Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lukas Wunner | 1101 | 50.71% | 6 | 21.43% |
Tadeusz Struk | 484 | 22.29% | 2 | 7.14% |
Andrzej Zaborowski | 403 | 18.56% | 1 | 3.57% |
Eric Biggers | 83 | 3.82% | 6 | 21.43% |
Herbert Xu | 58 | 2.67% | 5 | 17.86% |
Dimitri John Ledkov | 13 | 0.60% | 1 | 3.57% |
Denis Kenzior | 10 | 0.46% | 1 | 3.57% |
Nicolai Stange | 7 | 0.32% | 1 | 3.57% |
Joachim Vandersmissen | 5 | 0.23% | 1 | 3.57% |
Mimi Zohar | 4 | 0.18% | 1 | 3.57% |
Thomas Gleixner | 1 | 0.05% | 1 | 3.57% |
Vitaly Chikunov | 1 | 0.05% | 1 | 3.57% |
Paul Gortmaker | 1 | 0.05% | 1 | 3.57% |
Total | 2171 | 28 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
// SPDX-License-Identifier: GPL-2.0-or-later /* * RSA Signature Scheme with Appendix - PKCS #1 v1.5 (RFC 8017 sec 8.2) * * https://www.rfc-editor.org/rfc/rfc8017#section-8.2 * * Copyright (c) 2015 - 2024 Intel Corporation */ #include <linux/module.h> #include <linux/scatterlist.h> #include <crypto/akcipher.h> #include <crypto/algapi.h> #include <crypto/hash.h> #include <crypto/sig.h> #include <crypto/internal/akcipher.h> #include <crypto/internal/rsa.h> #include <crypto/internal/sig.h> /* * Full Hash Prefix for EMSA-PKCS1-v1_5 encoding method (RFC 9580 table 24) * * RSA keys are usually much larger than the hash of the message to be signed. * The hash is therefore prepended by the Full Hash Prefix and a 0xff padding. * The Full Hash Prefix is an ASN.1 SEQUENCE containing the hash algorithm OID. * * https://www.rfc-editor.org/rfc/rfc9580#table-24 */ static const u8 hash_prefix_none[] = { }; static const u8 hash_prefix_md5[] = { 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, /* SEQUENCE (SEQUENCE (OID */ 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* <algorithm>, */ 0x05, 0x00, 0x04, 0x10 /* NULL), OCTET STRING <hash>) */ }; static const u8 hash_prefix_sha1[] = { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14 }; static const u8 hash_prefix_rmd160[] = { 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x24, 0x03, 0x02, 0x01, 0x05, 0x00, 0x04, 0x14 }; static const u8 hash_prefix_sha224[] = { 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c }; static const u8 hash_prefix_sha256[] = { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20 }; static const u8 hash_prefix_sha384[] = { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30 }; static const u8 hash_prefix_sha512[] = { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40 }; static const u8 hash_prefix_sha3_256[] = { 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x08, 0x05, 0x00, 0x04, 0x20 }; static const u8 hash_prefix_sha3_384[] = { 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x09, 0x05, 0x00, 0x04, 0x30 }; static const u8 hash_prefix_sha3_512[] = { 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x0a, 0x05, 0x00, 0x04, 0x40 }; static const struct hash_prefix { const char *name; const u8 *data; size_t size; } hash_prefixes[] = { #define _(X) { #X, hash_prefix_##X, sizeof(hash_prefix_##X) } _(none), _(md5), _(sha1), _(rmd160), _(sha256), _(sha384), _(sha512), _(sha224), #undef _ #define _(X) { "sha3-" #X, hash_prefix_sha3_##X, sizeof(hash_prefix_sha3_##X) } _(256), _(384), _(512), #undef _ { NULL } }; static const struct hash_prefix *rsassa_pkcs1_find_hash_prefix(const char *name) { const struct hash_prefix *p; for (p = hash_prefixes; p->name; p++) if (strcmp(name, p->name) == 0) return p; return NULL; } static bool rsassa_pkcs1_invalid_hash_len(unsigned int len, const struct hash_prefix *p) { /* * Legacy protocols such as TLS 1.1 or earlier and IKE version 1 * do not prepend a Full Hash Prefix to the hash. In that case, * the size of the Full Hash Prefix is zero. */ if (p->data == hash_prefix_none) return false; /* * The final byte of the Full Hash Prefix encodes the hash length. * * This needs to be revisited should hash algorithms with more than * 1016 bits (127 bytes * 8) ever be added. The length would then * be encoded into more than one byte by ASN.1. */ static_assert(HASH_MAX_DIGESTSIZE <= 127); return len != p->data[p->size - 1]; } struct rsassa_pkcs1_ctx { struct crypto_akcipher *child; unsigned int key_size; }; struct rsassa_pkcs1_inst_ctx { struct crypto_akcipher_spawn spawn; const struct hash_prefix *hash_prefix; }; static int rsassa_pkcs1_sign(struct crypto_sig *tfm, const void *src, unsigned int slen, void *dst, unsigned int dlen) { struct sig_instance *inst = sig_alg_instance(tfm); struct rsassa_pkcs1_inst_ctx *ictx = sig_instance_ctx(inst); const struct hash_prefix *hash_prefix = ictx->hash_prefix; struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm); unsigned int pad_len; unsigned int ps_end; unsigned int len; u8 *in_buf; int err; if (!ctx->key_size) return -EINVAL; if (dlen < ctx->key_size) return -EOVERFLOW; if (rsassa_pkcs1_invalid_hash_len(slen, hash_prefix)) return -EINVAL; if (slen + hash_prefix->size > ctx->key_size - 11) return -EOVERFLOW; pad_len = ctx->key_size - slen - hash_prefix->size - 1; /* RFC 8017 sec 8.2.1 step 1 - EMSA-PKCS1-v1_5 encoding generation */ in_buf = dst; memmove(in_buf + pad_len + hash_prefix->size, src, slen); memcpy(in_buf + pad_len, hash_prefix->data, hash_prefix->size); ps_end = pad_len - 1; in_buf[0] = 0x01; memset(in_buf + 1, 0xff, ps_end - 1); in_buf[ps_end] = 0x00; /* RFC 8017 sec 8.2.1 step 2 - RSA signature */ err = crypto_akcipher_sync_decrypt(ctx->child, in_buf, ctx->key_size - 1, in_buf, ctx->key_size); if (err < 0) return err; len = err; pad_len = ctx->key_size - len; /* Four billion to one */ if (unlikely(pad_len)) { memmove(dst + pad_len, dst, len); memset(dst, 0, pad_len); } return 0; } static int rsassa_pkcs1_verify(struct crypto_sig *tfm, const void *src, unsigned int slen, const void *digest, unsigned int dlen) { struct sig_instance *inst = sig_alg_instance(tfm); struct rsassa_pkcs1_inst_ctx *ictx = sig_instance_ctx(inst); const struct hash_prefix *hash_prefix = ictx->hash_prefix; struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm); unsigned int child_reqsize = crypto_akcipher_reqsize(ctx->child); struct akcipher_request *child_req __free(kfree_sensitive) = NULL; struct crypto_wait cwait; struct scatterlist sg; unsigned int dst_len; unsigned int pos; u8 *out_buf; int err; /* RFC 8017 sec 8.2.2 step 1 - length checking */ if (!ctx->key_size || slen != ctx->key_size || rsassa_pkcs1_invalid_hash_len(dlen, hash_prefix)) return -EINVAL; /* RFC 8017 sec 8.2.2 step 2 - RSA verification */ child_req = kmalloc(sizeof(*child_req) + child_reqsize + ctx->key_size, GFP_KERNEL); if (!child_req) return -ENOMEM; out_buf = (u8 *)(child_req + 1) + child_reqsize; memcpy(out_buf, src, slen); crypto_init_wait(&cwait); sg_init_one(&sg, out_buf, slen); akcipher_request_set_tfm(child_req, ctx->child); akcipher_request_set_crypt(child_req, &sg, &sg, slen, slen); akcipher_request_set_callback(child_req, CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &cwait); err = crypto_akcipher_encrypt(child_req); err = crypto_wait_req(err, &cwait); if (err) return err; /* RFC 8017 sec 8.2.2 step 3 - EMSA-PKCS1-v1_5 encoding verification */ dst_len = child_req->dst_len; if (dst_len < ctx->key_size - 1) return -EINVAL; if (dst_len == ctx->key_size) { if (out_buf[0] != 0x00) /* Encrypted value had no leading 0 byte */ return -EINVAL; dst_len--; out_buf++; } if (out_buf[0] != 0x01) return -EBADMSG; for (pos = 1; pos < dst_len; pos++) if (out_buf[pos] != 0xff) break; if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00) return -EBADMSG; pos++; if (hash_prefix->size > dst_len - pos) return -EBADMSG; if (crypto_memneq(out_buf + pos, hash_prefix->data, hash_prefix->size)) return -EBADMSG; pos += hash_prefix->size; /* RFC 8017 sec 8.2.2 step 4 - comparison of digest with out_buf */ if (dlen != dst_len - pos) return -EKEYREJECTED; if (memcmp(digest, out_buf + pos, dlen) != 0) return -EKEYREJECTED; return 0; } static unsigned int rsassa_pkcs1_key_size(struct crypto_sig *tfm) { struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm); return ctx->key_size; } static int rsassa_pkcs1_set_pub_key(struct crypto_sig *tfm, const void *key, unsigned int keylen) { struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm); return rsa_set_key(ctx->child, &ctx->key_size, RSA_PUB, key, keylen); } static int rsassa_pkcs1_set_priv_key(struct crypto_sig *tfm, const void *key, unsigned int keylen) { struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm); return rsa_set_key(ctx->child, &ctx->key_size, RSA_PRIV, key, keylen); } static int rsassa_pkcs1_init_tfm(struct crypto_sig *tfm) { struct sig_instance *inst = sig_alg_instance(tfm); struct rsassa_pkcs1_inst_ctx *ictx = sig_instance_ctx(inst); struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm); struct crypto_akcipher *child_tfm; child_tfm = crypto_spawn_akcipher(&ictx->spawn); if (IS_ERR(child_tfm)) return PTR_ERR(child_tfm); ctx->child = child_tfm; return 0; } static void rsassa_pkcs1_exit_tfm(struct crypto_sig *tfm) { struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm); crypto_free_akcipher(ctx->child); } static void rsassa_pkcs1_free(struct sig_instance *inst) { struct rsassa_pkcs1_inst_ctx *ctx = sig_instance_ctx(inst); struct crypto_akcipher_spawn *spawn = &ctx->spawn; crypto_drop_akcipher(spawn); kfree(inst); } static int rsassa_pkcs1_create(struct crypto_template *tmpl, struct rtattr **tb) { struct rsassa_pkcs1_inst_ctx *ctx; struct akcipher_alg *rsa_alg; struct sig_instance *inst; const char *hash_name; u32 mask; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SIG, &mask); if (err) return err; inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = sig_instance_ctx(inst); err = crypto_grab_akcipher(&ctx->spawn, sig_crypto_instance(inst), crypto_attr_alg_name(tb[1]), 0, mask); if (err) goto err_free_inst; rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn); if (strcmp(rsa_alg->base.cra_name, "rsa") != 0) { err = -EINVAL; goto err_free_inst; } hash_name = crypto_attr_alg_name(tb[2]); if (IS_ERR(hash_name)) { err = PTR_ERR(hash_name); goto err_free_inst; } ctx->hash_prefix = rsassa_pkcs1_find_hash_prefix(hash_name); if (!ctx->hash_prefix) { err = -EINVAL; goto err_free_inst; } err = -ENAMETOOLONG; if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "pkcs1(%s,%s)", rsa_alg->base.cra_name, hash_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "pkcs1(%s,%s)", rsa_alg->base.cra_driver_name, hash_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; inst->alg.base.cra_priority = rsa_alg->base.cra_priority; inst->alg.base.cra_ctxsize = sizeof(struct rsassa_pkcs1_ctx); inst->alg.init = rsassa_pkcs1_init_tfm; inst->alg.exit = rsassa_pkcs1_exit_tfm; inst->alg.sign = rsassa_pkcs1_sign; inst->alg.verify = rsassa_pkcs1_verify; inst->alg.key_size = rsassa_pkcs1_key_size; inst->alg.set_pub_key = rsassa_pkcs1_set_pub_key; inst->alg.set_priv_key = rsassa_pkcs1_set_priv_key; inst->free = rsassa_pkcs1_free; err = sig_register_instance(tmpl, inst); if (err) { err_free_inst: rsassa_pkcs1_free(inst); } return err; } struct crypto_template rsassa_pkcs1_tmpl = { .name = "pkcs1", .create = rsassa_pkcs1_create, .module = THIS_MODULE, }; MODULE_ALIAS_CRYPTO("pkcs1");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1