Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 1897 | 57.09% | 28 | 24.14% |
Jens Axboe | 534 | 16.07% | 19 | 16.38% |
Kanchan Joshi | 200 | 6.02% | 2 | 1.72% |
Anuj Gupta | 191 | 5.75% | 5 | 4.31% |
FUJITA Tomonori | 91 | 2.74% | 7 | 6.03% |
Al Viro | 83 | 2.50% | 6 | 5.17% |
Kent Overstreet | 59 | 1.78% | 3 | 2.59% |
Christian Ehrhardt | 37 | 1.11% | 1 | 0.86% |
James Bottomley | 35 | 1.05% | 2 | 1.72% |
David Howells | 34 | 1.02% | 2 | 1.72% |
Linus Torvalds (pre-git) | 25 | 0.75% | 6 | 5.17% |
Martin K. Petersen | 22 | 0.66% | 3 | 2.59% |
Keith Busch | 18 | 0.54% | 2 | 1.72% |
Namhyung Kim | 11 | 0.33% | 1 | 0.86% |
Logan Gunthorpe | 11 | 0.33% | 1 | 0.86% |
Tejun Heo | 9 | 0.27% | 3 | 2.59% |
Andrew Morton | 9 | 0.27% | 4 | 3.45% |
Michael Christie | 8 | 0.24% | 2 | 1.72% |
H Hartley Sweeten | 6 | 0.18% | 1 | 0.86% |
Xiaotian Feng | 6 | 0.18% | 1 | 0.86% |
Satya Tangirala | 5 | 0.15% | 1 | 0.86% |
Sagi Grimberg | 4 | 0.12% | 1 | 0.86% |
Douglas Gilbert | 4 | 0.12% | 1 | 0.86% |
Matthew Wilcox | 3 | 0.09% | 1 | 0.86% |
Ingo Molnar | 3 | 0.09% | 1 | 0.86% |
Damien Le Moal | 3 | 0.09% | 1 | 0.86% |
Haimin Zhang | 2 | 0.06% | 1 | 0.86% |
Patrick Mansfield | 2 | 0.06% | 1 | 0.86% |
Linus Torvalds | 2 | 0.06% | 1 | 0.86% |
Ming Lei | 2 | 0.06% | 2 | 1.72% |
Nathan Scott | 2 | 0.06% | 1 | 0.86% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 0.86% |
Randy Dunlap | 1 | 0.03% | 1 | 0.86% |
Dave Olien | 1 | 0.03% | 1 | 0.86% |
Adrian Bunk | 1 | 0.03% | 1 | 0.86% |
Yang Yingliang | 1 | 0.03% | 1 | 0.86% |
Total | 3323 | 116 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793
// SPDX-License-Identifier: GPL-2.0 /* * Functions related to mapping data to requests */ #include <linux/kernel.h> #include <linux/sched/task_stack.h> #include <linux/module.h> #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/uio.h> #include "blk.h" struct bio_map_data { bool is_our_pages : 1; bool is_null_mapped : 1; struct iov_iter iter; struct iovec iov[]; }; static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data, gfp_t gfp_mask) { struct bio_map_data *bmd; if (data->nr_segs > UIO_MAXIOV) return NULL; bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask); if (!bmd) return NULL; bmd->iter = *data; if (iter_is_iovec(data)) { memcpy(bmd->iov, iter_iov(data), sizeof(struct iovec) * data->nr_segs); bmd->iter.__iov = bmd->iov; } return bmd; } /** * bio_copy_from_iter - copy all pages from iov_iter to bio * @bio: The &struct bio which describes the I/O as destination * @iter: iov_iter as source * * Copy all pages from iov_iter to bio. * Returns 0 on success, or error on failure. */ static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter) { struct bio_vec *bvec; struct bvec_iter_all iter_all; bio_for_each_segment_all(bvec, bio, iter_all) { ssize_t ret; ret = copy_page_from_iter(bvec->bv_page, bvec->bv_offset, bvec->bv_len, iter); if (!iov_iter_count(iter)) break; if (ret < bvec->bv_len) return -EFAULT; } return 0; } /** * bio_copy_to_iter - copy all pages from bio to iov_iter * @bio: The &struct bio which describes the I/O as source * @iter: iov_iter as destination * * Copy all pages from bio to iov_iter. * Returns 0 on success, or error on failure. */ static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) { struct bio_vec *bvec; struct bvec_iter_all iter_all; bio_for_each_segment_all(bvec, bio, iter_all) { ssize_t ret; ret = copy_page_to_iter(bvec->bv_page, bvec->bv_offset, bvec->bv_len, &iter); if (!iov_iter_count(&iter)) break; if (ret < bvec->bv_len) return -EFAULT; } return 0; } /** * bio_uncopy_user - finish previously mapped bio * @bio: bio being terminated * * Free pages allocated from bio_copy_user_iov() and write back data * to user space in case of a read. */ static int bio_uncopy_user(struct bio *bio) { struct bio_map_data *bmd = bio->bi_private; int ret = 0; if (!bmd->is_null_mapped) { /* * if we're in a workqueue, the request is orphaned, so * don't copy into a random user address space, just free * and return -EINTR so user space doesn't expect any data. */ if (!current->mm) ret = -EINTR; else if (bio_data_dir(bio) == READ) ret = bio_copy_to_iter(bio, bmd->iter); if (bmd->is_our_pages) bio_free_pages(bio); } kfree(bmd); return ret; } static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data, struct iov_iter *iter, gfp_t gfp_mask) { struct bio_map_data *bmd; struct page *page; struct bio *bio; int i = 0, ret; int nr_pages; unsigned int len = iter->count; unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; bmd = bio_alloc_map_data(iter, gfp_mask); if (!bmd) return -ENOMEM; /* * We need to do a deep copy of the iov_iter including the iovecs. * The caller provided iov might point to an on-stack or otherwise * shortlived one. */ bmd->is_our_pages = !map_data; bmd->is_null_mapped = (map_data && map_data->null_mapped); nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE)); ret = -ENOMEM; bio = bio_kmalloc(nr_pages, gfp_mask); if (!bio) goto out_bmd; bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq)); if (map_data) { nr_pages = 1U << map_data->page_order; i = map_data->offset / PAGE_SIZE; } while (len) { unsigned int bytes = PAGE_SIZE; bytes -= offset; if (bytes > len) bytes = len; if (map_data) { if (i == map_data->nr_entries * nr_pages) { ret = -ENOMEM; goto cleanup; } page = map_data->pages[i / nr_pages]; page += (i % nr_pages); i++; } else { page = alloc_page(GFP_NOIO | gfp_mask); if (!page) { ret = -ENOMEM; goto cleanup; } } if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) { if (!map_data) __free_page(page); break; } len -= bytes; offset = 0; } if (map_data) map_data->offset += bio->bi_iter.bi_size; /* * success */ if (iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) { ret = bio_copy_from_iter(bio, iter); if (ret) goto cleanup; } else if (map_data && map_data->from_user) { struct iov_iter iter2 = *iter; /* This is the copy-in part of SG_DXFER_TO_FROM_DEV. */ iter2.data_source = ITER_SOURCE; ret = bio_copy_from_iter(bio, &iter2); if (ret) goto cleanup; } else { if (bmd->is_our_pages) zero_fill_bio(bio); iov_iter_advance(iter, bio->bi_iter.bi_size); } bio->bi_private = bmd; ret = blk_rq_append_bio(rq, bio); if (ret) goto cleanup; return 0; cleanup: if (!map_data) bio_free_pages(bio); bio_uninit(bio); kfree(bio); out_bmd: kfree(bmd); return ret; } static void blk_mq_map_bio_put(struct bio *bio) { if (bio->bi_opf & REQ_ALLOC_CACHE) { bio_put(bio); } else { bio_uninit(bio); kfree(bio); } } static struct bio *blk_rq_map_bio_alloc(struct request *rq, unsigned int nr_vecs, gfp_t gfp_mask) { struct bio *bio; if (rq->cmd_flags & REQ_ALLOC_CACHE && (nr_vecs <= BIO_INLINE_VECS)) { bio = bio_alloc_bioset(NULL, nr_vecs, rq->cmd_flags, gfp_mask, &fs_bio_set); if (!bio) return NULL; } else { bio = bio_kmalloc(nr_vecs, gfp_mask); if (!bio) return NULL; bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq)); } return bio; } static int bio_map_user_iov(struct request *rq, struct iov_iter *iter, gfp_t gfp_mask) { iov_iter_extraction_t extraction_flags = 0; unsigned int max_sectors = queue_max_hw_sectors(rq->q); unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS); struct bio *bio; int ret; int j; if (!iov_iter_count(iter)) return -EINVAL; bio = blk_rq_map_bio_alloc(rq, nr_vecs, gfp_mask); if (bio == NULL) return -ENOMEM; if (blk_queue_pci_p2pdma(rq->q)) extraction_flags |= ITER_ALLOW_P2PDMA; if (iov_iter_extract_will_pin(iter)) bio_set_flag(bio, BIO_PAGE_PINNED); while (iov_iter_count(iter)) { struct page *stack_pages[UIO_FASTIOV]; struct page **pages = stack_pages; ssize_t bytes; size_t offs; int npages; if (nr_vecs > ARRAY_SIZE(stack_pages)) pages = NULL; bytes = iov_iter_extract_pages(iter, &pages, LONG_MAX, nr_vecs, extraction_flags, &offs); if (unlikely(bytes <= 0)) { ret = bytes ? bytes : -EFAULT; goto out_unmap; } npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE); if (unlikely(offs & queue_dma_alignment(rq->q))) j = 0; else { for (j = 0; j < npages; j++) { struct page *page = pages[j]; unsigned int n = PAGE_SIZE - offs; bool same_page = false; if (n > bytes) n = bytes; if (!bio_add_hw_page(rq->q, bio, page, n, offs, max_sectors, &same_page)) break; if (same_page) bio_release_page(bio, page); bytes -= n; offs = 0; } } /* * release the pages we didn't map into the bio, if any */ while (j < npages) bio_release_page(bio, pages[j++]); if (pages != stack_pages) kvfree(pages); /* couldn't stuff something into bio? */ if (bytes) { iov_iter_revert(iter, bytes); break; } } ret = blk_rq_append_bio(rq, bio); if (ret) goto out_unmap; return 0; out_unmap: bio_release_pages(bio, false); blk_mq_map_bio_put(bio); return ret; } static void bio_invalidate_vmalloc_pages(struct bio *bio) { #ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE if (bio->bi_private && !op_is_write(bio_op(bio))) { unsigned long i, len = 0; for (i = 0; i < bio->bi_vcnt; i++) len += bio->bi_io_vec[i].bv_len; invalidate_kernel_vmap_range(bio->bi_private, len); } #endif } static void bio_map_kern_endio(struct bio *bio) { bio_invalidate_vmalloc_pages(bio); bio_uninit(bio); kfree(bio); } /** * bio_map_kern - map kernel address into bio * @q: the struct request_queue for the bio * @data: pointer to buffer to map * @len: length in bytes * @gfp_mask: allocation flags for bio allocation * * Map the kernel address into a bio suitable for io to a block * device. Returns an error pointer in case of error. */ static struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, gfp_t gfp_mask) { unsigned long kaddr = (unsigned long)data; unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; unsigned long start = kaddr >> PAGE_SHIFT; const int nr_pages = end - start; bool is_vmalloc = is_vmalloc_addr(data); struct page *page; int offset, i; struct bio *bio; bio = bio_kmalloc(nr_pages, gfp_mask); if (!bio) return ERR_PTR(-ENOMEM); bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); if (is_vmalloc) { flush_kernel_vmap_range(data, len); bio->bi_private = data; } offset = offset_in_page(kaddr); for (i = 0; i < nr_pages; i++) { unsigned int bytes = PAGE_SIZE - offset; if (len <= 0) break; if (bytes > len) bytes = len; if (!is_vmalloc) page = virt_to_page(data); else page = vmalloc_to_page(data); if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) { /* we don't support partial mappings */ bio_uninit(bio); kfree(bio); return ERR_PTR(-EINVAL); } data += bytes; len -= bytes; offset = 0; } bio->bi_end_io = bio_map_kern_endio; return bio; } static void bio_copy_kern_endio(struct bio *bio) { bio_free_pages(bio); bio_uninit(bio); kfree(bio); } static void bio_copy_kern_endio_read(struct bio *bio) { char *p = bio->bi_private; struct bio_vec *bvec; struct bvec_iter_all iter_all; bio_for_each_segment_all(bvec, bio, iter_all) { memcpy_from_bvec(p, bvec); p += bvec->bv_len; } bio_copy_kern_endio(bio); } /** * bio_copy_kern - copy kernel address into bio * @q: the struct request_queue for the bio * @data: pointer to buffer to copy * @len: length in bytes * @gfp_mask: allocation flags for bio and page allocation * @reading: data direction is READ * * copy the kernel address into a bio suitable for io to a block * device. Returns an error pointer in case of error. */ static struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, gfp_t gfp_mask, int reading) { unsigned long kaddr = (unsigned long)data; unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; unsigned long start = kaddr >> PAGE_SHIFT; struct bio *bio; void *p = data; int nr_pages = 0; /* * Overflow, abort */ if (end < start) return ERR_PTR(-EINVAL); nr_pages = end - start; bio = bio_kmalloc(nr_pages, gfp_mask); if (!bio) return ERR_PTR(-ENOMEM); bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0); while (len) { struct page *page; unsigned int bytes = PAGE_SIZE; if (bytes > len) bytes = len; page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask); if (!page) goto cleanup; if (!reading) memcpy(page_address(page), p, bytes); if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) break; len -= bytes; p += bytes; } if (reading) { bio->bi_end_io = bio_copy_kern_endio_read; bio->bi_private = data; } else { bio->bi_end_io = bio_copy_kern_endio; } return bio; cleanup: bio_free_pages(bio); bio_uninit(bio); kfree(bio); return ERR_PTR(-ENOMEM); } /* * Append a bio to a passthrough request. Only works if the bio can be merged * into the request based on the driver constraints. */ int blk_rq_append_bio(struct request *rq, struct bio *bio) { struct bvec_iter iter; struct bio_vec bv; unsigned int nr_segs = 0; bio_for_each_bvec(bv, bio, iter) nr_segs++; if (!rq->bio) { blk_rq_bio_prep(rq, bio, nr_segs); } else { if (!ll_back_merge_fn(rq, bio, nr_segs)) return -EINVAL; rq->biotail->bi_next = bio; rq->biotail = bio; rq->__data_len += (bio)->bi_iter.bi_size; bio_crypt_free_ctx(bio); } return 0; } EXPORT_SYMBOL(blk_rq_append_bio); /* Prepare bio for passthrough IO given ITER_BVEC iter */ static int blk_rq_map_user_bvec(struct request *rq, const struct iov_iter *iter) { const struct queue_limits *lim = &rq->q->limits; unsigned int max_bytes = lim->max_hw_sectors << SECTOR_SHIFT; unsigned int nsegs; struct bio *bio; int ret; if (!iov_iter_count(iter) || iov_iter_count(iter) > max_bytes) return -EINVAL; /* reuse the bvecs from the iterator instead of allocating new ones */ bio = blk_rq_map_bio_alloc(rq, 0, GFP_KERNEL); if (!bio) return -ENOMEM; bio_iov_bvec_set(bio, iter); /* check that the data layout matches the hardware restrictions */ ret = bio_split_rw_at(bio, lim, &nsegs, max_bytes); if (ret) { /* if we would have to split the bio, copy instead */ if (ret > 0) ret = -EREMOTEIO; blk_mq_map_bio_put(bio); return ret; } blk_rq_bio_prep(rq, bio, nsegs); return 0; } /** * blk_rq_map_user_iov - map user data to a request, for passthrough requests * @q: request queue where request should be inserted * @rq: request to map data to * @map_data: pointer to the rq_map_data holding pages (if necessary) * @iter: iovec iterator * @gfp_mask: memory allocation flags * * Description: * Data will be mapped directly for zero copy I/O, if possible. Otherwise * a kernel bounce buffer is used. * * A matching blk_rq_unmap_user() must be issued at the end of I/O, while * still in process context. */ int blk_rq_map_user_iov(struct request_queue *q, struct request *rq, struct rq_map_data *map_data, const struct iov_iter *iter, gfp_t gfp_mask) { bool copy = false, map_bvec = false; unsigned long align = blk_lim_dma_alignment_and_pad(&q->limits); struct bio *bio = NULL; struct iov_iter i; int ret = -EINVAL; if (map_data) copy = true; else if (blk_queue_may_bounce(q)) copy = true; else if (iov_iter_alignment(iter) & align) copy = true; else if (iov_iter_is_bvec(iter)) map_bvec = true; else if (!user_backed_iter(iter)) copy = true; else if (queue_virt_boundary(q)) copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter); if (map_bvec) { ret = blk_rq_map_user_bvec(rq, iter); if (!ret) return 0; if (ret != -EREMOTEIO) goto fail; /* fall back to copying the data on limits mismatches */ copy = true; } i = *iter; do { if (copy) ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask); else ret = bio_map_user_iov(rq, &i, gfp_mask); if (ret) goto unmap_rq; if (!bio) bio = rq->bio; } while (iov_iter_count(&i)); return 0; unmap_rq: blk_rq_unmap_user(bio); fail: rq->bio = NULL; return ret; } EXPORT_SYMBOL(blk_rq_map_user_iov); int blk_rq_map_user(struct request_queue *q, struct request *rq, struct rq_map_data *map_data, void __user *ubuf, unsigned long len, gfp_t gfp_mask) { struct iov_iter i; int ret = import_ubuf(rq_data_dir(rq), ubuf, len, &i); if (unlikely(ret < 0)) return ret; return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask); } EXPORT_SYMBOL(blk_rq_map_user); int blk_rq_map_user_io(struct request *req, struct rq_map_data *map_data, void __user *ubuf, unsigned long buf_len, gfp_t gfp_mask, bool vec, int iov_count, bool check_iter_count, int rw) { int ret = 0; if (vec) { struct iovec fast_iov[UIO_FASTIOV]; struct iovec *iov = fast_iov; struct iov_iter iter; ret = import_iovec(rw, ubuf, iov_count ? iov_count : buf_len, UIO_FASTIOV, &iov, &iter); if (ret < 0) return ret; if (iov_count) { /* SG_IO howto says that the shorter of the two wins */ iov_iter_truncate(&iter, buf_len); if (check_iter_count && !iov_iter_count(&iter)) { kfree(iov); return -EINVAL; } } ret = blk_rq_map_user_iov(req->q, req, map_data, &iter, gfp_mask); kfree(iov); } else if (buf_len) { ret = blk_rq_map_user(req->q, req, map_data, ubuf, buf_len, gfp_mask); } return ret; } EXPORT_SYMBOL(blk_rq_map_user_io); /** * blk_rq_unmap_user - unmap a request with user data * @bio: start of bio list * * Description: * Unmap a rq previously mapped by blk_rq_map_user(). The caller must * supply the original rq->bio from the blk_rq_map_user() return, since * the I/O completion may have changed rq->bio. */ int blk_rq_unmap_user(struct bio *bio) { struct bio *next_bio; int ret = 0, ret2; while (bio) { if (bio->bi_private) { ret2 = bio_uncopy_user(bio); if (ret2 && !ret) ret = ret2; } else { bio_release_pages(bio, bio_data_dir(bio) == READ); } if (bio_integrity(bio)) bio_integrity_unmap_user(bio); next_bio = bio; bio = bio->bi_next; blk_mq_map_bio_put(next_bio); } return ret; } EXPORT_SYMBOL(blk_rq_unmap_user); /** * blk_rq_map_kern - map kernel data to a request, for passthrough requests * @q: request queue where request should be inserted * @rq: request to fill * @kbuf: the kernel buffer * @len: length of user data * @gfp_mask: memory allocation flags * * Description: * Data will be mapped directly if possible. Otherwise a bounce * buffer is used. Can be called multiple times to append multiple * buffers. */ int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf, unsigned int len, gfp_t gfp_mask) { int reading = rq_data_dir(rq) == READ; unsigned long addr = (unsigned long) kbuf; struct bio *bio; int ret; if (len > (queue_max_hw_sectors(q) << 9)) return -EINVAL; if (!len || !kbuf) return -EINVAL; if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) || blk_queue_may_bounce(q)) bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading); else bio = bio_map_kern(q, kbuf, len, gfp_mask); if (IS_ERR(bio)) return PTR_ERR(bio); bio->bi_opf &= ~REQ_OP_MASK; bio->bi_opf |= req_op(rq); ret = blk_rq_append_bio(rq, bio); if (unlikely(ret)) { bio_uninit(bio); kfree(bio); } return ret; } EXPORT_SYMBOL(blk_rq_map_kern);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1