Contributors: 8
Author Tokens Token Proportion Commits Commit Proportion
Syed Saba kareem 1564 68.90% 8 34.78%
Ajit Kumar Pandey 304 13.39% 5 21.74%
Vijendar Mukunda 218 9.60% 4 17.39%
V Sujith Kumar Reddy 118 5.20% 2 8.70%
Venkata Prasad Potturu 48 2.11% 1 4.35%
Peter Zijlstra 9 0.40% 1 4.35%
Jeff Johnson 5 0.22% 1 4.35%
Kuninori Morimoto 4 0.18% 1 4.35%
Total 2270 23

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
//
// This file is provided under a dual BSD/GPLv2 license. When using or
// redistributing this file, you may do so under either license.
//
// Copyright(c) 2023 Advanced Micro Devices, Inc.
//
// Authors: Syed Saba Kareem <Syed.SabaKareem@amd.com>
//

/*
 * Common file to be used by amd platforms
 */

#include "amd.h"
#include <linux/pci.h>
#include <linux/export.h>

#define ACP_RENOIR_PDM_ADDR	0x02
#define ACP_REMBRANDT_PDM_ADDR	0x03
#define ACP63_PDM_ADDR		0x02
#define ACP70_PDM_ADDR		0x02

void acp_enable_interrupts(struct acp_dev_data *adata)
{
	struct acp_resource *rsrc = adata->rsrc;
	u32 ext_intr_ctrl;

	writel(0x01, ACP_EXTERNAL_INTR_ENB(adata));
	ext_intr_ctrl = readl(ACP_EXTERNAL_INTR_CNTL(adata, rsrc->irqp_used));
	ext_intr_ctrl |= ACP_ERROR_MASK;
	writel(ext_intr_ctrl, ACP_EXTERNAL_INTR_CNTL(adata, rsrc->irqp_used));
}
EXPORT_SYMBOL_NS_GPL(acp_enable_interrupts, "SND_SOC_ACP_COMMON");

void acp_disable_interrupts(struct acp_dev_data *adata)
{
	struct acp_resource *rsrc = adata->rsrc;

	writel(ACP_EXT_INTR_STAT_CLEAR_MASK, ACP_EXTERNAL_INTR_STAT(adata, rsrc->irqp_used));
	writel(0x00, ACP_EXTERNAL_INTR_ENB(adata));
}
EXPORT_SYMBOL_NS_GPL(acp_disable_interrupts, "SND_SOC_ACP_COMMON");

static void set_acp_pdm_ring_buffer(struct snd_pcm_substream *substream,
				    struct snd_soc_dai *dai)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	struct acp_stream *stream = runtime->private_data;
	struct device *dev = dai->component->dev;
	struct acp_dev_data *adata = dev_get_drvdata(dev);

	u32 physical_addr, pdm_size, period_bytes;

	period_bytes = frames_to_bytes(runtime, runtime->period_size);
	pdm_size = frames_to_bytes(runtime, runtime->buffer_size);
	physical_addr = stream->reg_offset + MEM_WINDOW_START;

	/* Init ACP PDM Ring buffer */
	writel(physical_addr, adata->acp_base + ACP_WOV_RX_RINGBUFADDR);
	writel(pdm_size, adata->acp_base + ACP_WOV_RX_RINGBUFSIZE);
	writel(period_bytes, adata->acp_base + ACP_WOV_RX_INTR_WATERMARK_SIZE);
	writel(0x01, adata->acp_base + ACPAXI2AXI_ATU_CTRL);
}

static void set_acp_pdm_clk(struct snd_pcm_substream *substream,
			    struct snd_soc_dai *dai)
{
	struct device *dev = dai->component->dev;
	struct acp_dev_data *adata = dev_get_drvdata(dev);
	unsigned int pdm_ctrl;

	/* Enable default ACP PDM clk */
	writel(PDM_CLK_FREQ_MASK, adata->acp_base + ACP_WOV_CLK_CTRL);
	pdm_ctrl = readl(adata->acp_base + ACP_WOV_MISC_CTRL);
	pdm_ctrl |= PDM_MISC_CTRL_MASK;
	writel(pdm_ctrl, adata->acp_base + ACP_WOV_MISC_CTRL);
	set_acp_pdm_ring_buffer(substream, dai);
}

void restore_acp_pdm_params(struct snd_pcm_substream *substream,
			    struct acp_dev_data *adata)
{
	struct snd_soc_dai *dai;
	struct snd_soc_pcm_runtime *soc_runtime;
	u32 ext_int_ctrl;

	soc_runtime = snd_soc_substream_to_rtd(substream);
	dai = snd_soc_rtd_to_cpu(soc_runtime, 0);
	/* Programming channel mask and sampling rate */
	writel(adata->ch_mask, adata->acp_base + ACP_WOV_PDM_NO_OF_CHANNELS);
	writel(PDM_DEC_64, adata->acp_base + ACP_WOV_PDM_DECIMATION_FACTOR);

	/* Enabling ACP Pdm interuppts */
	ext_int_ctrl = readl(ACP_EXTERNAL_INTR_CNTL(adata, 0));
	ext_int_ctrl |= PDM_DMA_INTR_MASK;
	writel(ext_int_ctrl, ACP_EXTERNAL_INTR_CNTL(adata, 0));
	set_acp_pdm_clk(substream, dai);
}
EXPORT_SYMBOL_NS_GPL(restore_acp_pdm_params, "SND_SOC_ACP_COMMON");

static int set_acp_i2s_dma_fifo(struct snd_pcm_substream *substream,
				struct snd_soc_dai *dai)
{
	struct device *dev = dai->component->dev;
	struct acp_dev_data *adata = dev_get_drvdata(dev);
	struct acp_resource *rsrc = adata->rsrc;
	struct acp_stream *stream = substream->runtime->private_data;
	u32 reg_dma_size, reg_fifo_size, reg_fifo_addr;
	u32 phy_addr, acp_fifo_addr, ext_int_ctrl;
	unsigned int dir = substream->stream;

	switch (dai->driver->id) {
	case I2S_SP_INSTANCE:
		if (dir == SNDRV_PCM_STREAM_PLAYBACK) {
			reg_dma_size = ACP_I2S_TX_DMA_SIZE(adata);
			acp_fifo_addr = rsrc->sram_pte_offset +
					SP_PB_FIFO_ADDR_OFFSET;
			reg_fifo_addr = ACP_I2S_TX_FIFOADDR(adata);
			reg_fifo_size = ACP_I2S_TX_FIFOSIZE(adata);
			phy_addr = I2S_SP_TX_MEM_WINDOW_START + stream->reg_offset;
			writel(phy_addr, adata->acp_base + ACP_I2S_TX_RINGBUFADDR(adata));
		} else {
			reg_dma_size = ACP_I2S_RX_DMA_SIZE(adata);
			acp_fifo_addr = rsrc->sram_pte_offset +
					SP_CAPT_FIFO_ADDR_OFFSET;
			reg_fifo_addr = ACP_I2S_RX_FIFOADDR(adata);
			reg_fifo_size = ACP_I2S_RX_FIFOSIZE(adata);
			phy_addr = I2S_SP_RX_MEM_WINDOW_START + stream->reg_offset;
			writel(phy_addr, adata->acp_base + ACP_I2S_RX_RINGBUFADDR(adata));
		}
		break;
	case I2S_BT_INSTANCE:
		if (dir == SNDRV_PCM_STREAM_PLAYBACK) {
			reg_dma_size = ACP_BT_TX_DMA_SIZE(adata);
			acp_fifo_addr = rsrc->sram_pte_offset +
					BT_PB_FIFO_ADDR_OFFSET;
			reg_fifo_addr = ACP_BT_TX_FIFOADDR(adata);
			reg_fifo_size = ACP_BT_TX_FIFOSIZE(adata);
			phy_addr = I2S_BT_TX_MEM_WINDOW_START + stream->reg_offset;
			writel(phy_addr, adata->acp_base + ACP_BT_TX_RINGBUFADDR(adata));
		} else {
			reg_dma_size = ACP_BT_RX_DMA_SIZE(adata);
			acp_fifo_addr = rsrc->sram_pte_offset +
					BT_CAPT_FIFO_ADDR_OFFSET;
			reg_fifo_addr = ACP_BT_RX_FIFOADDR(adata);
			reg_fifo_size = ACP_BT_RX_FIFOSIZE(adata);
			phy_addr = I2S_BT_TX_MEM_WINDOW_START + stream->reg_offset;
			writel(phy_addr, adata->acp_base + ACP_BT_RX_RINGBUFADDR(adata));
		}
		break;
	case I2S_HS_INSTANCE:
		if (dir == SNDRV_PCM_STREAM_PLAYBACK) {
			reg_dma_size = ACP_HS_TX_DMA_SIZE;
			acp_fifo_addr = rsrc->sram_pte_offset +
					HS_PB_FIFO_ADDR_OFFSET;
			reg_fifo_addr = ACP_HS_TX_FIFOADDR;
			reg_fifo_size = ACP_HS_TX_FIFOSIZE;
			phy_addr = I2S_HS_TX_MEM_WINDOW_START + stream->reg_offset;
			writel(phy_addr, adata->acp_base + ACP_HS_TX_RINGBUFADDR);
		} else {
			reg_dma_size = ACP_HS_RX_DMA_SIZE;
			acp_fifo_addr = rsrc->sram_pte_offset +
					HS_CAPT_FIFO_ADDR_OFFSET;
			reg_fifo_addr = ACP_HS_RX_FIFOADDR;
			reg_fifo_size = ACP_HS_RX_FIFOSIZE;
			phy_addr = I2S_HS_RX_MEM_WINDOW_START + stream->reg_offset;
			writel(phy_addr, adata->acp_base + ACP_HS_RX_RINGBUFADDR);
		}
		break;
	default:
		dev_err(dev, "Invalid dai id %x\n", dai->driver->id);
		return -EINVAL;
	}

	writel(DMA_SIZE, adata->acp_base + reg_dma_size);
	writel(acp_fifo_addr, adata->acp_base + reg_fifo_addr);
	writel(FIFO_SIZE, adata->acp_base + reg_fifo_size);

	ext_int_ctrl = readl(ACP_EXTERNAL_INTR_CNTL(adata, rsrc->irqp_used));
	ext_int_ctrl |= BIT(I2S_RX_THRESHOLD(rsrc->offset)) |
			BIT(BT_RX_THRESHOLD(rsrc->offset)) |
			BIT(I2S_TX_THRESHOLD(rsrc->offset)) |
			BIT(BT_TX_THRESHOLD(rsrc->offset)) |
			BIT(HS_RX_THRESHOLD(rsrc->offset)) |
			BIT(HS_TX_THRESHOLD(rsrc->offset));

	writel(ext_int_ctrl, ACP_EXTERNAL_INTR_CNTL(adata, rsrc->irqp_used));
	return 0;
}

int restore_acp_i2s_params(struct snd_pcm_substream *substream,
			   struct acp_dev_data *adata,
			   struct acp_stream *stream)
{
	struct snd_soc_dai *dai;
	struct snd_soc_pcm_runtime *soc_runtime;
	u32 tdm_fmt, reg_val, fmt_reg, val;

	soc_runtime = snd_soc_substream_to_rtd(substream);
	dai = snd_soc_rtd_to_cpu(soc_runtime, 0);
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
		tdm_fmt = adata->tdm_tx_fmt[stream->dai_id - 1];
		switch (stream->dai_id) {
		case I2S_BT_INSTANCE:
			reg_val = ACP_BTTDM_ITER;
			fmt_reg = ACP_BTTDM_TXFRMT;
			break;
		case I2S_SP_INSTANCE:
			reg_val = ACP_I2STDM_ITER;
			fmt_reg = ACP_I2STDM_TXFRMT;
			break;
		case I2S_HS_INSTANCE:
			reg_val = ACP_HSTDM_ITER;
			fmt_reg = ACP_HSTDM_TXFRMT;
			break;
		default:
			pr_err("Invalid dai id %x\n", stream->dai_id);
			return -EINVAL;
		}
		val = adata->xfer_tx_resolution[stream->dai_id - 1] << 3;
	} else {
		tdm_fmt = adata->tdm_rx_fmt[stream->dai_id - 1];
		switch (stream->dai_id) {
		case I2S_BT_INSTANCE:
			reg_val = ACP_BTTDM_IRER;
			fmt_reg = ACP_BTTDM_RXFRMT;
			break;
		case I2S_SP_INSTANCE:
			reg_val = ACP_I2STDM_IRER;
			fmt_reg = ACP_I2STDM_RXFRMT;
			break;
		case I2S_HS_INSTANCE:
			reg_val = ACP_HSTDM_IRER;
			fmt_reg = ACP_HSTDM_RXFRMT;
			break;
		default:
			pr_err("Invalid dai id %x\n", stream->dai_id);
			return -EINVAL;
		}
		val = adata->xfer_rx_resolution[stream->dai_id - 1] << 3;
	}
	writel(val, adata->acp_base + reg_val);
	if (adata->tdm_mode == TDM_ENABLE) {
		writel(tdm_fmt, adata->acp_base + fmt_reg);
		val = readl(adata->acp_base + reg_val);
		writel(val | 0x2, adata->acp_base + reg_val);
	}
	return set_acp_i2s_dma_fifo(substream, dai);
}
EXPORT_SYMBOL_NS_GPL(restore_acp_i2s_params, "SND_SOC_ACP_COMMON");

static int acp_power_on(struct acp_chip_info *chip)
{
	u32 val, acp_pgfsm_stat_reg, acp_pgfsm_ctrl_reg;
	void __iomem *base;

	base = chip->base;
	switch (chip->acp_rev) {
	case ACP_RN_PCI_ID:
		acp_pgfsm_stat_reg = ACP_PGFSM_STATUS;
		acp_pgfsm_ctrl_reg = ACP_PGFSM_CONTROL;
		break;
	case ACP_RMB_PCI_ID:
		acp_pgfsm_stat_reg = ACP6X_PGFSM_STATUS;
		acp_pgfsm_ctrl_reg = ACP6X_PGFSM_CONTROL;
		break;
	case ACP63_PCI_ID:
		acp_pgfsm_stat_reg = ACP63_PGFSM_STATUS;
		acp_pgfsm_ctrl_reg = ACP63_PGFSM_CONTROL;
		break;
	case ACP70_PCI_ID:
	case ACP71_PCI_ID:
		acp_pgfsm_stat_reg = ACP70_PGFSM_STATUS;
		acp_pgfsm_ctrl_reg = ACP70_PGFSM_CONTROL;
		break;
	default:
		return -EINVAL;
	}

	val = readl(base + acp_pgfsm_stat_reg);
	if (val == ACP_POWERED_ON)
		return 0;

	if ((val & ACP_PGFSM_STATUS_MASK) != ACP_POWER_ON_IN_PROGRESS)
		writel(ACP_PGFSM_CNTL_POWER_ON_MASK, base + acp_pgfsm_ctrl_reg);

	return readl_poll_timeout(base + acp_pgfsm_stat_reg, val,
				  !val, DELAY_US, ACP_TIMEOUT);
}

static int acp_reset(void __iomem *base)
{
	u32 val;
	int ret;

	writel(1, base + ACP_SOFT_RESET);
	ret = readl_poll_timeout(base + ACP_SOFT_RESET, val, val & ACP_SOFT_RST_DONE_MASK,
				 DELAY_US, ACP_TIMEOUT);
	if (ret)
		return ret;

	writel(0, base + ACP_SOFT_RESET);
	return readl_poll_timeout(base + ACP_SOFT_RESET, val, !val, DELAY_US, ACP_TIMEOUT);
}

int acp_init(struct acp_chip_info *chip)
{
	int ret;

	/* power on */
	ret = acp_power_on(chip);
	if (ret) {
		pr_err("ACP power on failed\n");
		return ret;
	}
	writel(0x01, chip->base + ACP_CONTROL);

	/* Reset */
	ret = acp_reset(chip->base);
	if (ret) {
		pr_err("ACP reset failed\n");
		return ret;
	}
	if (chip->acp_rev >= ACP70_PCI_ID)
		writel(0, chip->base + ACP_ZSC_DSP_CTRL);
	return 0;
}
EXPORT_SYMBOL_NS_GPL(acp_init, "SND_SOC_ACP_COMMON");

int acp_deinit(struct acp_chip_info *chip)
{
	int ret;

	/* Reset */
	ret = acp_reset(chip->base);
	if (ret)
		return ret;

	if (chip->acp_rev < ACP70_PCI_ID)
		writel(0, chip->base + ACP_CONTROL);
	else
		writel(0x01, chip->base + ACP_ZSC_DSP_CTRL);
	return 0;
}
EXPORT_SYMBOL_NS_GPL(acp_deinit, "SND_SOC_ACP_COMMON");

int smn_write(struct pci_dev *dev, u32 smn_addr, u32 data)
{
	pci_write_config_dword(dev, 0x60, smn_addr);
	pci_write_config_dword(dev, 0x64, data);
	return 0;
}
EXPORT_SYMBOL_NS_GPL(smn_write, "SND_SOC_ACP_COMMON");

int smn_read(struct pci_dev *dev, u32 smn_addr)
{
	u32 data;

	pci_write_config_dword(dev, 0x60, smn_addr);
	pci_read_config_dword(dev, 0x64, &data);
	return data;
}
EXPORT_SYMBOL_NS_GPL(smn_read, "SND_SOC_ACP_COMMON");

static void check_acp3x_config(struct acp_chip_info *chip)
{
	u32 val;

	val = readl(chip->base + ACP3X_PIN_CONFIG);
	switch (val) {
	case ACP_CONFIG_4:
		chip->is_i2s_config = true;
		chip->is_pdm_config = true;
		break;
	default:
		chip->is_pdm_config = true;
		break;
	}
}

static void check_acp6x_config(struct acp_chip_info *chip)
{
	u32 val;

	val = readl(chip->base + ACP_PIN_CONFIG);
	switch (val) {
	case ACP_CONFIG_4:
	case ACP_CONFIG_5:
	case ACP_CONFIG_6:
	case ACP_CONFIG_7:
	case ACP_CONFIG_8:
	case ACP_CONFIG_11:
	case ACP_CONFIG_14:
		chip->is_pdm_config = true;
		break;
	case ACP_CONFIG_9:
		chip->is_i2s_config = true;
		break;
	case ACP_CONFIG_10:
	case ACP_CONFIG_12:
	case ACP_CONFIG_13:
		chip->is_i2s_config = true;
		chip->is_pdm_config = true;
		break;
	default:
		break;
	}
}

static void check_acp70_config(struct acp_chip_info *chip)
{
	u32 val;

	val = readl(chip->base + ACP_PIN_CONFIG);
	switch (val) {
	case ACP_CONFIG_4:
	case ACP_CONFIG_5:
	case ACP_CONFIG_6:
	case ACP_CONFIG_7:
	case ACP_CONFIG_8:
	case ACP_CONFIG_11:
	case ACP_CONFIG_14:
	case ACP_CONFIG_17:
	case ACP_CONFIG_18:
		chip->is_pdm_config = true;
		break;
	case ACP_CONFIG_9:
		chip->is_i2s_config = true;
		break;
	case ACP_CONFIG_10:
	case ACP_CONFIG_12:
	case ACP_CONFIG_13:
	case ACP_CONFIG_19:
	case ACP_CONFIG_20:
		chip->is_i2s_config = true;
		chip->is_pdm_config = true;
		break;
	default:
		break;
	}
}

void check_acp_config(struct pci_dev *pci, struct acp_chip_info *chip)
{
	struct acpi_device *pdm_dev;
	const union acpi_object *obj;
	u32 pdm_addr;

	switch (chip->acp_rev) {
	case ACP_RN_PCI_ID:
		pdm_addr = ACP_RENOIR_PDM_ADDR;
		check_acp3x_config(chip);
		break;
	case ACP_RMB_PCI_ID:
		pdm_addr = ACP_REMBRANDT_PDM_ADDR;
		check_acp6x_config(chip);
		break;
	case ACP63_PCI_ID:
		pdm_addr = ACP63_PDM_ADDR;
		check_acp6x_config(chip);
		break;
	case ACP70_PCI_ID:
	case ACP71_PCI_ID:
		pdm_addr = ACP70_PDM_ADDR;
		check_acp70_config(chip);
		break;
	default:
		break;
	}

	if (chip->is_pdm_config) {
		pdm_dev = acpi_find_child_device(ACPI_COMPANION(&pci->dev), pdm_addr, 0);
		if (pdm_dev) {
			if (!acpi_dev_get_property(pdm_dev, "acp-audio-device-type",
						   ACPI_TYPE_INTEGER, &obj) &&
						   obj->integer.value == pdm_addr)
				chip->is_pdm_dev = true;
		}
	}
}
EXPORT_SYMBOL_NS_GPL(check_acp_config, "SND_SOC_ACP_COMMON");

MODULE_DESCRIPTION("AMD ACP legacy common features");
MODULE_LICENSE("Dual BSD/GPL");