * the beginning of the previously reserved block (i.e. first fit): * * |------------------+--------+ | * | r1 | r2 | | * +------------------+--------+---------+ * * Expect a merge of both regions. Only the region size gets updated. */ static int alloc_bottom_up_before_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; void *allocated_ptr = NULL; phys_addr_t r1_size = SZ_512; phys_addr_t r2_size = SZ_128; phys_addr_t total_size = r1_size + r2_size; PREFIX_PUSH(); setup_memblock(); memblock_reserve(memblock_start_of_DRAM() + r1_size, r2_size); allocated_ptr = run_memblock_alloc(r1_size, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, r1_size, alloc_test_flags); ASSERT_EQ(rgn->size, total_size); ASSERT_EQ(rgn->base, memblock_start_of_DRAM()); ASSERT_EQ(memblock.reserved.cnt, 1); ASSERT_EQ(memblock.reserved.total_size, total_size); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when there is not enough space at * the beginning of the previously reserved block (i.e. second fit): * * | +--------+--------------+ | * | | r1 | r2 | | * +----+--------+--------------+---------+ * * Expect a merge of both regions. Only the region size gets updated. */ static int alloc_bottom_up_after_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[0]; struct region r1; void *allocated_ptr = NULL; phys_addr_t r2_size = SZ_512; phys_addr_t total_size; PREFIX_PUSH(); setup_memblock(); /* * The first region starts at the aligned address to test region merging */ r1.base = memblock_start_of_DRAM() + SMP_CACHE_BYTES; r1.size = SZ_64; total_size = r1.size + r2_size; memblock_reserve(r1.base, r1.size); allocated_ptr = run_memblock_alloc(r2_size, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, r2_size, alloc_test_flags); ASSERT_EQ(rgn->size, total_size); ASSERT_EQ(rgn->base, r1.base); ASSERT_EQ(memblock.reserved.cnt, 1); ASSERT_EQ(memblock.reserved.total_size, total_size); test_pass_pop(); return 0; } /* * A test that tries to allocate memory when there are two reserved regions, the * first one starting at the beginning of the available memory, with a gap too * small to fit the new region: * * |------------+ +--------+--------+ | * | r1 | | r2 | r3 | | * +------------+-----+--------+--------+--+ * * Expect to allocate after the second region, which starts at the higher * address, and merge them into one. The region counter and total size fields * get updated. */ static int alloc_bottom_up_second_fit_check(void) { struct memblock_region *rgn = &memblock.reserved.regions[1]; struct region r1, r2; void *allocated_ptr = NULL; phys_addr_t r3_size = SZ_1K; phys_addr_t total_size; PREFIX_PUSH(); setup_memblock(); r1.base = memblock_start_of_DRAM(); r1.size = SZ_512; r2.base = r1.base + r1.size + SZ_512; r2.size = SZ_256; total_size = r1.size + r2.size + r3_size; memblock_reserve(r1.base, r1.size); memblock_reserve(r2.base, r2.size); allocated_ptr = run_memblock_alloc(r3_size, SMP_CACHE_BYTES); ASSERT_NE(allocated_ptr, NULL); assert_mem_content(allocated_ptr, r3_size, alloc_test_flags); ASSERT_EQ(rgn->size, r2.size + r3_size); ASSERT_EQ(rgn->base, r2.base); ASSERT_EQ(memblock.reserved.cnt, 2); ASSERT_EQ(memblock.reserved.total_size, total_size); test_pass_pop(); return 0; } /* Test case wrappers */ static int alloc_simple_check(void) { test_print("\tRunning %s...\n", __func__); memblock_set_bottom_up(false); alloc_top_down_simple_check(); memblock_set_bottom_up(true); alloc_bottom_up_simple_check(); return 0; } static int alloc_disjoint_check(void) { test_print("\tRunning %s...\n", __func__); memblock_set_bottom_up(false); alloc_top_down_disjoint_check(); memblock_set_bottom_up(true); alloc_bottom_up_disjoint_check(); return 0; } static int alloc_before_check(void) { test_print("\tRunning %s...\n", __func__); memblock_set_bottom_up(false); alloc_top_down_before_check(); memblock_set_bottom_up(true); alloc_bottom_up_before_check(); return 0; } static int alloc_after_check(void) { test_print("\tRunning %s...\n", __func__); memblock_set_bottom_up(false); alloc_top_down_after_check(); memblock_set_bottom_up(true); alloc_bottom_up_after_check(); return 0; } static int alloc_in_between_check(void) { test_print("\tRunning %s...\n", __func__); run_top_down(alloc_in_between_generic_check); run_bottom_up(alloc_in_between_generic_check); return 0; } static int alloc_second_fit_check(void) { test_print("\tRunning %s...\n", __func__); memblock_set_bottom_up(false); alloc_top_down_second_fit_check(); memblock_set_bottom_up(true); alloc_bottom_up_second_fit_check(); return 0; } static int alloc_small_gaps_check(void) { test_print("\tRunning %s...\n", __func__); run_top_down(alloc_small_gaps_generic_check); run_bottom_up(alloc_small_gaps_generic_check); return 0; } static int alloc_all_reserved_check(void) { test_print("\tRunning %s...\n", __func__); run_top_down(alloc_all_reserved_generic_check); run_bottom_up(alloc_all_reserved_generic_check); return 0; } static int alloc_no_space_check(void) { test_print("\tRunning %s...\n", __func__); run_top_down(alloc_no_space_generic_check); run_bottom_up(alloc_no_space_generic_check); return 0; } static int alloc_limited_space_check(void) { test_print("\tRunning %s...\n", __func__); run_top_down(alloc_limited_space_generic_check); run_bottom_up(alloc_limited_space_generic_check); return 0; } static int alloc_no_memory_check(void) { test_print("\tRunning %s...\n", __func__); run_top_down(alloc_no_memory_generic_check); run_bottom_up(alloc_no_memory_generic_check); return 0; } static int alloc_too_large_check(void) { test_print("\tRunning %s...\n", __func__); run_top_down(alloc_too_large_generic_check); run_bottom_up(alloc_too_large_generic_check); return 0; } static int memblock_alloc_checks_internal(int flags) { const char *func = get_memblock_alloc_name(flags); alloc_test_flags = flags; prefix_reset(); prefix_push(func); test_print("Running %s tests...\n", func); reset_memblock_attributes(); dummy_physical_memory_init(); alloc_simple_check(); alloc_disjoint_check(); alloc_before_check(); alloc_after_check(); alloc_second_fit_check(); alloc_small_gaps_check(); alloc_in_between_check(); alloc_all_reserved_check(); alloc_no_space_check(); alloc_limited_space_check(); alloc_no_memory_check(); alloc_too_large_check(); dummy_physical_memory_cleanup(); prefix_pop(); return 0; } int memblock_alloc_checks(void) { memblock_alloc_checks_internal(TEST_F_NONE); memblock_alloc_checks_internal(TEST_F_RAW); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1