Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oliver Upton | 675 | 87.44% | 7 | 33.33% |
Sean Christopherson | 86 | 11.14% | 9 | 42.86% |
Paolo Bonzini | 3 | 0.39% | 1 | 4.76% |
Vipin Sharma | 3 | 0.39% | 1 | 4.76% |
Ricardo Koller | 2 | 0.26% | 1 | 4.76% |
Raghavendra Rao Ananta | 2 | 0.26% | 1 | 4.76% |
Colton Lewis | 1 | 0.13% | 1 | 4.76% |
Total | 772 | 21 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
// SPDX-License-Identifier: GPL-2.0-only /* * psci_test - Tests relating to KVM's PSCI implementation. * * Copyright (c) 2021 Google LLC. * * This test includes: * - A regression test for a race between KVM servicing the PSCI CPU_ON call * and userspace reading the targeted vCPU's registers. * - A test for KVM's handling of PSCI SYSTEM_SUSPEND and the associated * KVM_SYSTEM_EVENT_SUSPEND UAPI. */ #include <linux/kernel.h> #include <linux/psci.h> #include <asm/cputype.h> #include "kvm_util.h" #include "processor.h" #include "test_util.h" #define CPU_ON_ENTRY_ADDR 0xfeedf00dul #define CPU_ON_CONTEXT_ID 0xdeadc0deul static uint64_t psci_cpu_on(uint64_t target_cpu, uint64_t entry_addr, uint64_t context_id) { struct arm_smccc_res res; smccc_hvc(PSCI_0_2_FN64_CPU_ON, target_cpu, entry_addr, context_id, 0, 0, 0, 0, &res); return res.a0; } static uint64_t psci_affinity_info(uint64_t target_affinity, uint64_t lowest_affinity_level) { struct arm_smccc_res res; smccc_hvc(PSCI_0_2_FN64_AFFINITY_INFO, target_affinity, lowest_affinity_level, 0, 0, 0, 0, 0, &res); return res.a0; } static uint64_t psci_system_suspend(uint64_t entry_addr, uint64_t context_id) { struct arm_smccc_res res; smccc_hvc(PSCI_1_0_FN64_SYSTEM_SUSPEND, entry_addr, context_id, 0, 0, 0, 0, 0, &res); return res.a0; } static uint64_t psci_features(uint32_t func_id) { struct arm_smccc_res res; smccc_hvc(PSCI_1_0_FN_PSCI_FEATURES, func_id, 0, 0, 0, 0, 0, 0, &res); return res.a0; } static void vcpu_power_off(struct kvm_vcpu *vcpu) { struct kvm_mp_state mp_state = { .mp_state = KVM_MP_STATE_STOPPED, }; vcpu_mp_state_set(vcpu, &mp_state); } static struct kvm_vm *setup_vm(void *guest_code, struct kvm_vcpu **source, struct kvm_vcpu **target) { struct kvm_vcpu_init init; struct kvm_vm *vm; vm = vm_create(2); vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &init); init.features[0] |= (1 << KVM_ARM_VCPU_PSCI_0_2); *source = aarch64_vcpu_add(vm, 0, &init, guest_code); *target = aarch64_vcpu_add(vm, 1, &init, guest_code); return vm; } static void enter_guest(struct kvm_vcpu *vcpu) { struct ucall uc; vcpu_run(vcpu); if (get_ucall(vcpu, &uc) == UCALL_ABORT) REPORT_GUEST_ASSERT(uc); } static void assert_vcpu_reset(struct kvm_vcpu *vcpu) { uint64_t obs_pc, obs_x0; vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &obs_pc); vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.regs[0]), &obs_x0); TEST_ASSERT(obs_pc == CPU_ON_ENTRY_ADDR, "unexpected target cpu pc: %lx (expected: %lx)", obs_pc, CPU_ON_ENTRY_ADDR); TEST_ASSERT(obs_x0 == CPU_ON_CONTEXT_ID, "unexpected target context id: %lx (expected: %lx)", obs_x0, CPU_ON_CONTEXT_ID); } static void guest_test_cpu_on(uint64_t target_cpu) { uint64_t target_state; GUEST_ASSERT(!psci_cpu_on(target_cpu, CPU_ON_ENTRY_ADDR, CPU_ON_CONTEXT_ID)); do { target_state = psci_affinity_info(target_cpu, 0); GUEST_ASSERT((target_state == PSCI_0_2_AFFINITY_LEVEL_ON) || (target_state == PSCI_0_2_AFFINITY_LEVEL_OFF)); } while (target_state != PSCI_0_2_AFFINITY_LEVEL_ON); GUEST_DONE(); } static void host_test_cpu_on(void) { struct kvm_vcpu *source, *target; uint64_t target_mpidr; struct kvm_vm *vm; struct ucall uc; vm = setup_vm(guest_test_cpu_on, &source, &target); /* * make sure the target is already off when executing the test. */ vcpu_power_off(target); vcpu_get_reg(target, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &target_mpidr); vcpu_args_set(source, 1, target_mpidr & MPIDR_HWID_BITMASK); enter_guest(source); if (get_ucall(source, &uc) != UCALL_DONE) TEST_FAIL("Unhandled ucall: %lu", uc.cmd); assert_vcpu_reset(target); kvm_vm_free(vm); } static void guest_test_system_suspend(void) { uint64_t ret; /* assert that SYSTEM_SUSPEND is discoverable */ GUEST_ASSERT(!psci_features(PSCI_1_0_FN_SYSTEM_SUSPEND)); GUEST_ASSERT(!psci_features(PSCI_1_0_FN64_SYSTEM_SUSPEND)); ret = psci_system_suspend(CPU_ON_ENTRY_ADDR, CPU_ON_CONTEXT_ID); GUEST_SYNC(ret); } static void host_test_system_suspend(void) { struct kvm_vcpu *source, *target; struct kvm_run *run; struct kvm_vm *vm; vm = setup_vm(guest_test_system_suspend, &source, &target); vm_enable_cap(vm, KVM_CAP_ARM_SYSTEM_SUSPEND, 0); vcpu_power_off(target); run = source->run; enter_guest(source); TEST_ASSERT_KVM_EXIT_REASON(source, KVM_EXIT_SYSTEM_EVENT); TEST_ASSERT(run->system_event.type == KVM_SYSTEM_EVENT_SUSPEND, "Unhandled system event: %u (expected: %u)", run->system_event.type, KVM_SYSTEM_EVENT_SUSPEND); kvm_vm_free(vm); } int main(void) { TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SYSTEM_SUSPEND)); host_test_cpu_on(); host_test_system_suspend(); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1