Contributors: 23
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Mike Rapoport |
2095 |
92.25% |
5 |
14.71% |
Suren Baghdasaryan |
81 |
3.57% |
1 |
2.94% |
Andrey Ryabinin |
30 |
1.32% |
2 |
5.88% |
Christoph Lameter |
14 |
0.62% |
1 |
2.94% |
Mark Rutland |
7 |
0.31% |
2 |
5.88% |
Ard Biesheuvel |
5 |
0.22% |
2 |
5.88% |
Rusty Russell |
4 |
0.18% |
3 |
8.82% |
Linus Torvalds (pre-git) |
4 |
0.18% |
2 |
5.88% |
Mel Gorman |
3 |
0.13% |
1 |
2.94% |
Mark Brown |
3 |
0.13% |
1 |
2.94% |
Heiko Carstens |
3 |
0.13% |
2 |
5.88% |
Richard Henderson |
3 |
0.13% |
1 |
2.94% |
Rick Edgecombe |
3 |
0.13% |
1 |
2.94% |
Qi Zheng |
3 |
0.13% |
1 |
2.94% |
Jianguo Wu |
2 |
0.09% |
1 |
2.94% |
Ingo Molnar |
2 |
0.09% |
1 |
2.94% |
Al Viro |
2 |
0.09% |
1 |
2.94% |
David Howells |
2 |
0.09% |
1 |
2.94% |
Andrey Konovalov |
1 |
0.04% |
1 |
2.94% |
Ilya Leoshkevich |
1 |
0.04% |
1 |
2.94% |
Greg Kroah-Hartman |
1 |
0.04% |
1 |
2.94% |
Kefeng Wang |
1 |
0.04% |
1 |
2.94% |
Hugh Dickins |
1 |
0.04% |
1 |
2.94% |
Total |
2271 |
|
34 |
|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2002 Richard Henderson
* Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
* Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
* Copyright (C) 2024 Mike Rapoport IBM.
*/
#define pr_fmt(fmt) "execmem: " fmt
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/vmalloc.h>
#include <linux/execmem.h>
#include <linux/maple_tree.h>
#include <linux/set_memory.h>
#include <linux/moduleloader.h>
#include <linux/text-patching.h>
#include <asm/tlbflush.h>
#include "internal.h"
static struct execmem_info *execmem_info __ro_after_init;
static struct execmem_info default_execmem_info __ro_after_init;
#ifdef CONFIG_MMU
static void *execmem_vmalloc(struct execmem_range *range, size_t size,
pgprot_t pgprot, unsigned long vm_flags)
{
bool kasan = range->flags & EXECMEM_KASAN_SHADOW;
gfp_t gfp_flags = GFP_KERNEL | __GFP_NOWARN;
unsigned int align = range->alignment;
unsigned long start = range->start;
unsigned long end = range->end;
void *p;
if (kasan)
vm_flags |= VM_DEFER_KMEMLEAK;
if (vm_flags & VM_ALLOW_HUGE_VMAP)
align = PMD_SIZE;
p = __vmalloc_node_range(size, align, start, end, gfp_flags,
pgprot, vm_flags, NUMA_NO_NODE,
__builtin_return_address(0));
if (!p && range->fallback_start) {
start = range->fallback_start;
end = range->fallback_end;
p = __vmalloc_node_range(size, align, start, end, gfp_flags,
pgprot, vm_flags, NUMA_NO_NODE,
__builtin_return_address(0));
}
if (!p) {
pr_warn_ratelimited("unable to allocate memory\n");
return NULL;
}
if (kasan && (kasan_alloc_module_shadow(p, size, GFP_KERNEL) < 0)) {
vfree(p);
return NULL;
}
return p;
}
struct vm_struct *execmem_vmap(size_t size)
{
struct execmem_range *range = &execmem_info->ranges[EXECMEM_MODULE_DATA];
struct vm_struct *area;
area = __get_vm_area_node(size, range->alignment, PAGE_SHIFT, VM_ALLOC,
range->start, range->end, NUMA_NO_NODE,
GFP_KERNEL, __builtin_return_address(0));
if (!area && range->fallback_start)
area = __get_vm_area_node(size, range->alignment, PAGE_SHIFT, VM_ALLOC,
range->fallback_start, range->fallback_end,
NUMA_NO_NODE, GFP_KERNEL, __builtin_return_address(0));
return area;
}
#else
static void *execmem_vmalloc(struct execmem_range *range, size_t size,
pgprot_t pgprot, unsigned long vm_flags)
{
return vmalloc(size);
}
#endif /* CONFIG_MMU */
#ifdef CONFIG_ARCH_HAS_EXECMEM_ROX
struct execmem_cache {
struct mutex mutex;
struct maple_tree busy_areas;
struct maple_tree free_areas;
};
static struct execmem_cache execmem_cache = {
.mutex = __MUTEX_INITIALIZER(execmem_cache.mutex),
.busy_areas = MTREE_INIT_EXT(busy_areas, MT_FLAGS_LOCK_EXTERN,
execmem_cache.mutex),
.free_areas = MTREE_INIT_EXT(free_areas, MT_FLAGS_LOCK_EXTERN,
execmem_cache.mutex),
};
static inline unsigned long mas_range_len(struct ma_state *mas)
{
return mas->last - mas->index + 1;
}
static int execmem_set_direct_map_valid(struct vm_struct *vm, bool valid)
{
unsigned int nr = (1 << get_vm_area_page_order(vm));
unsigned int updated = 0;
int err = 0;
for (int i = 0; i < vm->nr_pages; i += nr) {
err = set_direct_map_valid_noflush(vm->pages[i], nr, valid);
if (err)
goto err_restore;
updated += nr;
}
return 0;
err_restore:
for (int i = 0; i < updated; i += nr)
set_direct_map_valid_noflush(vm->pages[i], nr, !valid);
return err;
}
static void execmem_cache_clean(struct work_struct *work)
{
struct maple_tree *free_areas = &execmem_cache.free_areas;
struct mutex *mutex = &execmem_cache.mutex;
MA_STATE(mas, free_areas, 0, ULONG_MAX);
void *area;
mutex_lock(mutex);
mas_for_each(&mas, area, ULONG_MAX) {
size_t size = mas_range_len(&mas);
if (IS_ALIGNED(size, PMD_SIZE) &&
IS_ALIGNED(mas.index, PMD_SIZE)) {
struct vm_struct *vm = find_vm_area(area);
execmem_set_direct_map_valid(vm, true);
mas_store_gfp(&mas, NULL, GFP_KERNEL);
vfree(area);
}
}
mutex_unlock(mutex);
}
static DECLARE_WORK(execmem_cache_clean_work, execmem_cache_clean);
static int execmem_cache_add(void *ptr, size_t size)
{
struct maple_tree *free_areas = &execmem_cache.free_areas;
struct mutex *mutex = &execmem_cache.mutex;
unsigned long addr = (unsigned long)ptr;
MA_STATE(mas, free_areas, addr - 1, addr + 1);
unsigned long lower, upper;
void *area = NULL;
int err;
lower = addr;
upper = addr + size - 1;
mutex_lock(mutex);
area = mas_walk(&mas);
if (area && mas.last == addr - 1)
lower = mas.index;
area = mas_next(&mas, ULONG_MAX);
if (area && mas.index == addr + size)
upper = mas.last;
mas_set_range(&mas, lower, upper);
err = mas_store_gfp(&mas, (void *)lower, GFP_KERNEL);
mutex_unlock(mutex);
if (err)
return err;
return 0;
}
static bool within_range(struct execmem_range *range, struct ma_state *mas,
size_t size)
{
unsigned long addr = mas->index;
if (addr >= range->start && addr + size < range->end)
return true;
if (range->fallback_start &&
addr >= range->fallback_start && addr + size < range->fallback_end)
return true;
return false;
}
static void *__execmem_cache_alloc(struct execmem_range *range, size_t size)
{
struct maple_tree *free_areas = &execmem_cache.free_areas;
struct maple_tree *busy_areas = &execmem_cache.busy_areas;
MA_STATE(mas_free, free_areas, 0, ULONG_MAX);
MA_STATE(mas_busy, busy_areas, 0, ULONG_MAX);
struct mutex *mutex = &execmem_cache.mutex;
unsigned long addr, last, area_size = 0;
void *area, *ptr = NULL;
int err;
mutex_lock(mutex);
mas_for_each(&mas_free, area, ULONG_MAX) {
area_size = mas_range_len(&mas_free);
if (area_size >= size && within_range(range, &mas_free, size))
break;
}
if (area_size < size)
goto out_unlock;
addr = mas_free.index;
last = mas_free.last;
/* insert allocated size to busy_areas at range [addr, addr + size) */
mas_set_range(&mas_busy, addr, addr + size - 1);
err = mas_store_gfp(&mas_busy, (void *)addr, GFP_KERNEL);
if (err)
goto out_unlock;
mas_store_gfp(&mas_free, NULL, GFP_KERNEL);
if (area_size > size) {
void *ptr = (void *)(addr + size);
/*
* re-insert remaining free size to free_areas at range
* [addr + size, last]
*/
mas_set_range(&mas_free, addr + size, last);
err = mas_store_gfp(&mas_free, ptr, GFP_KERNEL);
if (err) {
mas_store_gfp(&mas_busy, NULL, GFP_KERNEL);
goto out_unlock;
}
}
ptr = (void *)addr;
out_unlock:
mutex_unlock(mutex);
return ptr;
}
static int execmem_cache_populate(struct execmem_range *range, size_t size)
{
unsigned long vm_flags = VM_ALLOW_HUGE_VMAP;
unsigned long start, end;
struct vm_struct *vm;
size_t alloc_size;
int err = -ENOMEM;
void *p;
alloc_size = round_up(size, PMD_SIZE);
p = execmem_vmalloc(range, alloc_size, PAGE_KERNEL, vm_flags);
if (!p)
return err;
vm = find_vm_area(p);
if (!vm)
goto err_free_mem;
/* fill memory with instructions that will trap */
execmem_fill_trapping_insns(p, alloc_size, /* writable = */ true);
start = (unsigned long)p;
end = start + alloc_size;
vunmap_range(start, end);
err = execmem_set_direct_map_valid(vm, false);
if (err)
goto err_free_mem;
err = vmap_pages_range_noflush(start, end, range->pgprot, vm->pages,
PMD_SHIFT);
if (err)
goto err_free_mem;
err = execmem_cache_add(p, alloc_size);
if (err)
goto err_free_mem;
return 0;
err_free_mem:
vfree(p);
return err;
}
static void *execmem_cache_alloc(struct execmem_range *range, size_t size)
{
void *p;
int err;
p = __execmem_cache_alloc(range, size);
if (p)
return p;
err = execmem_cache_populate(range, size);
if (err)
return NULL;
return __execmem_cache_alloc(range, size);
}
static bool execmem_cache_free(void *ptr)
{
struct maple_tree *busy_areas = &execmem_cache.busy_areas;
struct mutex *mutex = &execmem_cache.mutex;
unsigned long addr = (unsigned long)ptr;
MA_STATE(mas, busy_areas, addr, addr);
size_t size;
void *area;
mutex_lock(mutex);
area = mas_walk(&mas);
if (!area) {
mutex_unlock(mutex);
return false;
}
size = mas_range_len(&mas);
mas_store_gfp(&mas, NULL, GFP_KERNEL);
mutex_unlock(mutex);
execmem_fill_trapping_insns(ptr, size, /* writable = */ false);
execmem_cache_add(ptr, size);
schedule_work(&execmem_cache_clean_work);
return true;
}
#else /* CONFIG_ARCH_HAS_EXECMEM_ROX */
static void *execmem_cache_alloc(struct execmem_range *range, size_t size)
{
return NULL;
}
static bool execmem_cache_free(void *ptr)
{
return false;
}
#endif /* CONFIG_ARCH_HAS_EXECMEM_ROX */
void *execmem_alloc(enum execmem_type type, size_t size)
{
struct execmem_range *range = &execmem_info->ranges[type];
bool use_cache = range->flags & EXECMEM_ROX_CACHE;
unsigned long vm_flags = VM_FLUSH_RESET_PERMS;
pgprot_t pgprot = range->pgprot;
void *p;
if (use_cache)
p = execmem_cache_alloc(range, size);
else
p = execmem_vmalloc(range, size, pgprot, vm_flags);
return kasan_reset_tag(p);
}
void execmem_free(void *ptr)
{
/*
* This memory may be RO, and freeing RO memory in an interrupt is not
* supported by vmalloc.
*/
WARN_ON(in_interrupt());
if (!execmem_cache_free(ptr))
vfree(ptr);
}
void *execmem_update_copy(void *dst, const void *src, size_t size)
{
return text_poke_copy(dst, src, size);
}
bool execmem_is_rox(enum execmem_type type)
{
return !!(execmem_info->ranges[type].flags & EXECMEM_ROX_CACHE);
}
static bool execmem_validate(struct execmem_info *info)
{
struct execmem_range *r = &info->ranges[EXECMEM_DEFAULT];
if (!r->alignment || !r->start || !r->end || !pgprot_val(r->pgprot)) {
pr_crit("Invalid parameters for execmem allocator, module loading will fail");
return false;
}
if (!IS_ENABLED(CONFIG_ARCH_HAS_EXECMEM_ROX)) {
for (int i = EXECMEM_DEFAULT; i < EXECMEM_TYPE_MAX; i++) {
r = &info->ranges[i];
if (r->flags & EXECMEM_ROX_CACHE) {
pr_warn_once("ROX cache is not supported\n");
r->flags &= ~EXECMEM_ROX_CACHE;
}
}
}
return true;
}
static void execmem_init_missing(struct execmem_info *info)
{
struct execmem_range *default_range = &info->ranges[EXECMEM_DEFAULT];
for (int i = EXECMEM_DEFAULT + 1; i < EXECMEM_TYPE_MAX; i++) {
struct execmem_range *r = &info->ranges[i];
if (!r->start) {
if (i == EXECMEM_MODULE_DATA)
r->pgprot = PAGE_KERNEL;
else
r->pgprot = default_range->pgprot;
r->alignment = default_range->alignment;
r->start = default_range->start;
r->end = default_range->end;
r->flags = default_range->flags;
r->fallback_start = default_range->fallback_start;
r->fallback_end = default_range->fallback_end;
}
}
}
struct execmem_info * __weak execmem_arch_setup(void)
{
return NULL;
}
static void __init __execmem_init(void)
{
struct execmem_info *info = execmem_arch_setup();
if (!info) {
info = execmem_info = &default_execmem_info;
info->ranges[EXECMEM_DEFAULT].start = VMALLOC_START;
info->ranges[EXECMEM_DEFAULT].end = VMALLOC_END;
info->ranges[EXECMEM_DEFAULT].pgprot = PAGE_KERNEL_EXEC;
info->ranges[EXECMEM_DEFAULT].alignment = 1;
}
if (!execmem_validate(info))
return;
execmem_init_missing(info);
execmem_info = info;
}
#ifdef CONFIG_ARCH_WANTS_EXECMEM_LATE
static int __init execmem_late_init(void)
{
__execmem_init();
return 0;
}
core_initcall(execmem_late_init);
#else
void __init execmem_init(void)
{
__execmem_init();
}
#endif