Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ian Rogers | 942 | 37.17% | 16 | 27.59% |
Andi Kleen | 363 | 14.33% | 2 | 3.45% |
Jiri Olsa | 337 | 13.30% | 13 | 22.41% |
Arnaldo Carvalho de Melo | 309 | 12.19% | 6 | 10.34% |
Stéphane Eranian | 224 | 8.84% | 2 | 3.45% |
Paul Mackerras | 154 | 6.08% | 1 | 1.72% |
Riccardo Mancini | 52 | 2.05% | 2 | 3.45% |
Ingo Molnar | 45 | 1.78% | 3 | 5.17% |
Kan Liang | 29 | 1.14% | 2 | 3.45% |
Kyle Meyer | 24 | 0.95% | 1 | 1.72% |
Mark Rutland | 15 | 0.59% | 1 | 1.72% |
Jin Yao | 11 | 0.43% | 1 | 1.72% |
Peter Zijlstra | 5 | 0.20% | 1 | 1.72% |
Yan Zheng | 5 | 0.20% | 1 | 1.72% |
Stanislav Fomichev | 5 | 0.20% | 1 | 1.72% |
Adrian Hunter | 4 | 0.16% | 1 | 1.72% |
Arjan van de Ven | 3 | 0.12% | 1 | 1.72% |
Elena Reshetova | 3 | 0.12% | 1 | 1.72% |
Don Zickus | 2 | 0.08% | 1 | 1.72% |
He Zhe | 2 | 0.08% | 1 | 1.72% |
Total | 2534 | 58 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523
// SPDX-License-Identifier: GPL-2.0-only #include <perf/cpumap.h> #include <stdlib.h> #include <linux/refcount.h> #include <internal/cpumap.h> #include <asm/bug.h> #include <stdio.h> #include <string.h> #include <unistd.h> #include <ctype.h> #include <limits.h> #include "internal.h" void perf_cpu_map__set_nr(struct perf_cpu_map *map, int nr_cpus) { RC_CHK_ACCESS(map)->nr = nr_cpus; } struct perf_cpu_map *perf_cpu_map__alloc(int nr_cpus) { RC_STRUCT(perf_cpu_map) *cpus; struct perf_cpu_map *result; if (nr_cpus == 0) return NULL; cpus = malloc(sizeof(*cpus) + sizeof(struct perf_cpu) * nr_cpus); if (ADD_RC_CHK(result, cpus)) { cpus->nr = nr_cpus; refcount_set(&cpus->refcnt, 1); } return result; } struct perf_cpu_map *perf_cpu_map__new_any_cpu(void) { struct perf_cpu_map *cpus = perf_cpu_map__alloc(1); if (cpus) RC_CHK_ACCESS(cpus)->map[0].cpu = -1; return cpus; } static void cpu_map__delete(struct perf_cpu_map *map) { if (map) { WARN_ONCE(refcount_read(perf_cpu_map__refcnt(map)) != 0, "cpu_map refcnt unbalanced\n"); RC_CHK_FREE(map); } } struct perf_cpu_map *perf_cpu_map__get(struct perf_cpu_map *map) { struct perf_cpu_map *result; if (RC_CHK_GET(result, map)) refcount_inc(perf_cpu_map__refcnt(map)); return result; } void perf_cpu_map__put(struct perf_cpu_map *map) { if (map) { if (refcount_dec_and_test(perf_cpu_map__refcnt(map))) cpu_map__delete(map); else RC_CHK_PUT(map); } } static struct perf_cpu_map *cpu_map__new_sysconf(void) { struct perf_cpu_map *cpus; int nr_cpus, nr_cpus_conf; nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); if (nr_cpus < 0) return NULL; nr_cpus_conf = sysconf(_SC_NPROCESSORS_CONF); if (nr_cpus != nr_cpus_conf) { pr_warning("Number of online CPUs (%d) differs from the number configured (%d) the CPU map will only cover the first %d CPUs.", nr_cpus, nr_cpus_conf, nr_cpus); } cpus = perf_cpu_map__alloc(nr_cpus); if (cpus != NULL) { int i; for (i = 0; i < nr_cpus; ++i) RC_CHK_ACCESS(cpus)->map[i].cpu = i; } return cpus; } static struct perf_cpu_map *cpu_map__new_sysfs_online(void) { struct perf_cpu_map *cpus = NULL; FILE *onlnf; onlnf = fopen("/sys/devices/system/cpu/online", "r"); if (onlnf) { cpus = perf_cpu_map__read(onlnf); fclose(onlnf); } return cpus; } struct perf_cpu_map *perf_cpu_map__new_online_cpus(void) { struct perf_cpu_map *cpus = cpu_map__new_sysfs_online(); if (cpus) return cpus; return cpu_map__new_sysconf(); } static int cmp_cpu(const void *a, const void *b) { const struct perf_cpu *cpu_a = a, *cpu_b = b; return cpu_a->cpu - cpu_b->cpu; } static struct perf_cpu __perf_cpu_map__cpu(const struct perf_cpu_map *cpus, int idx) { return RC_CHK_ACCESS(cpus)->map[idx]; } static struct perf_cpu_map *cpu_map__trim_new(int nr_cpus, const struct perf_cpu *tmp_cpus) { size_t payload_size = nr_cpus * sizeof(struct perf_cpu); struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr_cpus); int i, j; if (cpus != NULL) { memcpy(RC_CHK_ACCESS(cpus)->map, tmp_cpus, payload_size); qsort(RC_CHK_ACCESS(cpus)->map, nr_cpus, sizeof(struct perf_cpu), cmp_cpu); /* Remove dups */ j = 0; for (i = 0; i < nr_cpus; i++) { if (i == 0 || __perf_cpu_map__cpu(cpus, i).cpu != __perf_cpu_map__cpu(cpus, i - 1).cpu) { RC_CHK_ACCESS(cpus)->map[j++].cpu = __perf_cpu_map__cpu(cpus, i).cpu; } } perf_cpu_map__set_nr(cpus, j); assert(j <= nr_cpus); } return cpus; } struct perf_cpu_map *perf_cpu_map__read(FILE *file) { struct perf_cpu_map *cpus = NULL; int nr_cpus = 0; struct perf_cpu *tmp_cpus = NULL, *tmp; int max_entries = 0; int n, cpu, prev; char sep; sep = 0; prev = -1; for (;;) { n = fscanf(file, "%u%c", &cpu, &sep); if (n <= 0) break; if (prev >= 0) { int new_max = nr_cpus + cpu - prev - 1; WARN_ONCE(new_max >= MAX_NR_CPUS, "Perf can support %d CPUs. " "Consider raising MAX_NR_CPUS\n", MAX_NR_CPUS); if (new_max >= max_entries) { max_entries = new_max + MAX_NR_CPUS / 2; tmp = realloc(tmp_cpus, max_entries * sizeof(struct perf_cpu)); if (tmp == NULL) goto out_free_tmp; tmp_cpus = tmp; } while (++prev < cpu) tmp_cpus[nr_cpus++].cpu = prev; } if (nr_cpus == max_entries) { max_entries += MAX_NR_CPUS; tmp = realloc(tmp_cpus, max_entries * sizeof(struct perf_cpu)); if (tmp == NULL) goto out_free_tmp; tmp_cpus = tmp; } tmp_cpus[nr_cpus++].cpu = cpu; if (n == 2 && sep == '-') prev = cpu; else prev = -1; if (n == 1 || sep == '\n') break; } if (nr_cpus > 0) cpus = cpu_map__trim_new(nr_cpus, tmp_cpus); out_free_tmp: free(tmp_cpus); return cpus; } struct perf_cpu_map *perf_cpu_map__new(const char *cpu_list) { struct perf_cpu_map *cpus = NULL; unsigned long start_cpu, end_cpu = 0; char *p = NULL; int i, nr_cpus = 0; struct perf_cpu *tmp_cpus = NULL, *tmp; int max_entries = 0; if (!cpu_list) return perf_cpu_map__new_online_cpus(); /* * must handle the case of empty cpumap to cover * TOPOLOGY header for NUMA nodes with no CPU * ( e.g., because of CPU hotplug) */ if (!isdigit(*cpu_list) && *cpu_list != '\0') goto out; while (isdigit(*cpu_list)) { p = NULL; start_cpu = strtoul(cpu_list, &p, 0); if (start_cpu >= INT_MAX || (*p != '\0' && *p != ',' && *p != '-')) goto invalid; if (*p == '-') { cpu_list = ++p; p = NULL; end_cpu = strtoul(cpu_list, &p, 0); if (end_cpu >= INT_MAX || (*p != '\0' && *p != ',')) goto invalid; if (end_cpu < start_cpu) goto invalid; } else { end_cpu = start_cpu; } WARN_ONCE(end_cpu >= MAX_NR_CPUS, "Perf can support %d CPUs. " "Consider raising MAX_NR_CPUS\n", MAX_NR_CPUS); for (; start_cpu <= end_cpu; start_cpu++) { /* check for duplicates */ for (i = 0; i < nr_cpus; i++) if (tmp_cpus[i].cpu == (int)start_cpu) goto invalid; if (nr_cpus == max_entries) { max_entries += MAX_NR_CPUS; tmp = realloc(tmp_cpus, max_entries * sizeof(struct perf_cpu)); if (tmp == NULL) goto invalid; tmp_cpus = tmp; } tmp_cpus[nr_cpus++].cpu = (int)start_cpu; } if (*p) ++p; cpu_list = p; } if (nr_cpus > 0) cpus = cpu_map__trim_new(nr_cpus, tmp_cpus); else if (*cpu_list != '\0') { pr_warning("Unexpected characters at end of cpu list ('%s'), using online CPUs.", cpu_list); cpus = perf_cpu_map__new_online_cpus(); } else cpus = perf_cpu_map__new_any_cpu(); invalid: free(tmp_cpus); out: return cpus; } static int __perf_cpu_map__nr(const struct perf_cpu_map *cpus) { return RC_CHK_ACCESS(cpus)->nr; } struct perf_cpu perf_cpu_map__cpu(const struct perf_cpu_map *cpus, int idx) { struct perf_cpu result = { .cpu = -1 }; if (cpus && idx < __perf_cpu_map__nr(cpus)) return __perf_cpu_map__cpu(cpus, idx); return result; } int perf_cpu_map__nr(const struct perf_cpu_map *cpus) { return cpus ? __perf_cpu_map__nr(cpus) : 1; } bool perf_cpu_map__has_any_cpu_or_is_empty(const struct perf_cpu_map *map) { return map ? __perf_cpu_map__cpu(map, 0).cpu == -1 : true; } bool perf_cpu_map__is_any_cpu_or_is_empty(const struct perf_cpu_map *map) { if (!map) return true; return __perf_cpu_map__nr(map) == 1 && __perf_cpu_map__cpu(map, 0).cpu == -1; } bool perf_cpu_map__is_empty(const struct perf_cpu_map *map) { return map == NULL; } int perf_cpu_map__idx(const struct perf_cpu_map *cpus, struct perf_cpu cpu) { int low, high; if (!cpus) return -1; low = 0; high = __perf_cpu_map__nr(cpus); while (low < high) { int idx = (low + high) / 2; struct perf_cpu cpu_at_idx = __perf_cpu_map__cpu(cpus, idx); if (cpu_at_idx.cpu == cpu.cpu) return idx; if (cpu_at_idx.cpu > cpu.cpu) high = idx; else low = idx + 1; } return -1; } bool perf_cpu_map__has(const struct perf_cpu_map *cpus, struct perf_cpu cpu) { return perf_cpu_map__idx(cpus, cpu) != -1; } bool perf_cpu_map__equal(const struct perf_cpu_map *lhs, const struct perf_cpu_map *rhs) { int nr; if (lhs == rhs) return true; if (!lhs || !rhs) return false; nr = __perf_cpu_map__nr(lhs); if (nr != __perf_cpu_map__nr(rhs)) return false; for (int idx = 0; idx < nr; idx++) { if (__perf_cpu_map__cpu(lhs, idx).cpu != __perf_cpu_map__cpu(rhs, idx).cpu) return false; } return true; } bool perf_cpu_map__has_any_cpu(const struct perf_cpu_map *map) { return map && __perf_cpu_map__cpu(map, 0).cpu == -1; } struct perf_cpu perf_cpu_map__min(const struct perf_cpu_map *map) { struct perf_cpu cpu, result = { .cpu = -1 }; int idx; perf_cpu_map__for_each_cpu_skip_any(cpu, idx, map) { result = cpu; break; } return result; } struct perf_cpu perf_cpu_map__max(const struct perf_cpu_map *map) { struct perf_cpu result = { .cpu = -1 }; // cpu_map__trim_new() qsort()s it, cpu_map__default_new() sorts it as well. return __perf_cpu_map__nr(map) > 0 ? __perf_cpu_map__cpu(map, __perf_cpu_map__nr(map) - 1) : result; } /** Is 'b' a subset of 'a'. */ bool perf_cpu_map__is_subset(const struct perf_cpu_map *a, const struct perf_cpu_map *b) { if (a == b || !b) return true; if (!a || __perf_cpu_map__nr(b) > __perf_cpu_map__nr(a)) return false; for (int i = 0, j = 0; i < __perf_cpu_map__nr(a); i++) { if (__perf_cpu_map__cpu(a, i).cpu > __perf_cpu_map__cpu(b, j).cpu) return false; if (__perf_cpu_map__cpu(a, i).cpu == __perf_cpu_map__cpu(b, j).cpu) { j++; if (j == __perf_cpu_map__nr(b)) return true; } } return false; } /* * Merge two cpumaps * * orig either gets freed and replaced with a new map, or reused * with no reference count change (similar to "realloc") * other has its reference count increased. */ struct perf_cpu_map *perf_cpu_map__merge(struct perf_cpu_map *orig, struct perf_cpu_map *other) { struct perf_cpu *tmp_cpus; int tmp_len; int i, j, k; struct perf_cpu_map *merged; if (perf_cpu_map__is_subset(orig, other)) return orig; if (perf_cpu_map__is_subset(other, orig)) { perf_cpu_map__put(orig); return perf_cpu_map__get(other); } tmp_len = __perf_cpu_map__nr(orig) + __perf_cpu_map__nr(other); tmp_cpus = malloc(tmp_len * sizeof(struct perf_cpu)); if (!tmp_cpus) return NULL; /* Standard merge algorithm from wikipedia */ i = j = k = 0; while (i < __perf_cpu_map__nr(orig) && j < __perf_cpu_map__nr(other)) { if (__perf_cpu_map__cpu(orig, i).cpu <= __perf_cpu_map__cpu(other, j).cpu) { if (__perf_cpu_map__cpu(orig, i).cpu == __perf_cpu_map__cpu(other, j).cpu) j++; tmp_cpus[k++] = __perf_cpu_map__cpu(orig, i++); } else tmp_cpus[k++] = __perf_cpu_map__cpu(other, j++); } while (i < __perf_cpu_map__nr(orig)) tmp_cpus[k++] = __perf_cpu_map__cpu(orig, i++); while (j < __perf_cpu_map__nr(other)) tmp_cpus[k++] = __perf_cpu_map__cpu(other, j++); assert(k <= tmp_len); merged = cpu_map__trim_new(k, tmp_cpus); free(tmp_cpus); perf_cpu_map__put(orig); return merged; } struct perf_cpu_map *perf_cpu_map__intersect(struct perf_cpu_map *orig, struct perf_cpu_map *other) { struct perf_cpu *tmp_cpus; int tmp_len; int i, j, k; struct perf_cpu_map *merged = NULL; if (perf_cpu_map__is_subset(other, orig)) return perf_cpu_map__get(orig); if (perf_cpu_map__is_subset(orig, other)) return perf_cpu_map__get(other); tmp_len = max(__perf_cpu_map__nr(orig), __perf_cpu_map__nr(other)); tmp_cpus = malloc(tmp_len * sizeof(struct perf_cpu)); if (!tmp_cpus) return NULL; i = j = k = 0; while (i < __perf_cpu_map__nr(orig) && j < __perf_cpu_map__nr(other)) { if (__perf_cpu_map__cpu(orig, i).cpu < __perf_cpu_map__cpu(other, j).cpu) i++; else if (__perf_cpu_map__cpu(orig, i).cpu > __perf_cpu_map__cpu(other, j).cpu) j++; else { j++; tmp_cpus[k++] = __perf_cpu_map__cpu(orig, i++); } } if (k) merged = cpu_map__trim_new(k, tmp_cpus); free(tmp_cpus); return merged; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1