Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Oltean | 3500 | 65.37% | 47 | 44.34% |
Vivien Didelot | 1282 | 23.94% | 36 | 33.96% |
Tobias Waldekranz | 217 | 4.05% | 2 | 1.89% |
Lennert Buytenhek | 165 | 3.08% | 1 | 0.94% |
Arkadi Sharshevsky | 59 | 1.10% | 3 | 2.83% |
Florian Fainelli | 55 | 1.03% | 6 | 5.66% |
Andrew Lunn | 43 | 0.80% | 3 | 2.83% |
Chen-Yu Tsai | 9 | 0.17% | 1 | 0.94% |
David S. Miller | 8 | 0.15% | 1 | 0.94% |
Ioana Ciornei | 8 | 0.15% | 1 | 0.94% |
Horatiu Vultur | 2 | 0.04% | 1 | 0.94% |
Thomas Gleixner | 2 | 0.04% | 1 | 0.94% |
Jiri Pirko | 2 | 0.04% | 1 | 0.94% |
Guenter Roeck | 1 | 0.02% | 1 | 0.94% |
Alexander Duyck | 1 | 0.02% | 1 | 0.94% |
Total | 5354 | 106 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134
// SPDX-License-Identifier: GPL-2.0-or-later /* * Handling of a single switch chip, part of a switch fabric * * Copyright (c) 2017 Savoir-faire Linux Inc. * Vivien Didelot <vivien.didelot@savoirfairelinux.com> */ #include <linux/if_bridge.h> #include <linux/netdevice.h> #include <linux/notifier.h> #include <linux/if_vlan.h> #include <net/switchdev.h> #include "dsa.h" #include "netlink.h" #include "port.h" #include "switch.h" #include "tag_8021q.h" #include "trace.h" #include "user.h" static unsigned int dsa_switch_fastest_ageing_time(struct dsa_switch *ds, unsigned int ageing_time) { struct dsa_port *dp; dsa_switch_for_each_port(dp, ds) if (dp->ageing_time && dp->ageing_time < ageing_time) ageing_time = dp->ageing_time; return ageing_time; } static int dsa_switch_ageing_time(struct dsa_switch *ds, struct dsa_notifier_ageing_time_info *info) { unsigned int ageing_time = info->ageing_time; if (ds->ageing_time_min && ageing_time < ds->ageing_time_min) return -ERANGE; if (ds->ageing_time_max && ageing_time > ds->ageing_time_max) return -ERANGE; /* Program the fastest ageing time in case of multiple bridges */ ageing_time = dsa_switch_fastest_ageing_time(ds, ageing_time); if (ds->ops->set_ageing_time) return ds->ops->set_ageing_time(ds, ageing_time); return 0; } static bool dsa_port_mtu_match(struct dsa_port *dp, struct dsa_notifier_mtu_info *info) { return dp == info->dp || dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp); } static int dsa_switch_mtu(struct dsa_switch *ds, struct dsa_notifier_mtu_info *info) { struct dsa_port *dp; int ret; if (!ds->ops->port_change_mtu) return -EOPNOTSUPP; dsa_switch_for_each_port(dp, ds) { if (dsa_port_mtu_match(dp, info)) { ret = ds->ops->port_change_mtu(ds, dp->index, info->mtu); if (ret) return ret; } } return 0; } static int dsa_switch_bridge_join(struct dsa_switch *ds, struct dsa_notifier_bridge_info *info) { int err; if (info->dp->ds == ds) { if (!ds->ops->port_bridge_join) return -EOPNOTSUPP; err = ds->ops->port_bridge_join(ds, info->dp->index, info->bridge, &info->tx_fwd_offload, info->extack); if (err) return err; } if (info->dp->ds != ds && ds->ops->crosschip_bridge_join) { err = ds->ops->crosschip_bridge_join(ds, info->dp->ds->dst->index, info->dp->ds->index, info->dp->index, info->bridge, info->extack); if (err) return err; } return 0; } static int dsa_switch_bridge_leave(struct dsa_switch *ds, struct dsa_notifier_bridge_info *info) { if (info->dp->ds == ds && ds->ops->port_bridge_leave) ds->ops->port_bridge_leave(ds, info->dp->index, info->bridge); if (info->dp->ds != ds && ds->ops->crosschip_bridge_leave) ds->ops->crosschip_bridge_leave(ds, info->dp->ds->dst->index, info->dp->ds->index, info->dp->index, info->bridge); return 0; } /* Matches for all upstream-facing ports (the CPU port and all upstream-facing * DSA links) that sit between the targeted port on which the notifier was * emitted and its dedicated CPU port. */ static bool dsa_port_host_address_match(struct dsa_port *dp, const struct dsa_port *targeted_dp) { struct dsa_port *cpu_dp = targeted_dp->cpu_dp; if (dsa_switch_is_upstream_of(dp->ds, targeted_dp->ds)) return dp->index == dsa_towards_port(dp->ds, cpu_dp->ds->index, cpu_dp->index); return false; } static struct dsa_mac_addr *dsa_mac_addr_find(struct list_head *addr_list, const unsigned char *addr, u16 vid, struct dsa_db db) { struct dsa_mac_addr *a; list_for_each_entry(a, addr_list, list) if (ether_addr_equal(a->addr, addr) && a->vid == vid && dsa_db_equal(&a->db, &db)) return a; return NULL; } static int dsa_port_do_mdb_add(struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct dsa_switch *ds = dp->ds; struct dsa_mac_addr *a; int port = dp->index; int err = 0; /* No need to bother with refcounting for user ports */ if (!(dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp))) { err = ds->ops->port_mdb_add(ds, port, mdb, db); trace_dsa_mdb_add_hw(dp, mdb->addr, mdb->vid, &db, err); return err; } mutex_lock(&dp->addr_lists_lock); a = dsa_mac_addr_find(&dp->mdbs, mdb->addr, mdb->vid, db); if (a) { refcount_inc(&a->refcount); trace_dsa_mdb_add_bump(dp, mdb->addr, mdb->vid, &db, &a->refcount); goto out; } a = kzalloc(sizeof(*a), GFP_KERNEL); if (!a) { err = -ENOMEM; goto out; } err = ds->ops->port_mdb_add(ds, port, mdb, db); trace_dsa_mdb_add_hw(dp, mdb->addr, mdb->vid, &db, err); if (err) { kfree(a); goto out; } ether_addr_copy(a->addr, mdb->addr); a->vid = mdb->vid; a->db = db; refcount_set(&a->refcount, 1); list_add_tail(&a->list, &dp->mdbs); out: mutex_unlock(&dp->addr_lists_lock); return err; } static int dsa_port_do_mdb_del(struct dsa_port *dp, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct dsa_switch *ds = dp->ds; struct dsa_mac_addr *a; int port = dp->index; int err = 0; /* No need to bother with refcounting for user ports */ if (!(dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp))) { err = ds->ops->port_mdb_del(ds, port, mdb, db); trace_dsa_mdb_del_hw(dp, mdb->addr, mdb->vid, &db, err); return err; } mutex_lock(&dp->addr_lists_lock); a = dsa_mac_addr_find(&dp->mdbs, mdb->addr, mdb->vid, db); if (!a) { trace_dsa_mdb_del_not_found(dp, mdb->addr, mdb->vid, &db); err = -ENOENT; goto out; } if (!refcount_dec_and_test(&a->refcount)) { trace_dsa_mdb_del_drop(dp, mdb->addr, mdb->vid, &db, &a->refcount); goto out; } err = ds->ops->port_mdb_del(ds, port, mdb, db); trace_dsa_mdb_del_hw(dp, mdb->addr, mdb->vid, &db, err); if (err) { refcount_set(&a->refcount, 1); goto out; } list_del(&a->list); kfree(a); out: mutex_unlock(&dp->addr_lists_lock); return err; } static int dsa_port_do_fdb_add(struct dsa_port *dp, const unsigned char *addr, u16 vid, struct dsa_db db) { struct dsa_switch *ds = dp->ds; struct dsa_mac_addr *a; int port = dp->index; int err = 0; /* No need to bother with refcounting for user ports */ if (!(dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp))) { err = ds->ops->port_fdb_add(ds, port, addr, vid, db); trace_dsa_fdb_add_hw(dp, addr, vid, &db, err); return err; } mutex_lock(&dp->addr_lists_lock); a = dsa_mac_addr_find(&dp->fdbs, addr, vid, db); if (a) { refcount_inc(&a->refcount); trace_dsa_fdb_add_bump(dp, addr, vid, &db, &a->refcount); goto out; } a = kzalloc(sizeof(*a), GFP_KERNEL); if (!a) { err = -ENOMEM; goto out; } err = ds->ops->port_fdb_add(ds, port, addr, vid, db); trace_dsa_fdb_add_hw(dp, addr, vid, &db, err); if (err) { kfree(a); goto out; } ether_addr_copy(a->addr, addr); a->vid = vid; a->db = db; refcount_set(&a->refcount, 1); list_add_tail(&a->list, &dp->fdbs); out: mutex_unlock(&dp->addr_lists_lock); return err; } static int dsa_port_do_fdb_del(struct dsa_port *dp, const unsigned char *addr, u16 vid, struct dsa_db db) { struct dsa_switch *ds = dp->ds; struct dsa_mac_addr *a; int port = dp->index; int err = 0; /* No need to bother with refcounting for user ports */ if (!(dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp))) { err = ds->ops->port_fdb_del(ds, port, addr, vid, db); trace_dsa_fdb_del_hw(dp, addr, vid, &db, err); return err; } mutex_lock(&dp->addr_lists_lock); a = dsa_mac_addr_find(&dp->fdbs, addr, vid, db); if (!a) { trace_dsa_fdb_del_not_found(dp, addr, vid, &db); err = -ENOENT; goto out; } if (!refcount_dec_and_test(&a->refcount)) { trace_dsa_fdb_del_drop(dp, addr, vid, &db, &a->refcount); goto out; } err = ds->ops->port_fdb_del(ds, port, addr, vid, db); trace_dsa_fdb_del_hw(dp, addr, vid, &db, err); if (err) { refcount_set(&a->refcount, 1); goto out; } list_del(&a->list); kfree(a); out: mutex_unlock(&dp->addr_lists_lock); return err; } static int dsa_switch_do_lag_fdb_add(struct dsa_switch *ds, struct dsa_lag *lag, const unsigned char *addr, u16 vid, struct dsa_db db) { struct dsa_mac_addr *a; int err = 0; mutex_lock(&lag->fdb_lock); a = dsa_mac_addr_find(&lag->fdbs, addr, vid, db); if (a) { refcount_inc(&a->refcount); trace_dsa_lag_fdb_add_bump(lag->dev, addr, vid, &db, &a->refcount); goto out; } a = kzalloc(sizeof(*a), GFP_KERNEL); if (!a) { err = -ENOMEM; goto out; } err = ds->ops->lag_fdb_add(ds, *lag, addr, vid, db); trace_dsa_lag_fdb_add_hw(lag->dev, addr, vid, &db, err); if (err) { kfree(a); goto out; } ether_addr_copy(a->addr, addr); a->vid = vid; a->db = db; refcount_set(&a->refcount, 1); list_add_tail(&a->list, &lag->fdbs); out: mutex_unlock(&lag->fdb_lock); return err; } static int dsa_switch_do_lag_fdb_del(struct dsa_switch *ds, struct dsa_lag *lag, const unsigned char *addr, u16 vid, struct dsa_db db) { struct dsa_mac_addr *a; int err = 0; mutex_lock(&lag->fdb_lock); a = dsa_mac_addr_find(&lag->fdbs, addr, vid, db); if (!a) { trace_dsa_lag_fdb_del_not_found(lag->dev, addr, vid, &db); err = -ENOENT; goto out; } if (!refcount_dec_and_test(&a->refcount)) { trace_dsa_lag_fdb_del_drop(lag->dev, addr, vid, &db, &a->refcount); goto out; } err = ds->ops->lag_fdb_del(ds, *lag, addr, vid, db); trace_dsa_lag_fdb_del_hw(lag->dev, addr, vid, &db, err); if (err) { refcount_set(&a->refcount, 1); goto out; } list_del(&a->list); kfree(a); out: mutex_unlock(&lag->fdb_lock); return err; } static int dsa_switch_host_fdb_add(struct dsa_switch *ds, struct dsa_notifier_fdb_info *info) { struct dsa_port *dp; int err = 0; if (!ds->ops->port_fdb_add) return -EOPNOTSUPP; dsa_switch_for_each_port(dp, ds) { if (dsa_port_host_address_match(dp, info->dp)) { if (dsa_port_is_cpu(dp) && info->dp->cpu_port_in_lag) { err = dsa_switch_do_lag_fdb_add(ds, dp->lag, info->addr, info->vid, info->db); } else { err = dsa_port_do_fdb_add(dp, info->addr, info->vid, info->db); } if (err) break; } } return err; } static int dsa_switch_host_fdb_del(struct dsa_switch *ds, struct dsa_notifier_fdb_info *info) { struct dsa_port *dp; int err = 0; if (!ds->ops->port_fdb_del) return -EOPNOTSUPP; dsa_switch_for_each_port(dp, ds) { if (dsa_port_host_address_match(dp, info->dp)) { if (dsa_port_is_cpu(dp) && info->dp->cpu_port_in_lag) { err = dsa_switch_do_lag_fdb_del(ds, dp->lag, info->addr, info->vid, info->db); } else { err = dsa_port_do_fdb_del(dp, info->addr, info->vid, info->db); } if (err) break; } } return err; } static int dsa_switch_fdb_add(struct dsa_switch *ds, struct dsa_notifier_fdb_info *info) { int port = dsa_towards_port(ds, info->dp->ds->index, info->dp->index); struct dsa_port *dp = dsa_to_port(ds, port); if (!ds->ops->port_fdb_add) return -EOPNOTSUPP; return dsa_port_do_fdb_add(dp, info->addr, info->vid, info->db); } static int dsa_switch_fdb_del(struct dsa_switch *ds, struct dsa_notifier_fdb_info *info) { int port = dsa_towards_port(ds, info->dp->ds->index, info->dp->index); struct dsa_port *dp = dsa_to_port(ds, port); if (!ds->ops->port_fdb_del) return -EOPNOTSUPP; return dsa_port_do_fdb_del(dp, info->addr, info->vid, info->db); } static int dsa_switch_lag_fdb_add(struct dsa_switch *ds, struct dsa_notifier_lag_fdb_info *info) { struct dsa_port *dp; if (!ds->ops->lag_fdb_add) return -EOPNOTSUPP; /* Notify switch only if it has a port in this LAG */ dsa_switch_for_each_port(dp, ds) if (dsa_port_offloads_lag(dp, info->lag)) return dsa_switch_do_lag_fdb_add(ds, info->lag, info->addr, info->vid, info->db); return 0; } static int dsa_switch_lag_fdb_del(struct dsa_switch *ds, struct dsa_notifier_lag_fdb_info *info) { struct dsa_port *dp; if (!ds->ops->lag_fdb_del) return -EOPNOTSUPP; /* Notify switch only if it has a port in this LAG */ dsa_switch_for_each_port(dp, ds) if (dsa_port_offloads_lag(dp, info->lag)) return dsa_switch_do_lag_fdb_del(ds, info->lag, info->addr, info->vid, info->db); return 0; } static int dsa_switch_lag_change(struct dsa_switch *ds, struct dsa_notifier_lag_info *info) { if (info->dp->ds == ds && ds->ops->port_lag_change) return ds->ops->port_lag_change(ds, info->dp->index); if (info->dp->ds != ds && ds->ops->crosschip_lag_change) return ds->ops->crosschip_lag_change(ds, info->dp->ds->index, info->dp->index); return 0; } static int dsa_switch_lag_join(struct dsa_switch *ds, struct dsa_notifier_lag_info *info) { if (info->dp->ds == ds && ds->ops->port_lag_join) return ds->ops->port_lag_join(ds, info->dp->index, info->lag, info->info, info->extack); if (info->dp->ds != ds && ds->ops->crosschip_lag_join) return ds->ops->crosschip_lag_join(ds, info->dp->ds->index, info->dp->index, info->lag, info->info, info->extack); return -EOPNOTSUPP; } static int dsa_switch_lag_leave(struct dsa_switch *ds, struct dsa_notifier_lag_info *info) { if (info->dp->ds == ds && ds->ops->port_lag_leave) return ds->ops->port_lag_leave(ds, info->dp->index, info->lag); if (info->dp->ds != ds && ds->ops->crosschip_lag_leave) return ds->ops->crosschip_lag_leave(ds, info->dp->ds->index, info->dp->index, info->lag); return -EOPNOTSUPP; } static int dsa_switch_mdb_add(struct dsa_switch *ds, struct dsa_notifier_mdb_info *info) { int port = dsa_towards_port(ds, info->dp->ds->index, info->dp->index); struct dsa_port *dp = dsa_to_port(ds, port); if (!ds->ops->port_mdb_add) return -EOPNOTSUPP; return dsa_port_do_mdb_add(dp, info->mdb, info->db); } static int dsa_switch_mdb_del(struct dsa_switch *ds, struct dsa_notifier_mdb_info *info) { int port = dsa_towards_port(ds, info->dp->ds->index, info->dp->index); struct dsa_port *dp = dsa_to_port(ds, port); if (!ds->ops->port_mdb_del) return -EOPNOTSUPP; return dsa_port_do_mdb_del(dp, info->mdb, info->db); } static int dsa_switch_host_mdb_add(struct dsa_switch *ds, struct dsa_notifier_mdb_info *info) { struct dsa_port *dp; int err = 0; if (!ds->ops->port_mdb_add) return -EOPNOTSUPP; dsa_switch_for_each_port(dp, ds) { if (dsa_port_host_address_match(dp, info->dp)) { err = dsa_port_do_mdb_add(dp, info->mdb, info->db); if (err) break; } } return err; } static int dsa_switch_host_mdb_del(struct dsa_switch *ds, struct dsa_notifier_mdb_info *info) { struct dsa_port *dp; int err = 0; if (!ds->ops->port_mdb_del) return -EOPNOTSUPP; dsa_switch_for_each_port(dp, ds) { if (dsa_port_host_address_match(dp, info->dp)) { err = dsa_port_do_mdb_del(dp, info->mdb, info->db); if (err) break; } } return err; } /* Port VLANs match on the targeted port and on all DSA ports */ static bool dsa_port_vlan_match(struct dsa_port *dp, struct dsa_notifier_vlan_info *info) { return dsa_port_is_dsa(dp) || dp == info->dp; } /* Host VLANs match on the targeted port's CPU port, and on all DSA ports * (upstream and downstream) of that switch and its upstream switches. */ static bool dsa_port_host_vlan_match(struct dsa_port *dp, const struct dsa_port *targeted_dp) { struct dsa_port *cpu_dp = targeted_dp->cpu_dp; if (dsa_switch_is_upstream_of(dp->ds, targeted_dp->ds)) return dsa_port_is_dsa(dp) || dp == cpu_dp; return false; } struct dsa_vlan *dsa_vlan_find(struct list_head *vlan_list, const struct switchdev_obj_port_vlan *vlan) { struct dsa_vlan *v; list_for_each_entry(v, vlan_list, list) if (v->vid == vlan->vid) return v; return NULL; } static int dsa_port_do_vlan_add(struct dsa_port *dp, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { struct dsa_switch *ds = dp->ds; int port = dp->index; struct dsa_vlan *v; int err = 0; /* No need to bother with refcounting for user ports. */ if (!(dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp))) { err = ds->ops->port_vlan_add(ds, port, vlan, extack); trace_dsa_vlan_add_hw(dp, vlan, err); return err; } /* No need to propagate on shared ports the existing VLANs that were * re-notified after just the flags have changed. This would cause a * refcount bump which we need to avoid, since it unbalances the * additions with the deletions. */ if (vlan->changed) return 0; mutex_lock(&dp->vlans_lock); v = dsa_vlan_find(&dp->vlans, vlan); if (v) { refcount_inc(&v->refcount); trace_dsa_vlan_add_bump(dp, vlan, &v->refcount); goto out; } v = kzalloc(sizeof(*v), GFP_KERNEL); if (!v) { err = -ENOMEM; goto out; } err = ds->ops->port_vlan_add(ds, port, vlan, extack); trace_dsa_vlan_add_hw(dp, vlan, err); if (err) { kfree(v); goto out; } v->vid = vlan->vid; refcount_set(&v->refcount, 1); list_add_tail(&v->list, &dp->vlans); out: mutex_unlock(&dp->vlans_lock); return err; } static int dsa_port_do_vlan_del(struct dsa_port *dp, const struct switchdev_obj_port_vlan *vlan) { struct dsa_switch *ds = dp->ds; int port = dp->index; struct dsa_vlan *v; int err = 0; /* No need to bother with refcounting for user ports */ if (!(dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp))) { err = ds->ops->port_vlan_del(ds, port, vlan); trace_dsa_vlan_del_hw(dp, vlan, err); return err; } mutex_lock(&dp->vlans_lock); v = dsa_vlan_find(&dp->vlans, vlan); if (!v) { trace_dsa_vlan_del_not_found(dp, vlan); err = -ENOENT; goto out; } if (!refcount_dec_and_test(&v->refcount)) { trace_dsa_vlan_del_drop(dp, vlan, &v->refcount); goto out; } err = ds->ops->port_vlan_del(ds, port, vlan); trace_dsa_vlan_del_hw(dp, vlan, err); if (err) { refcount_set(&v->refcount, 1); goto out; } list_del(&v->list); kfree(v); out: mutex_unlock(&dp->vlans_lock); return err; } static int dsa_switch_vlan_add(struct dsa_switch *ds, struct dsa_notifier_vlan_info *info) { struct dsa_port *dp; int err; if (!ds->ops->port_vlan_add) return -EOPNOTSUPP; dsa_switch_for_each_port(dp, ds) { if (dsa_port_vlan_match(dp, info)) { err = dsa_port_do_vlan_add(dp, info->vlan, info->extack); if (err) return err; } } return 0; } static int dsa_switch_vlan_del(struct dsa_switch *ds, struct dsa_notifier_vlan_info *info) { struct dsa_port *dp; int err; if (!ds->ops->port_vlan_del) return -EOPNOTSUPP; dsa_switch_for_each_port(dp, ds) { if (dsa_port_vlan_match(dp, info)) { err = dsa_port_do_vlan_del(dp, info->vlan); if (err) return err; } } return 0; } static int dsa_switch_host_vlan_add(struct dsa_switch *ds, struct dsa_notifier_vlan_info *info) { struct dsa_port *dp; int err; if (!ds->ops->port_vlan_add) return -EOPNOTSUPP; dsa_switch_for_each_port(dp, ds) { if (dsa_port_host_vlan_match(dp, info->dp)) { err = dsa_port_do_vlan_add(dp, info->vlan, info->extack); if (err) return err; } } return 0; } static int dsa_switch_host_vlan_del(struct dsa_switch *ds, struct dsa_notifier_vlan_info *info) { struct dsa_port *dp; int err; if (!ds->ops->port_vlan_del) return -EOPNOTSUPP; dsa_switch_for_each_port(dp, ds) { if (dsa_port_host_vlan_match(dp, info->dp)) { err = dsa_port_do_vlan_del(dp, info->vlan); if (err) return err; } } return 0; } static int dsa_switch_change_tag_proto(struct dsa_switch *ds, struct dsa_notifier_tag_proto_info *info) { const struct dsa_device_ops *tag_ops = info->tag_ops; struct dsa_port *dp, *cpu_dp; int err; if (!ds->ops->change_tag_protocol) return -EOPNOTSUPP; ASSERT_RTNL(); err = ds->ops->change_tag_protocol(ds, tag_ops->proto); if (err) return err; dsa_switch_for_each_cpu_port(cpu_dp, ds) dsa_port_set_tag_protocol(cpu_dp, tag_ops); /* Now that changing the tag protocol can no longer fail, let's update * the remaining bits which are "duplicated for faster access", and the * bits that depend on the tagger, such as the MTU. */ dsa_switch_for_each_user_port(dp, ds) { struct net_device *user = dp->user; dsa_user_setup_tagger(user); /* rtnl_mutex is held in dsa_tree_change_tag_proto */ dsa_user_change_mtu(user, user->mtu); } return 0; } /* We use the same cross-chip notifiers to inform both the tagger side, as well * as the switch side, of connection and disconnection events. * Since ds->tagger_data is owned by the tagger, it isn't a hard error if the * switch side doesn't support connecting to this tagger, and therefore, the * fact that we don't disconnect the tagger side doesn't constitute a memory * leak: the tagger will still operate with persistent per-switch memory, just * with the switch side unconnected to it. What does constitute a hard error is * when the switch side supports connecting but fails. */ static int dsa_switch_connect_tag_proto(struct dsa_switch *ds, struct dsa_notifier_tag_proto_info *info) { const struct dsa_device_ops *tag_ops = info->tag_ops; int err; /* Notify the new tagger about the connection to this switch */ if (tag_ops->connect) { err = tag_ops->connect(ds); if (err) return err; } if (!ds->ops->connect_tag_protocol) return -EOPNOTSUPP; /* Notify the switch about the connection to the new tagger */ err = ds->ops->connect_tag_protocol(ds, tag_ops->proto); if (err) { /* Revert the new tagger's connection to this tree */ if (tag_ops->disconnect) tag_ops->disconnect(ds); return err; } return 0; } static int dsa_switch_disconnect_tag_proto(struct dsa_switch *ds, struct dsa_notifier_tag_proto_info *info) { const struct dsa_device_ops *tag_ops = info->tag_ops; /* Notify the tagger about the disconnection from this switch */ if (tag_ops->disconnect && ds->tagger_data) tag_ops->disconnect(ds); /* No need to notify the switch, since it shouldn't have any * resources to tear down */ return 0; } static int dsa_switch_conduit_state_change(struct dsa_switch *ds, struct dsa_notifier_conduit_state_info *info) { if (!ds->ops->conduit_state_change) return 0; ds->ops->conduit_state_change(ds, info->conduit, info->operational); return 0; } static int dsa_switch_event(struct notifier_block *nb, unsigned long event, void *info) { struct dsa_switch *ds = container_of(nb, struct dsa_switch, nb); int err; switch (event) { case DSA_NOTIFIER_AGEING_TIME: err = dsa_switch_ageing_time(ds, info); break; case DSA_NOTIFIER_BRIDGE_JOIN: err = dsa_switch_bridge_join(ds, info); break; case DSA_NOTIFIER_BRIDGE_LEAVE: err = dsa_switch_bridge_leave(ds, info); break; case DSA_NOTIFIER_FDB_ADD: err = dsa_switch_fdb_add(ds, info); break; case DSA_NOTIFIER_FDB_DEL: err = dsa_switch_fdb_del(ds, info); break; case DSA_NOTIFIER_HOST_FDB_ADD: err = dsa_switch_host_fdb_add(ds, info); break; case DSA_NOTIFIER_HOST_FDB_DEL: err = dsa_switch_host_fdb_del(ds, info); break; case DSA_NOTIFIER_LAG_FDB_ADD: err = dsa_switch_lag_fdb_add(ds, info); break; case DSA_NOTIFIER_LAG_FDB_DEL: err = dsa_switch_lag_fdb_del(ds, info); break; case DSA_NOTIFIER_LAG_CHANGE: err = dsa_switch_lag_change(ds, info); break; case DSA_NOTIFIER_LAG_JOIN: err = dsa_switch_lag_join(ds, info); break; case DSA_NOTIFIER_LAG_LEAVE: err = dsa_switch_lag_leave(ds, info); break; case DSA_NOTIFIER_MDB_ADD: err = dsa_switch_mdb_add(ds, info); break; case DSA_NOTIFIER_MDB_DEL: err = dsa_switch_mdb_del(ds, info); break; case DSA_NOTIFIER_HOST_MDB_ADD: err = dsa_switch_host_mdb_add(ds, info); break; case DSA_NOTIFIER_HOST_MDB_DEL: err = dsa_switch_host_mdb_del(ds, info); break; case DSA_NOTIFIER_VLAN_ADD: err = dsa_switch_vlan_add(ds, info); break; case DSA_NOTIFIER_VLAN_DEL: err = dsa_switch_vlan_del(ds, info); break; case DSA_NOTIFIER_HOST_VLAN_ADD: err = dsa_switch_host_vlan_add(ds, info); break; case DSA_NOTIFIER_HOST_VLAN_DEL: err = dsa_switch_host_vlan_del(ds, info); break; case DSA_NOTIFIER_MTU: err = dsa_switch_mtu(ds, info); break; case DSA_NOTIFIER_TAG_PROTO: err = dsa_switch_change_tag_proto(ds, info); break; case DSA_NOTIFIER_TAG_PROTO_CONNECT: err = dsa_switch_connect_tag_proto(ds, info); break; case DSA_NOTIFIER_TAG_PROTO_DISCONNECT: err = dsa_switch_disconnect_tag_proto(ds, info); break; case DSA_NOTIFIER_TAG_8021Q_VLAN_ADD: err = dsa_switch_tag_8021q_vlan_add(ds, info); break; case DSA_NOTIFIER_TAG_8021Q_VLAN_DEL: err = dsa_switch_tag_8021q_vlan_del(ds, info); break; case DSA_NOTIFIER_CONDUIT_STATE_CHANGE: err = dsa_switch_conduit_state_change(ds, info); break; default: err = -EOPNOTSUPP; break; } if (err) dev_dbg(ds->dev, "breaking chain for DSA event %lu (%d)\n", event, err); return notifier_from_errno(err); } /** * dsa_tree_notify - Execute code for all switches in a DSA switch tree. * @dst: collection of struct dsa_switch devices to notify. * @e: event, must be of type DSA_NOTIFIER_* * @v: event-specific value. * * Given a struct dsa_switch_tree, this can be used to run a function once for * each member DSA switch. The other alternative of traversing the tree is only * through its ports list, which does not uniquely list the switches. */ int dsa_tree_notify(struct dsa_switch_tree *dst, unsigned long e, void *v) { struct raw_notifier_head *nh = &dst->nh; int err; err = raw_notifier_call_chain(nh, e, v); return notifier_to_errno(err); } /** * dsa_broadcast - Notify all DSA trees in the system. * @e: event, must be of type DSA_NOTIFIER_* * @v: event-specific value. * * Can be used to notify the switching fabric of events such as cross-chip * bridging between disjoint trees (such as islands of tagger-compatible * switches bridged by an incompatible middle switch). * * WARNING: this function is not reliable during probe time, because probing * between trees is asynchronous and not all DSA trees might have probed. */ int dsa_broadcast(unsigned long e, void *v) { struct dsa_switch_tree *dst; int err = 0; list_for_each_entry(dst, &dsa_tree_list, list) { err = dsa_tree_notify(dst, e, v); if (err) break; } return err; } int dsa_switch_register_notifier(struct dsa_switch *ds) { ds->nb.notifier_call = dsa_switch_event; return raw_notifier_chain_register(&ds->dst->nh, &ds->nb); } void dsa_switch_unregister_notifier(struct dsa_switch *ds) { int err; err = raw_notifier_chain_unregister(&ds->dst->nh, &ds->nb); if (err) dev_err(ds->dev, "failed to unregister notifier (%d)\n", err); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1